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Abstract

Fog computing (FC) is an evolving computing technology that operates in a distributed envi-

ronment. FC aims to bring cloud computing features close to edge devices. The approach is

expected to fulfill the minimum latency requirement for healthcare Internet-of-Things (IoT)

devices. Healthcare IoT devices generate various volumes of healthcare data. This large

volume of data results in high data traffic that causes network congestion and high latency.

An increase in round-trip time delay owing to large data transmission and large hop counts

between IoTs and cloud servers render healthcare data meaningless and inadequate for

end-users. Time-sensitive healthcare applications require real-time data. Traditional cloud

servers cannot fulfill the minimum latency demands of healthcare IoT devices and end-

users. Therefore, communication latency, computation latency, and network latency must

be reduced for IoT data transmission. FC affords the storage, processing, and analysis of

data from cloud computing to a network edge to reduce high latency. A novel solution for the

abovementioned problem is proposed herein. It includes an analytical model and a hybrid

fuzzy-based reinforcement learning algorithm in an FC environment. The aim is to reduce

high latency among healthcare IoTs, end-users, and cloud servers. The proposed intelligent

FC analytical model and algorithm use a fuzzy inference system combined with reinforce-

ment learning and neural network evolution strategies for data packet allocation and selec-

tion in an IoT–FC environment. The approach is tested on simulators iFogSim (Net-Beans)

and Spyder (Python). The obtained results indicated the better performance of the proposed

approach compared with existing methods.

Introduction

The latest report by the International Data Corporation stated that the number of Internet-

related sensors will increase to 30 million by 2020, and the number of Internet-of-thing (IoT)

devices will be in the range of 50 billion to 1 trillion [1]. Furthermore, U.S. factories will
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contain 500 million sensors, where 212 billion sensors will be available in the market [2]. Addi-

tionally, approximately 110 million cars will be connected to 5.5 billion sensors, while 1.2 mil-

lion houses connected with 200 million sensors; 237.1 million wearable body devices are

estimated to be available in the market by 2020 [3]. The worldwide IoT market is expected to

reach $1.7 trillion in 2020. Additionally, 30.7% of IoT devices will be provided in the health-

care market. The healthcare market for IoTs is estimated to reach $117 billion by 2020 [2] with

507.5 zettabytes of data to be generated by 50 billion connected devices [4].

A large set of IoTs is currently being used in healthcare, which results in a large volume of

data. To analyze, store, and pre-process the large variety, volume, and veracity of data, cloud

servers are used worldwide. The cloud is currently the only available feasible solution for com-

munications among healthcare IoTs [5]. Cloud computing ease the burden of healthcare IoT

devices by removing battery-draining computational tasks [6, 7]. The cloud is the only place

for the analysis, filtering, pre-processing, and aggregation of data generated from healthcare

IoT devices. However, the cloud has its limitations concerning healthcare IoTs. Owing to the

increasing transmission and the determination of these high volumes of data, the reaction

time in cloud computing is increasing as well. An upsurge in reaction time results in a higher

service latency to end-users. For large data transmissions, more data are transmitted over a

network, hence the higher probability of an error occurring. Packet loss and transmission

latency are proportional to the amount of data transmitted from IoTs to cloud servers. This

causes a poor quality of service (QoS) to end-users. In many time-critical applications of the

IoT, cloud-scale processing and storage are not required. Extreme time-bounded selections

should be made closer to IoT devices. The healthcare infrastructure requires real-time data for

time-sensitive applications. The critical requirements for healthcare IoTs are minimum latency

and network bandwidth conservation [8]. The cloud and end-devices are connected via rout-

ers and gateways. Therefore, a large number of routers are placed between healthcare IoTs and

the cloud. These routers incur computation delays. The larger the distance, the larger is the

number of routers used between the source and destination. Data travel a long route from

end-devices to a cloud server and consume a high bandwidth.

Motivation

The main motivation for this study is the requirement of minimum latency with good QoS for

time-critical healthcare IoT applications. The cloud cannot satisfy all these requirements. As a

patient’s physiological state changes with time and to monitor remote patients, rapid decisions

and agile responses are required. If network conditions are unpredictable, latency can become

more uncertain. Owing to high latency, the patient health data (PHD) are not returned in real

time. This render the data meaningless, inadequate, and unreliable. The situation worsens

when the processing of cascading-based data is required (such as signal processing of electro-

cardiogram (ECG) or electroencephalogram (EEG) signals) [9, 10]. The delay of services in

healthcare IoTs may vary from millisecond to microsecond [11, 12]. When the data size

increases, the round-trip time delay for these healthcare IoT time-sensitive applications

increase from milliseconds to seconds and from seconds to minutes [9, 11], thus worsening

the real time operations of healthcare IoTs [13, 14]. See Table 1 shows the QoS requirements

for medical data.

Table 2 shows the QoS requirements for E-healthcare services.

In January 2014, Cisco proposed a solution to address high latency and network bandwidth

consumption between IoTs and the cloud by introducing the concept of fog computing (FC)

to the world [17]. FC affords the features of the cloud to the edge of networks [18]. It acts at

the edge of networks and. is a type of subcloud [19, 20]. It can be a gateway, router, laptop, or
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any device that serves as a middleware separating IoTs and the cloud. FC is proposed to reduce

the burden of the cloud instead of replacing the cloud. The main goal of FC is to reduce the

high latency between IoTs and the cloud. It has proximity to end-devices [21, 22].

Fig 1 shows the transmission of healthcare data in real time to end-users. Here R1, R2, and

Rn denote the number of routers used between end-users and cloud servers.

Hitherto, real-world implementations of FC are still rare; FC has primarily been mentioned

in literature only [19, 23, 24]. Previous studies regarding FC were related to the standard

approach of data communications among IoTs and the cloud; however, for the current

Table 1. QoS requirements for medical and healthcare data transfer rates [15, 16].

Healthcare services Data rate Delay Packet loss percentage

Audio 4–25 kbps 150–400 milliseconds 3%

Video 32–384 kbps 150–400 milliseconds 1%

Electrocardiogram (ECG) 1–20 kbps approx. 1 seconds Zero

File Transfer Not available Not available Zero

https://doi.org/10.1371/journal.pone.0224934.t001

Table 2. QoS requirements for E-healthcare services [15, 16].

Services for E-healthcare Healthcare applications Type of media Maximum delay

Real-time communication audio-

based

Conferencing between patients/end-users and

doctors (Audio)

Audio < 150 milliseconds one-way

Real-time communication video-

based

Conferencing between patients/end-users and

doctors (Video)

Video < 250 milliseconds one-way

Real-time robotic services Remote based telesurgery Robotic data, audio, and video < 300 milliseconds round-trip-time

Real-time monitoring Patient health data and vital sign transmission Biomedical data collected by

sensors

Application < 300 milliseconds for real-

time ECG.

https://doi.org/10.1371/journal.pone.0224934.t002

Fig 1. Data transmission between healthcare IoTs, end-users, and cloud servers using FC.

https://doi.org/10.1371/journal.pone.0224934.g001
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scenario, an enhanced intelligent infrastructure is required to serve as a gateway between IoTs

and the cloud. This intelligent gateway serves to obtain PHD in real time by reducing the com-

putation, communication, and network latency between healthcare IoTs and cloud servers.

Intelligent enhanced FC is a specialized and functional computing model that transfers health-

care data to end-nodes in real time.

Contribution

The significant contributions of this study are as follows:

1. The FC-based analytical model is proposed to transfer healthcare IoT data in real time to

end-users. The model allows fog nodes to determine the optimal functions to be conferred

to a reward function. Hence, the fog node can serve as a controller to define its reward func-

tion based on the appropriate execution.

2. A novel hybrid machine learning algorithm is proposed, which uses the fuzzy inference sys-

tem (FIS) and reinforcement learning (RL) technique based on neural network (NN) evolu-

tion strategies to address the problem of high latency between healthcare IoTs, end-users,

and cloud servers. The healthcare IoT data is classified into low risk, normal, and high-risk

using FIS. Next, the proposed algorithm uses RL and NN evolution strategies for the data

packet allocation and selection in fog nodes. The proposed algorithm uses a unique

approach and has a simpler data processing convolution and operation that is suitable for

computers with parallel core CPUs. Recent research and algorithms in this area lack the

hybrid machine learning approach to minimize high latency.

