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High quality means good fitness for the intended use. Research activity regarding quality measures for platelet transfusions has
focused on platelet storage and platelet storage lesion. Thus, platelet quality is judged from the manufacturer’s point of view
and regulated to ensure consistency and stability of the manufacturing process. Assuming that fresh product is always superior
to aged product, maintaining in vitro characteristics should preserve high quality. However, despite the highest in vitro quality
standards, platelets often fail in vivo. This suggests we may need different quality measures to predict platelet performance after
transfusion. Adding to this complexity, platelets are used clinically for very different purposes: platelets need to circulate when
given as prophylaxis to cancer patients and to stop bleeding when given to surgery or trauma patients. In addition, the emerging
application of platelet-rich plasma injections exploits the immunological functions of platelets. Requirements for quality of platelets
intended to prevent bleeding, stop bleeding, or promote wound healing are potentially very different. Can a single measurable
characteristic describe platelet quality for all uses? Here we present microparticle measurement in platelet samples, and its potential
to become the universal quality characteristic for platelet production, storage, viability, function, and compatibility.

1. Introduction

High quality performance is achieved when the best tool or
process is employed for the intended use. Currently, with
the end-goal of high quality platelet products for transfusion,
platelet concentrate production, manipulation, and storage
are tailored to maintaining platelet viability. Anticoagulation,
consistency, and stability of the manufacturing process,
limited exposure to stress, and optimal storage conditions are
tightly controlled parameters to preserve platelet viability in
vitro and prevent degradation, also known as platelet storage
lesion. It is assumed that most donors donate viable platelets
and that viability is lost due to the storage lesion; donor
variability is not considered a major contributing factor [1].
It then follows that patients needing viable platelets that
remain in circulation for some time would benefit most

from the freshest product. Traditionally, in vitro platelet
quality measures have been based on these assumptions
[2]. Parameters like CD62 expression, response to ADP, or
hypotonic shock are measured because there is a physiolog-
ical rationale behind changes in these measures that occur
with both activation and aging of platelets. Platelet release
of microparticles has also been shown to follow platelet
activation and increase with aging of platelet products [3].
Thus, platelet quality is assessed from the manufacturer’s
point of view and regulated to ensure consistency and stability
of the manufacturing process [4].

Because the emphasis is to detect degradation from the
beginning to the end of the current 5-day shelf life [5, 6], the
resolution of current quality measures has been tuned to be
high for small changes on the “resting/viable” end of the qual-
ity spectrum but becomes low on the “activated/functional”
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end of the quality spectrum. Additional changes are seen
upon extended shelf life which become more important as
bacterially tested or pathogen inactivated platelets may be
stored for 7 days. Some sensitive markers start to fail if
the storage lesion effects are too big. However, correlation
between different in vitro tests improves with the inclusion
of data outside the highly variable normal range [7]. It is
therefore not surprising that these measures are often poor
predictors of clinical outcome [8] and that studies do not con-
sistently find that in vitro parameters correlate well with in
vivo outcome [8–11]. Irrespective of product age, we observed
that 17% (1 in 6) of platelet transfusions did not produce
the expected posttransfusion platelet count increments in
hematology-oncology patients [12]. One possible cause of
this unexpectedly high rate of poor clinical outcome is that
platelet viability is highly influenced by donor characteristics.
Indeed, approximately 33% of normal donors donate preacti-
vated platelets as indicated by high microparticle levels [13].
Cancer patients typically need platelets not because they are
actively bleeding, but because they are at risk of bleeding due
to low platelet counts secondary to disease and/or therapy.
In these patients, transfused platelets are required to stay in
circulation, ready to respond to nontraumatic microvascular
bleeding. Due to their reduced viability, preactivated platelets
are not recommended for storage or for prophylaxis in cancer
patients [14]. In contrast, preactivated platelets are thought
to be beneficial when immediate haemostatic function is
required to stop acute bleeding, particularly important for
surgical or trauma patients [15].