3. The proposed work reduces the total latency between healthcare IoTs and cloud servers.

Here, the total latency (TL) is the sum of computation latency (CPL), communication

latency (CL), and network latency (NL) i.e. TL = (CPL)+(CL)+(NL).

Related work

This section presents an in-depth analysis and comparison between existing works and the

present work, focusing on high latency, network usage, and bandwidth consumption in IoTs,

and cloud and FC.

Wu et al. [25] discussed the requirements of information-centric social networks (ICSN);

they applied fog computing security service (FCSS) in ICSN. The ICSN requirements are a

deployment scheme, mobility of data, minimum latency, and effective end node communica-

tion. The use of fog computing in ICSN results in shifting computational tasks, resources, and

intelligence from remote and distance servers to the edge of networks. FC-based content-

aware filtering is used to secure the services in ICSN. However, the authors did not discuss the

issue of high computational and network latency generated at the fog nodes. Dinh et al. [26]

proposed a cost-effective deployment schema for services related to IoTs in fog and cloud net-

works. Their proposed schema measures the virtual network function (VNF) with the poten-

tial to improve the software function chaining (SFC) availability. The author discussed the

issues related to hardware and software failure and resource limitations in FC nodes. Li et al.
[27] proposed the service popularity-based smart-resources partitioning (SPSRP) method for

IoTs and FC; they highlighted the issue of computing and resource efficiency on fog nodes.

This proposed work seeks to reduce the delay and response times and fault tolerance in IoTs

and fog servers. Similarly, Alam et al. [23] introduced the concept of a basic block offloading

mechanism to deploy mobile codes on a geographically distributed fog mobile network in a

decentralized manner. The RL technique was used to migrate the blocks in the distributed
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multi-agent environment. The result showed a reduction in high latency and processing time.

Similarly, Kao et al. [28] proposed a new technique called Hermes to minimize latency in

mobile computing for time-critical issues. The main function of the technique included the

optimization of task assignments for devices that are deprived of resources. This technique

was based on the offloading of computational tasks. Nishtala et al. [20] proposed a technique

called Hipster to meet the demands of QoS in end-user requirements. The technique involved

a combination of heuristic and RL. The combined machine learning effect managed the

latency for time-sensitive workloads in cloud computing. However, the authors did not explain

the issue of high communication latency in cloud servers. Naas et al. [29] highlighted the prob-

lem of high latency for time-critical IoT applications; to resolve it, they proposed a technique

called iFogStor. This technique was based on the FC concept. In iFogStor, the issue of data

placement was formulated as a generalized assignment problem (GAP). Furthermore, they rec-

ommended a method to solve the problem using accurate integer programming and a heuris-

tic approach. This approach requires a more accurate model and architecture for time-

sensitive IoT applications. Similarly, Pan et al. [30] discussed various emerging and existing

technologies for IoT applications, such as cloudlet, edge-cloud, FC, and mobile-edge comput-

ing. They highlighted several existing issues related to IoT, such as high latency and data traffic.

An internal study on existing and emerging technologies was conducted by the authors in

their survey analysis. However, the research lacks consideration on practical implementation

for latency minimization. Cao et al. [31] proposed a machine-learning algorithm to reduce the

energy and bandwidth consumption and network usage for mobile devices. They discussed

the issue of computational offloading of tasks for multiple users in the cloudlet environment.

Next, Brogi et al. [32] proposed a model in the fog environment for IoT to support the QoS

deployment infrastructure; they discussed several challenges, such as data distribution, seg-

mentation, and adaptive deployment in IoT and the cloud infrastructure. However, Cao et al.
[31] and Brogi et al. [32] did not explain the issues related to the high computational and net-

work latency between IoT and cloud. Mahmud et al. [33] highlighted the problem of high

latency and large data transmission in healthcare applications. Therefore, they proposed a

cloud-fog based service along with a reference architecture for healthcare applications. An

analysis of the obtained results was done with respect to data communication optimization,

latency minimization, and reduction in power consumption. The results showed an improve-

ment in cost efficiency, energy consumption, and network delay. Rafique et al. [34] proposed a

hybrid bio-inspired algorithm to minimize the response and execution time in the IoT-fog-

cloud environment. The hybrid algorithm was a combination of cat swarm and particle swarm

optimization. The algorithm was modified to manage the availability of resources and task

scheduling in fog nodes. Future work requires the use of the RL technique for resource man-

agement in the IoT-fog environment.

To protect and secure the data within the cloud environment, Ahsan et al. [35] proposed a

centric FC-based scheme for cloud storage; they discussed several issues related to data security

and privacy in cloud computing. The privacy of users’ data is of utmost importance in cloud

servers. Therefore, a Xor combination was used to protect the data from unauthorized access

and malicious attacks. The results were validated with respect to the data packet processing

time. The authors used a new technique based on a hash algorithm to detect the data modifica-

tion with maximum probability. Waqar et al. [36] proposed a framework to protect and secure

the users’ data within the cloud from unauthorized intruders. The framework was based on a

dynamic metadata and database schema design. Next, the dynamic metadata was recon-

structed for privacy operations and applications. Different cryptographic operations were used

to modify the database schema. Scope for future research includes the implementation of the

proposed approach using RL techniques. Soleymani et al. [37] proposed a fuzzy-based model
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to collect correct and authorized information from vehicular ad hoc networks (VANETs). The

vehicles in VANET require reliable information. Incorrect information would lead to inter-

ruption and system failure. The authors used fuzzy logic to make decisions for constructing

rules related to the trust model in VANET. Their proposed work was based on the experience

where distributed fog nodes were adopted to check event accuracy in VANETs.

The research analysis and comparison of techniques showed that the research to minimize

the total latency (i.e. computational, communication, and network latency) between IoT and

the cloud is incomplete. Therefore, a novel approach is required to minimize the high latency

for time-sensitive applications in healthcare IoTs. A complete in-depth analysis and compari-

son of techniques used by different authors in their research are provided in Tables 3 and 4.

Different techniques used by authors in their research are selected as the baseline for com-

parison and analysis with our proposed approach. The discussed techniques work towards

Table 3. The various techniques used by different authors in their proposed research works.

Techniques (Ti(i = 1, 2, − − −n))

T1: Fog computing-based content-aware filtering and fog computing security service (FCSS) on edge networks [25].

T2: Cost-effective deployment schema for IoT using FC [26].

T3: Service popularity-based smart-resources partitioning (SPSRP) for IoT and FC nodes [27].

T4: RL algorithm and basic block offloading mechanism on fog mobile [23].

T5: Hermes: mobile computing [28].

T6: Hipster: heuristic and RL in cloud computing [20].

T7: iFogStor: heuristic approach in FC [29].

T8: Future edge cloud, cloudlet, FC and mobile edge computing [30].

T9: Computation offloading for multiple mobile users in a cloud computing environment [31].

T10: FC model for QoS deployment infrastructure in IoTs [32].

T11: Cloud-fog based services for healthcare [33].

T12: A hybrid bio-inspired algorithm [34].

T13: A fog centric cloud storage scheme [35].

T14: FC analytical model for healthcare IoTs using hybrid machine learning approach [Proposed Work].

https://doi.org/10.1371/journal.pone.0224934.t003

Table 4. The comparative analysis for minimization of communication latency (CL), computation latency (CPL),

and network latency (NL). The table also lists the authors’ names along with the techniques used.