Platelets are used clinically for very different purposes
and platelet quality must be compatible with the respec-
tive purpose of transfusion. Consequently, the ideal quality
parameter to predict platelet performance after transfusion
must be able to differentiate between resting/viable and pre-
activated/highly functional platelets with similar resolution
across the entire viability-functionality spectrum.

Activated platelets shed microparticles [16], and platelets
are the major source of circulating microparticles [17, 18].
In this review, we explore the possibility that microparticle
content as a measure of platelet fragmentation and hetero-
geneity may fulfill the requirement for a universal quality
indicator for platelet production, storage, viability, function,
and compatibility [19–21]. We assess the heterogeneity of
platelet concentrates from the three different perspectives
of production, prophylactic transfusion, and therapeutic
transfusion.

2. Platelet Quality from
the Perspective of Production

2.1. Platelet Quality Measures. In vitro measures have been
based on the assumption that fresh platelets are better than
old platelets. Thus, discoid platelets with low expression of
CD62 [22] and other activation markers and low release
of intracellular or metabolic substances are deemed high
quality, whereas the opposite is deemed poor quality [23].
The panel of in vitro tests also includes functional measures
such as the response of platelets to ADP or hypotonic shock
[24, 25].

2.2. Homogeneous Compared to Heterogeneous Platelets. If
platelets are more viable—that is, fit to survive storage, trans-
portation, gamma irradiation, and other processes thatmight
happen prior to transfusion—then they are by definition
less functional. This has been known since the 1970s when
investigators sought to define the right storage temperature
for platelet concentrates. Several research teams reported that
preservation of platelets for storage and optimal radiolabel
recovery and survival caused a reversible dysfunction of
platelets’ hemostatic capability. In short, room temperature
stored platelets were more viable but refrigerated platelets
showed better function assessed by increased haemostasis in
aspirin-treated volunteers or thrombocytopenic patients [26,
27]. Keeping platelets viable is an important role of anticoagu-
lants. Concentrates rich in viable platelets are homogeneous
in their composition, containing primarily discoid platelets
and few or nomicroparticles ormicroaggregates (Figure 1(a))
[13].

In contrast, aged, chilled, or otherwise activated platelets
are expected to be heterogeneous, containing platelets with
high polydispersity due to a large spread of different mor-
phologies, high surface expression of activation markers,
many microparticles, and the presence of microaggregates
[21, 28, 29] (Figure 1(b)). Heterogeneous platelets are known
to be more functional but less viable. This is shown in animal
experiments where heterogeneous platelets do not survive
long in circulation, particularly in animals with inflammatory
conditions [30]. Considering that aged platelets are often
heterogeneous, these platelets are likely primed for cell death
[31].

2.3. Microparticles as Quality Indicators. The heterogeneity
of platelet concentrates increases with storage [10, 13, 32, 33]
and with pathogen-reduction processing [5, 13] and varies
greatly between normal donors [13, 34–36]. The largest con-
tributor to platelet heterogeneity is the microparticle content
(Figure 1(b)). Microparticles, also known as extracellular
vesicles, are abundant in certain platelet concentrates where
microparticles contain extracellular mitochondria [37, 38].
Microparticles are implicated as a transport and delivery
system of mediators participating in hemostasis, thrombosis,
vascular repair, and inflammation, acting both locally and
systemically under physiologic as well as pathophysiologic
conditions [17, 39–41]. Microparticles express membrane-
associated proteins and are able to transfer receptors, growth
factors, and microRNA between cells [32, 39, 40, 42]. If
microparticles contain mitochondria they might be asso-
ciated with adverse inflammatory reactions in recipients
[38]. Many of the details of the origin and composition of
microparticles are under investigation and, due to the limi-
tations of some testing systems, results may be controversial
[43].