Author Ti (CL) (CPL) (NL)

Wu et al. [25] T1 ✓ X X

Dinh et al.[26] T2 ✓ X X

Li et al. [27] T3 ✓ X X

Alam et al. [23] T4 ✓ ✓ X

Kao et al. [28] T5 ✓ X X

Nishtala et al. [20] T6 X ✓ ✓

Naas et al.[29] T7 X ✓ ✓

Pan et.al. [30] T8 X X X

Cao et al. [31] T9 ✓ X X

Brogi et al. [32] T10 ✓ X X

Mahmud et al. [33] T11 ✓ X ✓

Rafique et al. [34] T12 ✓ ✓ X

Ahsan et al. [35] T13 X ✓ X

Proposed work T14 ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0224934.t004
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minimizing high latency, network consumption, and RAM consumption between IoTs and

the cloud. These existing techniques mostly use conventional FC approaches as middleware

gateways for data transmission between IoTs, end-users, and cloud servers. The mentioned

techniques play a major role in healthcare IoTs. However, most of the existing works lack real-

world implementation of latency minimization between IoTs, fog nodes, and cloud servers.

Owing to the above-mentioned reasons, these existing techniques are selected for a compara-

tive analysis with our proposed approach.

In this section, we identify the limitations of the existing techniques in the IoT-fog-cloud

environment. In addition, the computation, network and communication latency and network

usage are argued to be high and infeasible for healthcare IoTs. The issue of high latency in

healthcare IoTs leads to delay in the transmission of PHD to end-users [2, 5]. The analysis of

previous research shows that traditional cloud computing approaches and middleware gate-

ways were unable to fulfill the latency demands and QoS requirements of healthcare IoTs [15,

16]. To date, no significant research has been done regarding healthcare IoTs to minimize the

round-trip time delay between IoTs, end-users, and the cloud. Therefore, we propose a novel

hybrid fuzzy-based RL algorithm employing NN evolution strategies and an analytical model

to minimize the high latency. The present study aims to minimize the latency, network usage,

and RAM consumption between healthcare IoTs, end-users, and cloud. The proposed algo-

rithm and analytical model meet the QoS requirements for healthcare IoTs.

Materials and methods

Healthcare ECG sensor data were obtained from the online (web source) UCI machine learn-

ing repository, which is a center for machine learning and intelligent system [38–42]. In our

simulation, the ECG sensor data comprise 14 attributes and 303 instances. However, the origi-

nal heart disease dataset from the UCI repository comprises 76 attributes. The dataset used in

our simulation is a uniformly sampled data. The proposed algorithm was tested on an ECG

dataset that includes data from a patient suffering from heart disease owing to high blood pres-

sure, high sugar level, and high cholesterol. The data were recorded continuously. A total of

303 patients’ ECG strips/records were obtained from two leads (one channel). The attribute

characteristics of the health dataset are categorical, integer-based, and real. See Table 5 for the

data dictionary.

System overview

The Q-learning Markov decision process (MDP) algorithm was used under the constraint to

achieve the minimum computation latency, communication latency, and network latency by

allocating data packets to different processors of virtual machines. Q-learning MDP is a math-

ematical framework for modeling decision-making and observations by collecting feedback

from past experience in a dynamic environment [43]. The proposed approach requires a Q-

learning MDP to account for the dynamic behavior of the IoT-fog-cloud system [23, 43]. The

IoT-fog-cloud system was unable to predict the transition probabilities and rewards because of

dynamically changing incoming data packet requests at fog nodes. A decision-making process

has been established using Q-learning MDP to mitigate the problem of different data packet

demands from different users at different time intervals and computational capacities of fog

nodes. The Q-learning algorithm solves the MDP with unknown larger rewards and transition

functions by exploring and exploiting the different states of the system [23]. Furthermore, it

maximizes the total reward for the IoT-fog-cloud system using quality action.

A fuzzy-based RL algorithm was used to monitor PHD in real time. The characteristics of

healthcare IoT requires RL to trace the patient background health state in minimum time [21].

An analytical fog computing model to minimize the latency in healthcare internet-of-things

PLOS ONE | https://doi.org/10.1371/journal.pone.0224934 November 13, 2019 7 / 31

https://doi.org/10.1371/journal.pone.0224934


The selection of data packets for computation in different fog nodes was performed using RL

and a NN [44]. This further balanced the load among the nodes to transfer the data to end-

users in minimal time. RL supports the optimum use of available resources by allowing the

allocation of distinct data packets to processors without violating QoS barriers for delayed crit-

ical workloads [4, 45]. It was designed to obtain feedback from the patient’s previous health

record, where the decision for constructing rules was processed by the FIS [23, 37, 44, 46]. The

PHD were classified into low, normal, and high risk using fuzzy membership functions and

fuzzy rules defined in FIS [47, 48]. Next, RL identified the best outcome of the action to maxi-

mize its total reward and the performance of the algorithm in a given time. The proposed algo-

rithm was observed to reduce high latency.

Fig 2 shows the healthcare IoT data transmission model, in which the IoT sends a data

packet to fog nodes. Subsequently, the fog nodes directly send the data packet to end-users. A

master fog controller controls the fog node’s data transmission and selection and communi-

cates further to a cloud server.

The process in the proposed model allows fog nodes to select appropriate data transmitted

from IoT devices. Next, PHD is computed and transferred to other fog nodes and end-users in

real time. This process is designed to reduce the high latency, i.e., reduces the total latency

between IoTs and end-users. Distributed intelligent decision-making is required for the distri-

bution of data packets to other fog nodes for computation. This distribution of data packets is

associated with the requirement of data in minimal required time by end-nodes. The decision

of data packet distribution considers the communication delay, prolonged computation delay,

and network delay. A delay occurs between nodes owing to the transmission of a large number

of data packets over a network. Crucial decisions include (i) which data packets for computa-

tion should be allocated to fog nodes to be sent in real time, (ii) How many data packets should

be uploaded and migrated, and (iii) Scaling of data packets to fog nodes. It is noteworthy that

the existing schemes emphasize primarily load offset and coordinated migration in a fog envi-

ronment [19]. Studies to minimize the total latency among IoTs, end-users, and cloud servers

using intelligent FC based on a hybrid machine learning approach have not been conducted.

Generally, most previous studies do not convey the practical aspects of fog networks [19, 49].

Table 5. Data dictionary for the dataset used in our simulation [38].

Variable Definition

1. Age Patient age in years.

2. cp Chest Pain (Value 1: Angina, Value 2: Atypical form of angina, Value 3: Non-angina, Value 4: No

symptoms of angina

3. restecg ECG sensor resting value (Value 0: Normal, Value 1: Abnormal (ST-T wave), Value 2: Definite

Ventricular

4. thalrest Heart Rate Values at rest.

5. trestbps Resting blood pressure value in mmHg.

6. chol Cholesterol Value in mg/dl

7. fbs Fasting Blood Sugar Value > 120mg/dl (True: 1 and False: 0)

8. num Diagnosis of heart disease (Value 0: < 50% diameter narrowing, Value 1: > 50% diameter narrowing)

9. ca Total number of major vessels.

10. thalach Maximum heart rate recorded value.

11. sex (1 = Male) or (0 = Female)

12. exang Exercise induced angina.

13.

oldpeak

ST Depression induced from exercise with respect to rest.

14. slope Slope related to peak of exercise (Value 1, Value 2 and Value 3)

https://doi.org/10.1371/journal.pone.0224934.t005
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The proposed new algorithm prepares the data allocation issue in the form of an MDP and is

accountable to the change in system from the context of fog nodes. This problem allows fog

nodes to move their data packets after allocation and computation to other fog nodes, which

further transfer them to end-users. The proposed fuzzy-based Q-learning model in fog net-

works differs from existing approaches based on two main aspects. First, the dynamic environ-

ment is based on the end-users’ request for time-sensitive data packets from different

distributed fog nodes. The interhop gap among neighboring fog nodes results in a change in

the decision-making process for actions that are then selected to minimize service latency. Sec-

ond, the network traffic control in a fog network refers to efficiency in data packet distribution

to a fraction of fog nodes such that users can more easily access data in real time. It is a type of

dynamic data packet allocation schema where the fog node allocates only data that are time-

sensitive or requested by users. In our proposed method, fog nodes are defined as a server that

can perform communication while exhibiting processing and computing capacity.

Analytical model

System model. Fig 3 shows the healthcare IoT system model for the FC environment. The

data transmitted from healthcare IoT devices are classified into low risk, normal, and high risk

by applying a FIS classification process. PHD are allocated through RL in various virtual

machines in fog servers. The time-sensitive data are selected using an NN and sent to end-

Fig 2. The healthcare IoT data transmission model consists of fog nodes, master fog controller, end-users (u) and

cloud server.

https://doi.org/10.1371/journal.pone.0224934.g002
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users within the minimum required time. In virtualization, fog nodes are used in the distribu-

tion and allocation of data packets among other nodes and end-users. End nodes are linked to

fog nodes, where information retrieval can be sent.

A master fog node controller that contains the topology information of data

packet allocation and distribution is used. Nodes are connected through a network topology

and all the nodes are further connected to the master fog node. This study investigates a pro-

gressive data packet allocation approach using fog computation in the machine learning envi-

ronment. The nodes can transfer data packets to other nodes to minimize latency and network

traffic. Here, the CPU comprises data packets in a queue, which can be used as a good traffic

index on nodes and affects the average response time. Each fog node can gather information,

make decisions, serve the end nodes, and provide data on assembling traffic information and

queue position. The master fog creates a network table by considering the information distrib-

uted from other nodes. The master fog node sends requests to determine whether the current

node should move the required data. If so, data will be moved to the neighboring node, where

selection is performed based on time and requisite data. The main objective of this study is to

select time-sensitive data while reducing latency and network traffic.

Problem formulation

To accomplish the requisite execution, the suggested problem of latency minimization in

healthcare IoTs and cloud was developed as an MDP, for which an algorithm with a perfor-

mance guarantee [22, 23, 27] is proposed. The MDP comprises a fog node in the form of a

selection agent that regularly inspects the instant conditions of the controlled system, selects

between those who have permission in the state (a 2 Ai(s)), and then detects the progression in

a different state s0 and reward r, which will transform its subsequent selections. In the MDP,

Fig 3. The healthcare IoT system model consists of healthcare IoT devices, classified PHD, fog gateways, fog

servers, and virtual machines (VM’s).

https://doi.org/10.1371/journal.pone.0224934.g003
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the agent selects an action as the work of states. Therefore, the new state and reward transition

probability distribution will be observed. In our system, the master fog node selects an action

as a function of the current state and considers the reward shown in the following states and

all nodes. Our MDP is characterized by a 4-tuple hSi, Ai, Pi, Rii, where Si ¼ fs ¼ ðnl; d
p
l ;QÞg is

the state space, nl 2 N(1� nl� N) is the node that contains the data packets for allocation as

requested by the end-users, dp
l 2 Nð1 � dp

l � DP
maxL
Þ is the number of data packets to be allo-

cated per unit time, Q = {Q1, − − − − −, QN} | Qi 2{0, 1, − − − − −, Qi,max}} is the number of

data packets and currently remaining in the queue of the fog node.

Additionally,Ai ¼ fa ¼ ðnf ; d
p
f Þg is the action space, where nf 2 N(1� nf� N, nf 6¼ nl) is

defined as the neighboring node within the fog network that is being allocated with data pack-

ets sent by node nl.
dp
f 2 Nð1 � dp

f � DP
maxL
Þ is the number of data packets sent to nf, which is a neighboring fog

node.

Let Ai(s) 2 Ai be a group of actions that can be performed on state s. Ai(s) is defined such

that node nl can only move the data packet to the second node and to the user with the same

or a smaller number of data packets currently required. Based on the action a, the total count

of data packets to be locally processed ðdl
f Þ is decided with respect to the accessible queue

space of node nl.
Pi: Si × Ai × Si![0, 1] is the transition probability distribution Pi(s0, a) of a new state s0

from a given state s when an action a is performed.

Ri: Si × Ai!Ri is the reward when the system is in state s and action a is performed. The

essential objective of the system is to perform a peerless data packet allocation operation on

each node to maximize the utility while reducing latency and data packet allocation probabil-

ity. Therefore, the determined system characterizes the instant reward function Ri(s, a) given

action a at state s as follows:

Riðs; aÞ ¼ Uiðs; aÞ � ðL
FOG
i ðs; aÞ þ Oðs; aÞÞ; ð1Þ

where Ui(s, a), LFOG
i ðs; aÞ and O(s, a) represent the instant utility, instant latency, and data

packet allocation probability function, in combination, respectively.

The instant utility is computed as

Uiðs; aÞ ¼ riulogð1þ dl
f þ dp

f Þ; ð2Þ

where riu is the reward utility.

LFOG
i ðs; aÞ ¼ ðwl:C

FOG
L þ CFOG

PL þ NFOG
L Þ=ðd

l
f þ dp

f Þ; ð3Þ

where χl is the latency weight. Here, CFOG
L is the communication latency, CFOG

PL the computation

latency, and NFOG
L the network latency.

Communication latency. The round-trip times required by a data packet from an end-

user node (wearable IoT device) to a fog node and from a fog node back to an end-user node

(wearable IoT device) are determined, as follows:

CFOG
L ¼ CFOG

L ðRequestÞ þ CFOG
L ðResponseÞ

CFOG
L ðRequestÞ ¼

DS
P

vne ;nf
� dp

l
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and

CFOG
L ðResponseÞ ¼

DS
P

vnf ;ne
� dp

f

CFOG
L ¼

DS
P

vne ;nf
� dp

l þ
DS

P

vnf ;ne
� dp

f ;

where,

vne ;nf ¼ Bew
:log 1þ

gne ;nf :Ptxne

Bew
:Ne

0

 !

and

vnf ;ne ¼ Bfw
:log 1þ

gnf ;ne :Ptxnf

Bfw
:Nf

0

 !

CFOG
L between the end-user node ne and neighboring fog node nf is determined, as

CFOG
L ¼ DS

P �
dp

l

vne ;nf
þ

dp
f

vnf ;ne

 !

; ð4Þ

CFOG
L between fog nodes nl and nf is expressed as

CFOG
L ¼ DS

P �
dl
f

vnl ;nf
þ

dp
f

vnf ;nl

 !

; ð5Þ

where,

v
nl ;nf
¼ Blw

:log 1þ
gnl ;nf :Ptxnl

Blw
:N0

l

 !

and

vnf ;nl ¼ Bfw
:log 1þ

gnf ;nl :Ptxnf

Bfw
:Nf

0

 !

CFOG
L between node ne and node nl is determined as

CFOG
L ¼ DS

P �
dp
l

vne ;nl
þ

dl
f

vnl ;ne

 !

; ð6Þ

where,

v
nl ;ne
¼ Blw

:log 1þ
gnl ;ne :Ptxnl

Blw
:N0

l

 !
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and

v
ne ;nl
¼ Bew

:log 1þ
gne ;nl :Ptxne

Bew
:N0

e

 !

Here, dp
l is the number of data packets sent by ne to nf and ne, d

p
f the number of data packets

sent by nf to ne and nl, dl
f the number of data packets sent by nl to ne and nf, DS

P the size of data

packets, vne ;nf the IoT device transmission service rate from ne to nf, vnf ;ne
the fog transmission

service rate from nf to ne, vne ;nl the transmission service rate from ne to nl, vnl ;ne
the fog transmis-

sion service rate from nl to ne, vnl ;nf the transmission service rate from nl to nf, vnf ;nl the trans-

mission service rate from nf to nl, Bew
,Bfw

, and Blw
the bandwidths per a node ne, nf and nl,

gne ;nf ≜ b1dne ;nf
� b2 , gnf ;ne ≜ b3dnf ;ne

� b4 , gnl ;ne ≜ b5dnl ;ne
� b6 , gne ;nl ≜ b7dne ;nl

� b8 , gnl ;nf ≜ b9dnl ;nf
� b10 , and

gnf ;nl ≜ b11dnf ;nl
� b12 the channel gains for vne ;nf , vnf ;ne

, v
nl ;ne

, vne ;nl , vnl ;nf and vnf ;nl , dne ;nf
the distance

between nodes ne and nf, dnl ;ne
the distance between nodes nl and ne, dnl ;nf

the distance between

nodes nl and nf, Ptxne
, Ptxnf

, and Ptxnl
the transmission powers of nodes ne, nf and nl, Ne

0
the

noise power density for transmission service rate from ne to nf and nl, N
f
0 the noise power den-

sity for transmission service rate from nf to ne and nl, Nl
0

the noise power density for transmis-

sion service rate from nl to ne and nf, β1, β3, β5, β7, β9 and β11 denotes the path loss constant,

and β2, β4, β6, β8, β10 and β12 denotes the path loss exponent, respectively.