Two important questions have long been proposed for
investigation: first, whether microparticles in blood products
have a potentially pathogenic effect, and second, how blood
product processing and storage affect microparticle release
[32]. More recently, regulatory agencies are recognizing the
importance ofmicroparticles as quality indicators due to their
potential physiological and pathophysiologic roles. The US
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Figure 1: Example of dynamic light scattering test results showing the contribution of exosome-sized particles (radii below 50 nm),
microparticles (radii 50–550 nm), platelets, and microaggregates (radii above 550 nm). (a) Homogeneous platelets (few or no microparticles,
platelets with predominantly discoid shape with low polydispersity, and narrow blue peak). (b) Heterogeneous platelets (manymicroparticles,
platelets with high polydispersity, and broad blue peak).

Food and Drug Administration acknowledged the impor-
tance of microparticles in transfusion medicine because
microparticles are present in both plasma and cellular blood
products [32]. Finally, Paul-Ehrlich Institute in Germany
licensedThromboLUX (Table 1) microparticle testing for use
in transport validation.

2.4. Assessment ofMicroparticles in Blood. Several well-estab-
lished research technologies have been used and described
in the literature for the measurement of microparticles in
blood and other body fluids (Table 1), including dynamic
light scattering (DLS) as used inThromboLUX (LightIntegra
Technology Inc.) [13, 44], flow cytometry (FC) [37], and
ELISA [45, 46]. The optical system, small sample volume,
and specific software used in ThromboLUX address the
challenges other DLS instruments face with testing platelet-
rich plasma or platelet concentrates [20, 43]. The qNano
Gold (Izon Science) uses size exclusion chromatography and
resistive pulse sensing [47], and a combination of dynamic
light scattering and particle tracking is used by NanoSight
(Malvern) [48]. Excellent recent reviews describe all but the
latest dynamic light scattering testing methods and how they
can be used in various biological media including blood
[49, 50].

2.5. Limitations ofMicroparticle Tests. Here we review studies
on the limitations of currently available microparticle tests
(Table 2). It is generally recognized that accurate determi-
nation of microparticle concentration with flow cytometric
methods is problematic [51–53]. Flow cytometric methods
have limitations in cases wheremicrovesicles form aggregates

or complexes with each other or with cells. In comparison,
dynamic light scattering assays are not designed as whole
blood assays and therefore require centrifugation to obtain
PRP. Large aggregates present in whole blood would be
removed during centrifugation but aggregates that formed in
concentrates over time orwith certain productmanipulations
would result in a broadening of the platelet population
and increase of the polydispersity index for platelets. If a
microparticle assay does not require ultracentrifugation, arti-
facts from sample preparation are unlikely, and the assay can
be conducted in the presence of platelets and other particles.
Microparticles and chylomicrons are differentiated neither by
scattering-based flow cytometry or dynamic light scattering
in platelet-rich plasma, nor by nanoparticle tracking analysis
(NTA) or tunable resistive pulse sensing (TRPS) in platelet-
poor plasma [54], which will affect accurate cell-derived
microparticle quantification in lipid-rich samples.

Use of flow cytometry could lead to an underestimation
of microparticle content if smaller microparticles are not
counted [50, 55, 56]. Flow cytometry is capable of ana-
lyzing platelet microparticles <1 micron in size in plasma
sources and may be more accurate than ELISA, which
may fail to immobilize platelet microparticles >100 nm in
diameter [55]. Smaller microparticles are not detected by
standard flow cytometry because they are excluded when
the operator cuts out electronic noise by setting thresholds
[57], but high-sensitivity flow cytometry (hs-FCM) can now
discriminate previously undetectable small microparticles
in plasma samples [56]. In contrast to flow cytometry,
underestimation of microparticle content is not relevant
to dynamic light scattering-based assays, which provide
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qualitative and quantitative information for microparti-
cles/extracellular vesicles in the radius range of 1 nm to
550 nm. However, DLS-based assays do not differentiate
between cellular fragments shed from platelets, red blood
cells, white blood cells, or endothelial cells. The NanoSight
can differentiate the cellular origin of microparticles based
on its fluorescence capability. However, the limitations of this
technique as described in the operator’s manual—chamber
leaks, bubbles, and the risk of contamination from cleaning
and reusing the chamber—suggest that this method may not
be conducive to routine use.