Network latency. By assuming the same latency for every hop delay, the network latency

depends on the total packets sent from end-user node ne to fog node nl, nl to fog node nf, and

from nf to ne; the network latency is expressed as

NFOG
L ¼

lnHCnl þ lnHCnf þ lnHCne

TP
;

NFOG
L ¼

lnHC � ðnl þ nf þ neÞ

TP
; ð7Þ

here

TP ¼ dp
l þ dl

f þ dp
f

where HC is the number of hop counts, TP the total data packets sent, and ln the unit hop delay.

Computation latency. By assuming a query system and neglecting packet loss, with the

data packet arrival rate and service rate for the fog node, the computation latency(waiting time

and service time) can be expressed as

CFOG
PL ¼

NI � CPUI � dl
f

cls
þ

NI � CPUI � d
p
f

cfs
þ

1

v
nl ;ne
� le

þ
1

v
nl ;nf
� lf

þ
1

v
nf ;nl
� ll
þ

1

v
nf ;ne
� le0

; ð8Þ

where NI is the total count of instructions per data packet, CPUI the CPU cycle per instruction,

λe, λl, λe0 and λf are the data packet arrival rates at nodes nl and nf, cls and cfs the CPU speeds of

nodes nl and nf.
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The data packet allocation probability O(s, a) is calculated as

Oðs; aÞ ¼
wiðdl

f � Pallocation;l þ dp
f :Pallocation;f Þ

dl
f þ dp

f
; ð9Þ

P
allocation;i

¼
maxð0; li � ðQi;max � Qi

0ÞÞ

li
; ð10Þ

Qi
0 ¼ minðmaxð0;Qi � viÞ þ dl

fi
;Qi;maxÞ; ð11Þ

χi is the data packet allocation weight, vi the service rate of a node ni, dl
fi

the total count of data

packets to be locally processed at node ni, and λi is the data packet arrival rate at node ni. Qi
0

represents the next queue state, i.e., remaining data packets of a node ni in state s when an

action a is performed. The total latency is then expressed as

TL ¼ CFOG
L þ NFOG

L þ CFOG
PL ð12Þ

TL ¼ DS
P �

dp
l

vne ;nl
þ

dl
f

vnl ;ne

 !

þ DS
P �

dl
f

vnl ;nf
þ

dp
f

vnf ;nl

 !

þ DS
P �

dp
l

vne ;nf
þ

dp
f

vnf ;ne

 !

þ
lnHC � ðnl þ nf þ neÞ

TP
þ

NI � CPUI � dl
f

cls
þ

NI � CPUI � d
p
f

cfs
þ

1

v
nl ;ne
� le

þ
1

v
nl ;nf
� lf

þ
1

v
nf ;nl
� ll
þ

1

v
nf ;ne
� le0

The data traffic rate is to be sent through a one-hop transmission path from fog nodes nl
and nf to an end-user node ne. It is important to certify the QoS (latency requirement) for end-

users. Owing to large data transmission and high data traffic, end-user experience several

delays including computation latency (delay in queues on nodes), communication latency,

and network latency. The purpose of the proposed method is to reduce latency, with the transi-

tion probability Pi and reward Ri determined before the execution of the system. In each state,

the optimum action is defined as a series that yields the maximum long-term reward, which is

the disclosure sum of the expected recent rewards of all future decisions regarding the state-

action that begins with the present state. In the future, the instant reward obtained in k0more

time steps is worth gi
k0 � 1 times, where γi is labeled as a discount factor (0< γi< 1). The highest

value function is determined, which satisfies the Bellman optimality equation:

n�ðsÞ ¼ max
a

EðRitþ1
þ gin

�ðSitþ1
ÞjSit ¼ s;Ait

¼ aÞ

¼ max
a

X

s0;r

piðs0; rjs; aÞ½r þ gin
�ðs0Þ� ð13Þ

Mathematical framework for latency minimization

In maximum events, the system cannot accurately predict probability Pi and reward Ri because

the system can cause variations in those parameters. To discourse this limitation, RL is sug-

gested. In RL, the loss of confidential data is solved by observing background details [44]. The

canonical decision-making algorithm has limited functionalities in RL owing to its hypothesis

of an ideal model and its considerable estimation value [21]. Q-learning is a canonical model-

free algorithm [44] that is frequently applied to the acquisition of the highest state-action

method for any MDP. For the proposed system, the learning master fog node acts as a control-

ler that continuously detects the present state s with an action a, followed by a transition.
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Subsequently, it detects the different state s0 and the reward r. With these detections, it man-

ages and renews its projections of the Q-function such that the following is obtained:

Qðs; aÞ  ð1 � aiÞQðs; aÞ þ ai Riðs; aÞ þ gi maxQðs0; a0Þ
a02Ais0

" #

; ð14Þ

where αi is the learning rate (0 < αi< 1); here, αi balances the weight of old estimation with

the weight of new estimation and observation. Eq 14 is a classic MDP in which Q stands for

the quality of action a on state s and Q(s0, a0) is the Q function for transition state s0 and action

a0. The equation solves the issue of transition states and rewards for the healthcare IoT-fog-

cloud system. The main fog node in the system acts as a controller to monitor the current state

and action. The fog node further collects the information on new states s0 and rewards r. Once

the transition is completed, the Q-function is updated as shown in Eq 14. This equation over-

comes the problem of change in the transition probability function rewards using the classic

RL technique, namely, Q-learning MDP. The intelligible action choice rate is to collect the sin-

gle action with the maximal approximate rate, i.e., greedy selection (at¼
:

arg maxa Qt(a)).

Thus, the greedy action choice rate consistently obtains the present knowledge to exaggerate

the current reward, which is an essential aspect of the Q-learning ∊-greedy algorithm [23].

The algorithm acts greedy for a greater number of terms, but includes a limited possibility

that 2 haphazardly chooses against the complete accessible actions amidst the same number of

probabilities. RL calls the greedy selection and 2 probability of random selection as the greedy

choice of exploitation and exploration approach [44, 45]. Exploitation is the appropriate action

to exaggerate the requisite reward at a step, while exploration can generate the maximum over-

all long-term reward [4].

One application of the ∊-greedy algorithm is when the fraction of moves is incremented,

the entire action is determined to be a converse immeasurable fraction of the total duration,

thus certifying that Q(s, a) is the optimum value [21]. The estimated reward function, selected

by the proposed approach, is calculated using Eq (1). After defining its three components, the

next state s0 is obtained. Whereas the neighboring queue of the state is an arbitrary unit, the

adjacent fog node has the function of sending data packets for allocation to other fog nodes.

After the arrival of the data packet, the data size is determined at the fog node.

The demand for localized and location-based information services from patients/end-users

is high. End-users are unable to retrieve time-critical localized data from cloud servers; thus,

the FC approach is used [50, 51]. Depending upon the user requirement, fog nodes deploy the

local computing facilities at the user end. Fog nodes deliver stored cloud data to mobile users

with fast local connections [52]. Fog devices can be a hardware router, switches, IP video cam-

eras, etc. A fog server can be a virtualized computing system and a lightweight cloud server.

A mathematical framework is presented to investigate the latency-delay tradeoff by process

allocation in the FC environment. FC can provide a low latency response for time-sensitive

applications. Low latency is required for the i-th service distribution and the completion

phase. Communication latency depends on multiple channel factors (medium transmission

capacity; connection between resources and interface). Computing latency is managed by the

fog node itself. In our proposed method, RL is used for a long-term period; RL uses progressive

strategies to allocate real-time data packets between fog servers to reduce the total latency. It

has been observed that total latency includes communication, computing, and network

latency. To adapt to different networking environments, we considered data packets in the

form of a random and independent packet to be propagated over a communication channel

between IoTs and fog servers. Let ðsdi ; c
d
i ; t

d
i Þ denote a three-dimensional characteristic vector

of the i-th data packet, where hsdi ; c
d
i ; t

d
i i is the packet size, complexity, and latency limit of the
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data packet, in combination. Further, f CPUj and bs
j indicate the frequency of the CPU in Hz and

the current storage size of the j-th fog server, respectively. Consider that the i-th data packet

ascribes to the j-th fog server; then the latency of the i-th data packet at the time of allocation

to the fog servers is expressed by

lij ¼
sdi c

d
i þ bs

j

f CPUj

ð15Þ

Long-term optimization is achieved by selecting a fog server to assign the required data

packet for allocation. Once data computation is complete at the fog server, the data are sent to

the end-user, which further minimizes the total latency.

To express this problem mathematically, let yij denote the case when the i-th data packet is

assigned to the j-th fog server. The latency minimization function at time slot t is characterized

by

PðtÞ≜min
XOðtÞ

i¼1

XC

j¼1

yijlij ð16Þ

XOðtÞ

i¼1

yij ¼ 1; 8j 2 C; ð17Þ

lij � t
d
i ; 8j 2 C ð18Þ

yij 2 f0; 1g; 8i 2 OðtÞ; 8j 2 C ð19Þ

where O(t) and ψ are the sets of data packets and fog server, respectively. Therefore, the long-

term latency reduction function (fΔ) is given by

ðfDÞ lim
t!1

1

t

Xt

i¼1

PðiÞ ð20Þ

To fully process the uploaded data packet, the computation latency of the system becomes

maximal between the distributed fog servers. The decision is made using the greedy method,

which reduces the system latency when data packets are uploaded.

Fuzzy-based RL algorithm for real-time PHD transmission. The proposed algorithm is

divided into two-sub algorithms: Algorithm 1 and 2.

Algorithm 1: Healthcare data is classified using an (FIS). Here, the tuples are created and

merged in a fuzzy system that is used as input to the FIS. Fuzzy sets are created for the final val-

ues, followed by the FIS for PHD classification.

Algorithm1 Patient Health Data (PHD) classification using FIS.
Algorithm Symbol Notations:
fG: Fog gateway for allocation of the data packet
μ1: Fuzzy Inference System membership function
RTA: Real-Time Analyzer
Pid: Patient id
1: (Fuzzy system) the system is created with inputs and their member
functions μ1
2: With the function, μ1(HeartRate1), μ1(ECG1), get the condition of
health as μ1 (normal) or μ1(low risk) or μ1(high risk)
3: IF (Health Condition = μ1 (high risk))
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THEN get geo-location
send
A notification to fG using SPARK as RTA
4: ELSE IF (Health Condition = μ1(low risk)
THEN the Pid is sent to fG
5: END

In our proposed method, the training environment is a system comprising fog servers. In

a model with RL, an action selection function exists (i.e., data packet selection and data

packet allocation to fog server in real time); the function selects actions stationed on the state

of the system.

Values are available to define and express the system state. These values are the (1) demand

(complexity and size of data packets), (2) remaining data packets in fog storage, (3) time con-

sumed from the last instant to upload the data packet to the present instant, and (4) series of

requirements from the final data packet. When the data packet is uploaded for allocation to

the fog server, we need to measure the time duration required by the server to complete the

computation of the previous remaining data packets, e.g., the computation latency of the serv-

ers, and submit the value in the form of a [K × 1] vector. Subsequently, we determine the

duration of time that the server will allocate if the arrival data packet is accredited. The value

is saved in an additional vector of similar size [K × 1]. Combining the two abovementioned

vectors, we obtain a [2K × 1] vector that exemplifies the state of the system near a given time.

We quantify the computational latency, in microseconds, for fog servers to allocate data and

send data packets. Data packets require minimal number of megacycles for its allocation;

thereby, a deviation in expected latency occurs between the servers. Based on the latency in

allocation, processing, and transmission of data packets, we create the state of the system in a

vector form. The NN is selected as the action selection function in an RL model. The state is

the input of the NN system. The size of the state is [2K × 1], the input layer of the NN contains

2K nodes Z(i), i = {1, 2. . .. . .K}, and the nodes are connected to every other node in the hidden

layer. In the hidden layer, M nodes exist, denoted as Hj, j = = {1, 2. . .. . .M}. Consequently, a

[M × K] network relationship exists between the input and the hidden layer. Every packet

gains a weight, with the ability to store all the weights of the packets and a matrix Wl(1) is pres-

ent. Weight Wlð1Þ
i;j represents the relation between Z(i) and Hj in row i and column j. The value

of node Hj in the hidden layer is the gross summation of all the products of weights and

inputs.

Hj ¼
X2K

i¼1

ðWlð1Þ
i;j � ZðiÞÞ ð21Þ

The total count of nodes in the hidden layer can induce the training process. Hidden layer

nodes are attached to the NN output layer, called the softmax layer [53]. The capacity of the

output layer is [K × 1]. A matrix W(2) whose capacity is [M × K] stores the total weight of the

network combination between the two layers. In the end layer, the node T̂ ðf Þ value is calcu-

lated as

T̂ ðf Þ ¼
XM

j¼1

ðWð2Þ

j;f � ZðiÞÞ ð22Þ

After calculating the values of all the nodes, the time-sensitive PHD are transferred. Here, a

fog server fog(i) is selected to transfer the time-sensitive PHD, where i = 1, 2 − − − − K. Its
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probability is given by

pfogðiÞ ¼
T̂ ðiÞ

XK

f¼1

T̂ ðf Þ
ð23Þ

To assign the uploaded data packet, the server with the highest probability is selected.

Eq 23 is derived using the softmax function [54]. The latter calculates the probability

distribution for k real numbers and normalizes it into k probabilities, which are directly

proportional to exponential functions of the input real numbers. Eq 23 is calculated using

the softmax function formula, which is defined as sðbÞj ¼
ebj
Pk

f¼1

ebf
for j = 1, − − − −, k, and

b(b1, − − − − − bk). The exponential function is applied to each element bj of the input vector

b. Next, normalization is performed to guarantee that the sum of the components of the output

vector σ(b) is equal to 1. The softmax function is widely used in NN and RL. In RL, the softmax

function is used to convert node values into probabilities [54].

Fig 4 shows the structures of the hidden and input layers in the NN of our proposed model.

The NN is trained by restoring the weight matrices, e.g., W(1) and W(2), to exaggerate the

response from the background details. In some RL-specific applications, backpropagation is

performed to update the weight matrices [21, 55, 56]. However, this method is inefficient for

the floating values of latency. Therefore, we selected a rival of the backpropagation method for

NNs [55, 57, 58], which is called the NN evolution algorithm.

Progression approach for the evolution

To optimize and train the machine learning model, a function is defined to assess the model

performance in a problem established over an operational function. An RL model can deter-

mine the problems of data packet selection and allocation to fog servers in real time. Our aim

is to select an action to reduce the long-term latency of the structural system, although RL can

train the system to maximize the reward [59]. Here, the reward is inversely proportional to the

Fig 4. The NN states, an input layer, a hidden layer, and softmax layer.

https://doi.org/10.1371/journal.pone.0224934.g004
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system latency. After selecting an action a(t), the reward from the system is defined as

Rewardi ¼
1

lðtÞ
; ð24Þ

where

lðtÞ ¼ lðt � 1Þ þ lðtÞij ; lð0Þ ¼ 0 ð25Þ

Here, lðtÞij is the latency produced by action a(t). Action a(t) is performed to assign the

approaching i-th data packet to the j-th fog server. It is examined in a certain manner when

t!1, l(t)!1 along with Rewardi! 0. Coordination by the latency minimization function

(fΔ) in Eq (20), reduces the long-term latency of the system, which can be moderated by reduc-

ing the latency over the transition of K successive data packets for amplifying the equalization

of rewards on K new actions. Hence, the reward is defined as

Rewardi ¼
1

Xt

f¼t� K

lijðf Þ
ð26Þ

To upgrade the RL model for consecutive rewards, we restore the NN to increase the capac-

ity of the model in selecting an action each for data packet selection and data packet allocation

in the fog server. The most popular current algorithm in machine learning for updating an

NN is backpropagation [55, 57, 60], which is feasible if the reward is either 0 or 1. Hence, back-

propagation is no longer applicable considering our long-term reward. Neuroevolution (NE),

i.e., neural network evolution, is used for training NNs [44, 55]. An NN is now assigned to

each iteration; from the NN, a new generation is produced. This generation is a derivation of

the NN [44, 57]. Children selection is based on a higher reward to renew the NN. To update

the NN, evolution strategies are applied. It is now an accepted and recognized algorithm to

apply to the NE method. [44, 55, 57].