Selecting the right probe or marker for microparticle
detection is another important issue. Annexin V is widely
used in flow cytometry to select entire microparticle pop-
ulations based on binding to exposed phosphatidylserine.
Calcium- dependent binding can result in plasma clotting,
but a modification using heparin was successfully tested [58].
When targeting Annexin V for microparticle detection, loss
of sensitivity occurs when phosphatidylserine levels are low.
Whether all microparticles bind Annexin V and whether
a high concentration of Annexin V-binding microparticles
relates to poor viability (poor posttransfusion recovery) are
still unanswered questions.

Standardization is an unresolved issue in microparticle
detection. It is nowwell accepted that accurate bead standards
with appropriate refractive indices to gate microparticles by
flow cytometry still need to be developed [47, 59]. Currently,
comparing data from different studies is difficult due to the
wide variety of methods for microparticle determination
used by different laboratories [60]. Dedicated instruments
configured to perform microparticle screening have the
advantage of reduced assay-to-assay and system-to-system
variability. Method-to-method standardization is also being
investigated in other systems. For example, the clot-based
procoagulant phospholipid assay correlates significantly with
a thrombin generation assay [61] and the study authors
suggest that the thrombin generation assay may be the more
sensitive measure for procoagulant activity of microparticles
carrying active tissue factor.

Methods for microparticle detection show good corre-
lations of results, although comparability of counts by flow
cytometry and microparticle activity may be limited due to
different assay principles [62]. Counts are based on detecting
the intensity of scattered or fluorescent light asmicroparticles
move through the laser beam of a flow cytometer while
microparticle activity tests rely on chemical reactions of
microparticle components. Relative platelet microparticle
counts measured by flow cytometry were shown to strongly
correlate with the microparticle content measured by one
dynamic light scattering assay in both platelet-rich plasma
and apheresis platelet concentrates [20, 44]. However, when
the reported relative microparticle content is converted to
concentrations, the numbers obtained by dynamic light
scattering are 100–1000 times higher than those reported by
others (Table 2). This is possibly due to the use of native or
fixed samples without differential centrifugation to remove
platelets prior to testing. The much lower microparticle
concentrations detected by flow cytometry could be related
to (1) beads being inadequate as size standards [47], (2) loss

of microparticles below the electronic threshold [44], and (3)
limitations such as swarm detection [57, 59].

Currently there is no consensus on the best measures for
accuracy of microparticle concentration values, size detec-
tion, probe selection, standardization, or appropriateness for
testing of specific samples, and research is ongoing. Methods
such asThromboLUX cannot be used to characterize various
microparticle subpopulations; however, they do allow routine
microparticle screening of platelet concentrates at various
points of the product life cycle [12, 20, 44].

3. Platelet Quality Measures for
Prophylactic Transfusion

3.1. Platelet Viability. We observed thatThromboLUX-meas-
ured microparticle content in fresh, normal-donor platelet-
rich plasma was inversely associated with radiolabeled
platelet recovery in autologous transfusions (unpublished
results). The mechanism of how microparticles could reduce
platelet recovery after reinfusion is not known. Three sce-
narios have been suggested: (1) microparticles might have
a direct effect on the recipient’s immune system, (2) the
factors that generate microparticles also mark the platelets
for removal from circulation, and/or (3) microparticle gen-
eration indicates platelet activation and preactivated platelets
are consumed by daily vascular maintenance. In a recent
publication our collaborators on this unpublished work
found lipid oxidation products–which are linked to platelet
activation and heterogeneity–to be associatedwith poor post-
transfusion performance [63]. If homogeneous autologous
platelet transfusions give better recovery it might be expected
that patients receiving allogeneic transfusions for prophylaxis
would also benefit when platelets are homogeneous. Here it
is suggested that homogeneous, viable platelets give better
recovery measured as count increments.