Algorithm 2 illustrates the mechanism for data packet allocation and selection in real time.

Algorithm 2 uses the greedy and NN approaches, where decisions are made by applying the

greedy technique to minimize the latency of the schema at the time of data packet allocation.

The NN is updated by evolution strategies in an RL environment [23, 44, 55]. For every repeti-

tion, M children of the NN are formed by the summation of Gaussian noise to each weight in

the network. Every child in the NN performs a role each for data packet allocation and data

packet selection in an RL model with K data packets and receive an average reward (Mean_re-
wardi) over K actions.

WðiÞ
j;f ¼WðiÞ

j;f þ ai �
X

Gaini
ðHÞ �WðiÞðHÞ

j;f ;H ¼ ½1; 2 � � � � � ;M�; ð27Þ

where H and αi are the total count of children and the learning rate, respectively.

Algorithm 2 RL with the greedy method and evolution strategies.
1: Input learning rate (αi) and discount factor (γi), exploration
policy (2), service rate (vi), data packet arrival rate (λi), and dis-
tance vector (Dv), Parent NN with a weight matrix W(i), No. of children
M. i = 1, 2
2: Output Data allocation table (Q)and Parent NN with maximum
performance.
3: Set Q(s, a) = 0(8s 2 Si)(8a 2 Ai(a)), iter ≔ 0, and s ≔ (1,
1{(Q1 − − − − − − − QN)| Qi = 0})
4: While (iter � maximum iteration) do
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5: Select a 2 Ai(a) applying ∊- greedy algorithm
6: Allocate the data packets conferring to action a and examine the
next state s0 and reward r.
7: Qðs; aÞ  ð1 � aiÞQðs; aÞ þ ai½Riðs; aÞ þ gimaxa02Ais0

Qðs0; a0Þ�
8: s  s0

9: iter  iter + 1
10: For iteration in a predetermined range do
11: For H in range M do
12: child(H) = Parent NN + random noise (N0), [W(i)(H) = W(i) + noise]
13: Evaluate
14: Calculate Mean_rewardi
15: Gaini

ðHÞ ¼ Rewardi
ðHÞ � Mean rewardi H = 1, − − − − − −, M

16: Parent NN ! Parent NN + ai �
XM

H¼1

Gaini
ðHÞ � childðHÞWðiÞ ¼ ai �

P
Gaini

ðHÞ �WðiÞðHÞ

17: Evaluate Parent NN
18: END

Subsequently, the maximal performing parent NN and data allocation table (Q) are

obtained.

The method for this suggested Q-learning algorithm is conferred in algorithm 2. The algo-

rithm explores the field that presents the optimum reward for the data packet selection and

allocation problems in an RL model.

Fig 5 illustrates the proposed algorithm flow for healthcare IoT data packet communication

in real time using FC. Different procedural steps are shown for algorithms 1 and 2. The flow

chart provides an insight into the proposed algorithm.

Results and discussion

Performance analysis and evaluation

In this section, the execution of the proposed analytical model with the proposed machine

learning algorithm is evaluated and analyzed. A numerical test was conducted to verify the

proposed hybrid machine learning algorithm and fog-based model. Predictive analysis using a

support vector machine (SVM) was performed on PHD to examine the robustness of the per-

formance measures. The key performance measures used to establish the validity and utility of

our proposed algorithm are accuracy, sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV).

Simulation overview. The performance of the FC model that incorporates the proposed

algorithm is analyzed through simulation and experiments. The baseline for this simulation is

minimum latency, minimum network usage, and minimum RAM consumption in cloud and

FC environments. To simulate the FC-based analytical model, we used iFogSim [14] as an

open-source software tool and the Python-based Spyder editor tool.

Performance analysis. This subsection discusses the performances of the analytical

model and the algorithms in terms of latency, network usage, and RAM consumption. The

complete function of algorithm 1 is shown in Fig 6. A fuzzy control system is created using

algorithm 1 in the Python editor tool. Algorithm 1 is used to classify ECG sensor data. We

used the skfuzzy API to model the fuzzy system. Subsequently, to simulate algorithm 1, a con-

trol system is created. The control system defines the inputs, which is called the compute

method. Once the simulation is completed, the results can be visualized. The data are classified

using an FIS and a linear SVM. Using RL and NN evolutions strategies, algorithm 2 selects

high-risk data (i.e., data with high ECG value) for data packet allocation and selection in vari-

ous distributed fog servers.
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Fig 6 shows the generated healthcare data. In the FIS, fuzzy sets are created with a fuzzy

range of values. Next, we the output results are classified as low risk, normal, and high-risk

health data based on the fuzzy rules and with member functions μ1 (HeartRate1) and μ1

(ECG1) to obtain the condition of health as μ1 (normal), μ1 (low risk), or μ1 (high-risk).

Fig 5. Algorithm flow chart for real-time data packet communication using RL, NN, and FIS in the FC

environment.

https://doi.org/10.1371/journal.pone.0224934.g005
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Fig 7 shows the low risk, normal, and high-risk healthcare ECG sensor data generated by

algorithm 1 (as shown in Fig 6). The green line shows the high-risk ECG value with respect to

the membership functions, whereas the red and blue lines show the normal and low-risk ECG

values. Linguistic variables and fuzzy sets are created in the FIS. Membership functions are

used as the ECG input and range. The next step is to regulate the extent to which input vari-

ables belong to the membership functions.

Fig 6. Schematic diagram of the FIS.

https://doi.org/10.1371/journal.pone.0224934.g006

Fig 7. PHD classified as low risk, normal and high-risk using FIS and membership functions in the fuzzy logic

system.

https://doi.org/10.1371/journal.pone.0224934.g007
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In Fig 8, the data are further classified to the highest varied two principal component analy-

sis (PCA) values using the linear SVM to display not-under-risk and under-risk data.

Here, red shows the under-risk heart disease data, and green shows the not-under-risk

data. The linear support vector classification (SVC) values are split with two PCA values. The

dataset is divided into 70% and 30% for training and testing, respectively. Subsequently, the

training and test data were cross validated. To verify the accuracy of the fuzzy classified health-

care data, we used the linear SVM [61]. Although the previous classification accuracy of the

used dataset is 79.4333%, in our case, the linear SVC values with the split are 0.8765213110411,

i.e., 87% for healthcare data; the linear SVC score without a split is 0.8354674540625, i.e., 83%.

The sensitivity of the model for the dataset using the SVM is 82.61%. The specificity of the

model with healthcare data using the SVM is 81.63%. Similarly, the PPV for our model is

66.41% and the NPV for our model using the SVM in the healthcare dataset is 79.47%. It is

necessary to remove the missing values and outliers and then fill the values with a mean data

value. The missing values are removed using a Kalman filter. Fig 8 shows the linear SVC values

with a split. The two PCA values are considered to show the highest variation in the classified

health data.