3.2. Platelet Refractoriness and Platelet Compatibility. Platelet
refractoriness, a situation in which the patient does not
show the expected response to the platelet transfusion [64],
is a complication seen in up to 27% of platelet recipi-
ents [65]. Platelet refractoriness is defined as two consecu-
tive platelet transfusions resulting in insufficient corrected
(platelet) count increments (CCI). The threshold below
which a CCI is deemed insufficient depends on the time point
of measurement: a CCI less than 5,000–7,500 platelets/𝜇L
measured in the recipient’s blood sample drawn 1 hour after
transfusion characterizes poor recovery; aCCI less than 5,000
platelets/𝜇L in a sample drawn 24 hours after transfusion
characterizes poor survival. Patients with immune refractori-
ness show low posttransfusion CCI at both 1 hour and 24
hours after transfusion which may or may not be addressed
with HLA/HPAmatched platelet concentrates [65, 66]. How-
ever, often, evenwhen there is no documented alloimmunisa-
tion, the 1-hour platelet increment is satisfactory followed by
a significant decrease in platelet count at 24-hour posttrans-
fusion. Poor platelet quality was suggested as one reason why
transfused cancer patients may show especially poor platelet
survival at 24 hours [12]. In addition to the impact on patient
care, inpatient hospital costs for a platelet-refractory patient
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(approximatelyUS$ 104,000) aremore than double compared
to nonrefractory patients, with hospital stays 21 days longer
[67].

Microparticles are prothrombotic inflammatorymarkers.
Patients who become refractory to platelet transfusion often
have concurrent fever or systemic inflammation that might
be detectable as elevated microparticles [68, 69]. Homoge-
neous platelets may therefore be the best choice for cancer
patients at risk for platelet refractoriness while heteroge-
neous platelets may be incompatible with patients chal-
lenged by preexisting inflammation. It follows that platelet
transfusions from donors with high microparticle content
may only be compatible with patients without preexisting
inflammation. It is conceivable that transfusing heteroge-
neous platelets to patients whose immune systems are more
activated can push them to the tipping point to become
platelet-refractory. Avoiding transfusion of heterogeneous
platelets for prophylactic use might prevent refractoriness.
Interestingly, a very similar two-hit concept has been sug-
gested for red blood cell transfusions based on dog studies:
dogs with bacterial infection (first hit) receiving older red
blood cells containing higher concentrations of micropar-
ticles (second hit) had a much higher risk of mortality
[70, 71].

4. Platelet Quality for Therapeutic Use

4.1. PlateletHemostatic Function. Heterogeneous platelet con-
centrates contain preactivated platelets, which are fit to
react quickly once they enter circulation [15, 21, 28]. Thus,
heterogeneous platelets are highly functional and have been
shown to stop bleeding faster than homogeneous, viable
platelets [28].

5. Platelet Quality for
Platelet-Rich Plasma Injections

Platelet-rich plasma (PRP) injections are currently not
managed by blood operators because they are autologous
products: patients are phlebotomized of a small volume
of whole blood which is then processed and reinjected
to treat a variety of conditions including chronic tendon
injuries, osteoarthritis, and bone regeneration. There are no
clear quality standards for PRP injections and the current
existing variability has been described previously [72]. The
mechanism by which PRP injections exert their healing
properties is still not known but the abundance of growth
factors present in platelets [73] and the bactericidal and other
immune functions platelets possess [74] are thought to play a
major role. In the context of this review it is conceivable that
microparticles also play a role in these autologous treatments.
Samples from patients who already suffer from systemic
inflammation might show microparticles as indicators of
systemic inflammation and thus be predictors of a reduced
likelihood of treatment success. On the other hand, it has
been suggested that microparticles are carriers of growth
factors and might significantly contribute to the healing
properties of PRP [75]. This is an area that requires further
study.

6. Future Direction

Implementation of microparticle measurements for quality
control of platelet concentrates could address the impact of
pathogen inactivation, platelet additive solutions, and 7-day
storage. Inventory management based on this measure could
lead to optimization of patient care and reduce cost at the
same time.