Fig 9 shows the GUI built on the iFogSim simulator. The simulation was performed to eval-

uate the latency, network consumption, and RAM usage for healthcare IoTs with respect to

data transmission and data computation in fog nodes and cloud servers. The iFogSim simula-

tor is based on the CloudSim simulator; it is used to simulate fog nodes and the healthcare IoT

framework. Using the GUI in the simulator, we created physical elements such as fog devices,

sensors, tuples, and connected links [14]. The physical topologies were built using the GUI

and programmed using Java APIs. The object attributes were defined using the GUI in the

topology. The topologies were stored and restored by modifying the topology from the JSON

file format. Similar to the cloud, in iFogSim, IoTs and servers communicate with each other

through message passaging and events. iFogSim enables the execution of multiple applications

and supports the migration of application modules. The simulation performance was assessed

Fig 8. PHD classification using linear SVM.

https://doi.org/10.1371/journal.pone.0224934.g008
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based on various topology sizes. We used different libraries in iFogSim to execute the simula-

tion. The simulation was conducted on an Intel1 i-7 core processor 4.30 GHz with 8 GB of

RAM. The simulation involves a fog device to exchange data packets between the system enti-

ties. The simulation was performed for 3 h. The results demonstrated how different workloads

and data allocation affected the latency. The fog device was connected to IoTs through Wi-Fi.

To test the proposed algorithm performance in the iFogSim simulator, we varied the topology

sizes by varying the IoT devices and maintaining the number of fog devices. The physical

topology in iFogSim includes fog devices, ECG sensors, and cloud servers. Five configurations

of the physical topology are simulated as config.1, config.2, config.3, config.4, and config.5.

The new proposed algorithm was then programmed into the available libraries of the iFogSim

simulator. This was performed to analyze the performance of the proposed algorithm using

FC. Tables 6–9 show the descriptions of the fog devices, edge module, ECG sensor configura-

tion, and network link. The data size for the PHD was defined in terms of megabytes.

In Figs 10–14 below, config.1, config.2, config.3, config.4, and config.5 show different phys-

ical topology configurations for FC and cloud computing in an IoT infrastructure.

Fig 9. A graphical user interface (GUI) to build physical topology arrangements.

https://doi.org/10.1371/journal.pone.0224934.g009

Table 6. The description of fog device.

Device Type CPU (GHz) RAM (GB)

Fog_device1(Mobile device) 2.6 2

Cloud_server1(Cloud virtual machine) 4 4

https://doi.org/10.1371/journal.pone.0224934.t006

Table 7. The description of the edge module. The CPU length (processing capacity) is in million instruction per sec-

ond (MIPS).

Tuple types CPU length (MIPS) Network length (bytes)

Raw data (ECG) stream 1200 2100

PHD stream 2200 1700

Time-sensitive data stream 2800 1700

https://doi.org/10.1371/journal.pone.0224934.t007
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Fig 10 shows a comparison of communication latency between FC and cloud computing

under different topology configurations. In this simulation, an ECG sensor first generates a

tuple (link) and sends it to the associated fog nodes, routers, and gateways. Once the tuple

reaches the fog node, the fog server processes the incoming packet and sends the packet to

another fog node. The fog node further sends the data packet to end-users.

The number of hop counts decreases when the data packets are transmitted between IoTs

and fog computing servers. The algorithm implementation in iFogSim minimizes the network

latency by distributing the fog nodes at the network edges. Meanwhile, the network latency

increases when large data transmission occurs between IoTs and cloud servers.

Table 9. The network links description.

Source Destination Latency (ms)

ECG_IoT1 Fog_device1 40

ECG_IoT2 Fog_device1 45

ECG_IoT3 Fog_device1 45

Fog_device1 Cloud_server1 70

https://doi.org/10.1371/journal.pone.0224934.t009

Table 8. ECG sensor configuration in iFogSim simulator.

CPU length Network length (bytes) Data packet average arrival time at different intervals (ms)

1200 million instructions 22000 bytes 25 milliseconds

https://doi.org/10.1371/journal.pone.0224934.t008

Fig 10. Communication latency comparison between FC and cloud computing.

https://doi.org/10.1371/journal.pone.0224934.g010
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Fig 12 shows the difference in computation latency between FC and cloud computing.

To measure the heap allocation, a massive heap profiler was used during the simulation

of different topology sizes and input workloads. Here, the heap allocation did not escalate

sufficiently with the increases in workload and physical topology configuration and size. The

simulation scales with the minimum memory overhead despite an increase in the data trans-

mission. Fig 13 shows the RAM consumption for data packet allocation and processing in fog

nodes and cloud servers. The data packets are allocated at the edge of networks, thereby reduc-

ing the network usage. RAM is used with the input workload to quantify the heap allocation

while simulations of different topology sizes and input workloads are performed.

Fig 14 shows the network usage by the ECG sensor device for data packet transmission in

different physical topology configurations. Examining the fog devices, the network

Fig 11. Network latency comparison between FC and cloud computing in IoT infrastructure.

https://doi.org/10.1371/journal.pone.0224934.g011

Fig 12. Computation latency comparison between FC and cloud computing.

https://doi.org/10.1371/journal.pone.0224934.g012
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management degraded significantly as the fog nodes are distributed over a region. The results

can also be interpreted as a fog-based scalable demonstration. Whereas in the case of cloud-

based executions, the uncontrolled growth of networks results in network congestion and per-

formance degradation. A fog-based deployment can be adopted for better efficiency and

performance.

Fig 13. RAM consumption in FC and cloud computing.

https://doi.org/10.1371/journal.pone.0224934.g013

Fig 14. Network usage in FC and cloud computing.

https://doi.org/10.1371/journal.pone.0224934.g014
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Discussion

In our simulation, the average values of communication latency, network latency, and compu-

tation latency for the healthcare IoT infrastructure using FC in different physical topology con-

figurations are 75.934, 69.86, and 270.896 ms, respectively. Furthermore, the average values of

RAM consumption and network usage are minimized to 20.078 MB and 86.776 KB, respec-

tively. Our proposed algorithm shows a minimization of latency percentage by 97–98% over

other existing state-of-the-art methods. The results generated by simulating our proposed

model demonstrated a better performance and efficiency in latency minimization compared

with other known methods such as that of Hermes [28], which demonstrated an improvement

in latency minimization by 16%; and Hipster [20], which demonstrated an 80–90% improve-

ment in QoS for web searching. Another method, iFogStor [29], reduces the latency by more

than 86% compared with cloud computing. The simulation outputs of our experiment were

used to verify the execution gain of the prospective method. Additionally, the algorithm has

low computational complexity. The results demonstrated that the RL method is compatible

with the FC system. In this study, we modeled FC using RL and an NN. Some important

parameters used in the simulation are summarized in Tables 6–9. The proposed work signifi-

cantly reduced computational latency, communication latency, and network latency, as well as

network usage and RAM consumption for healthcare IoTs. The experimental results demon-

strated an enhanced execution of the proposed approach for latency minimization using FC.

Conclusion

Healthcare IoT devices generate a large volume of data. Processing this leads to delay in ser-

vices provided to end-users in an IoT-cloud environment. Traditional cloud services are

unable to fulfill the latency demands of healthcare IoTs. Therefore, to minimize the high

latency between healthcare IoTs, end-users, and cloud servers, we presented a FC-based ana-

lytical model. This model consists of fog nodes, fog servers, and the master fog controller,

where end-users and patients can directly communicate to fog nodes in a single hop count.

Then, we proposed a novel hybrid fuzzy-based RL algorithm employing NN evolutions strate-

gies. The proposed algorithm was used for healthcare IoT data packet allocation and selection

in a FC environment. The healthcare IoT data are classified using FIS and the linear SVM. The

data packet allocation and selection are implemented using RL and NN evolution strategies in

fog nodes. The issue of high latency was investigated using the following parameters: commu-

nication latency (ms), computation latency (ms), network latency (ms), network usage (KB),

and RAM consumption (MB). The simulation of the proposed algorithm showed better results

compared to those of existing techniques. Therefore, the proposed approach was concluded to

be an optimal method, which indicates its applicability in healthcare IoTs. The proposed algo-

rithm significantly reduces the high latency between healthcare IoTs and cloud servers. In the

future, we plan to research the reliability and security of the healthcare IoT data using different

cryptographic operations and techniques.
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