Platelet viability would best be described in terms of post-
transfusion platelet recovery at 24 hours, which is inversely
associated with microparticle content. Clinical studies are
needed to confirm our currently unpublished pilot data as
well as the animal experiments that seem to support the
hypothesis that patients with existing inflammation (first hit)
receiving a transfusion of heterogeneous platelets (second
hit) have a high risk of becoming refractory.

7. Conclusion

The technology for testing of microparticle content as a
marker of the heterogeneity of platelet concentrates is a
developing field. The selection of the most appropriate
method of measurement for each situation remains to be
determined. However, the compatibility of homogeneous
versus heterogeneous platelet concentrates for clinical use
is becoming clear. For prophylaxis, giving homogeneous,
viable platelets to cancer patients should be advantageous
because these are expected to circulate and not be imme-
diately removed from circulation. For use as a therapeu-
tic agent to stop bleeding, concentrates rich in hetero-
geneous platelets might react better, as was shown with
chilled and preactivated platelets. Thus, by measuring the
composition of a platelet concentrate, the performance of
the concentrate during storage and its resilience to addi-
tional stress could be determined and inform its optimal
use.

Implementation of routine screening of platelet con-
centrates requires a quick and easy, noninvasive test that
measures platelet characteristics meaningful to all aspects
of platelet quality. We have proposed microparticle con-
tent to be that characteristic parameter. The FDA recom-
mends determination of platelet microparticle content but
until recently there was no quick and easy test method
to achieve this. Some technological challenges of dynamic
light scattering have been resolvedwithThromboLUX, which
does not characterize microparticle subpopulations and as
such is not an in-depth research tool but allows routine
microparticle screening of platelet-rich plasma or platelet
concentrates.

Potential new research could address the reason for the
heterogeneity of platelet donors, ways to influence the sub-
sequent heterogeneity of the donated product, which could
either decrease the heterogeneity for prophylactic use, for
example, by nanofiltration [76], or increase the heterogeneity
for therapeutic use, for example, by chilling. Finally, the
clinical and health economic impact of platelet quality deter-
mination and subsequent inventory management warrants
investigation.
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Lösche, “Cell-derived microparticles promote coagulation after
moderate exercise,”Medicine& Science in Sports & Exercise, vol.
43, no. 7, pp. 1169–1176, 2011.

[37] E. Boilard, A.-C. Duchez, and A. Brisson, “The diversity of
platelet microparticles,”Current Opinion inHematology, vol. 22,
no. 5, pp. 437–444, 2015.

[38] “Boudreau LH, Duchez A-C, Cloutier N, et al. Platelets release
mitochondria serving as substrate for bactericidal group IIA-
secreted phospholipase A2 to promote inflammation,” Blood,
vol. 125, no. 5, p. 890, 2015.

[39] F. Cognasse, H. Hamzeh-Cognasse, S. Laradi et al., “The role
of microparticles in inflammation and transfusion: a concise
review,”Transfusion andApheresis Science, vol. 53, no. 2, pp. 159–
167, 2016.

[40] T. Burnouf, M.-L. Chou, H. Goubran, F. Cognasse, O. Garraud,
and J. Seghatchian, “An overview of the role of micropar-
ticles/microvesicles in blood components: are they clinically
beneficial or harmful?” Transfusion and Apheresis Science, vol.
53, no. 2, pp. 137–145, 2015.

[41] B. Laffont, A. Corduan, M. Rousseau et al., “Platelet micropar-
ticles reprogram macrophage gene expression and function,”
Thrombosis and Haemostasis, vol. 115, no. 2, pp. 311–323, 2016.

[42] H. A. Goubran, T. Burnouf, J. Stakiw, and J. Seghatchian,
“Platelet microparticle: a sensitive physiological “fine tuning”
balancing factor in health and disease,” Transfusion and Aphere-
sis Science, vol. 52, no. 1, pp. 12–18, 2015.

[43] A. Black, A. Pienimaeki-Roemer, O. Kenyon, E. Orsó, and
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