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Abstract

Transcriptional and epigenetic characterization of melanocytes and melanoma cells isolated from their in vivo context promises to unveil
key differences between these developmentally related normal and cancer cell populations. We therefore engineered an enhanced Danio
rerio (zebrafish) melanoma model with fluorescently labeled melanocytes to allow for isolation of normal (wild type) and premalignant
(BRAFV600E-mutant) populations for comparison to fully transformed BRAFV600E-mutant, p53 loss-of-function melanoma cells. Using
fluorescence-activated cell sorting to isolate these populations, we performed high-quality RNA- and ATAC-seq on sorted zebrafish mela-
nocytes vs. melanoma cells, which we provide as a resource here. Melanocytes had consistent transcriptional and accessibility profiles, as
did melanoma cells. Comparing melanocytes and melanoma, we note 4128 differentially expressed genes and 56,936 differentially acces-
sible regions with overall gene expression profiles analogous to human melanocytes and the pigmentation melanoma subtype. Combining
the RNA- and ATAC-seq data surprisingly revealed that increased chromatin accessibility did not always correspond with increased gene
expression, suggesting that though there is widespread dysregulation in chromatin accessibility in melanoma, there is a potentially more
refined gene expression program driving cancerous melanoma. These data serve as a resource to identify candidate regulators of the nor-
mal vs. diseased states in a genetically controlled in vivo context.
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Introduction
Human melanoma is notable as one of the most highly mutagen-
ized cancers, making comparisons between patient samples diffi-
cult given variation in potentially irrelevant passenger somatic
mutations in addition to the background of an outbred heteroge-
nous population (Hodis et al. 2012). Genetically engineered tumor
models allow for comparisons of premalignant and cancer cells
between highly related individuals (e.g., siblings, cousins) with
defined driver and tumor suppressor mutations. A zebrafish
model combining a BRAFV600E mutation, present in over 50% of
human melanomas, with a loss of function (lf) in p53 develops
one to three melanomas in its lifetime (Patton et al. 2005). Despite
high genetic relatedness, the Tg(BRAFV600E)/p53lf/lf tumors still dis-
play genomic heterogeneity but without clear functional conse-
quences in this model (Yen et al. 2013). High heterogeneity in
melanoma can lead to variable responses to currently available
therapies (Reuben et al. 2017). To continue to identify novel mela-
noma therapies, we must delve deeper into the transcriptional
and epigenetic differences that exist between the normal and dis-
eased states.

Many studies have utilized next-generation sequencing tech-
nologies to evaluate melanoma subtypes based on clinicopatho-
logical characteristics (Cancer Genome Atlas Network 2015;
Hayward et al. 2017; Tsoi et al. 2018; Rabbie et al. 2019; Cisarova

et al. 2020; Durante et al. 2020), major mutations (Cancer Genome

Atlas Network 2015; Travnickova et al. 2019), and drug resistance

and survival (Rambow et al. 2018; Garg et al. 2021). Prior studies

comparing melanocytes and cutaneous melanoma cells have

reported on coding mutations, gene expression changes only, or

have used human or zebrafish cell lines rather than focusing on

in vivo animal models (Yen et al. 2013; Haltaufderhyde and

Oancea 2014; Kaufman et al. 2016; Badal et al. 2017; Kunz et al.

2018; Venkatesan et al. 2018; Marie et al. 2020; Wouters et al.

2020). Single-cell RNA-seq experiments so far generally focus on

the heterogeneity within cell populations, rather than a compari-

son between melanocytes and melanoma cells, or they do not

evaluate the epigenetic landscape (Ennen et al. 2015; Tirosh et al.

2016; Gan et al. 2018; Rambow et al. 2018; Baron et al. 2020; Li et al.

2020; Belote et al. 2021; Travnickova and Patton 2021). Thus, we

sought to characterize the epigenetic and transcriptional differ-

ences between zebrafish nonmalignant, precancerous, and ma-

lignant melanocytes in a genetically defined melanoma context.
Since its initial report in 2013, Assay for Transposase

Accessible Chromatin with high-throughput sequencing (ATAC-

seq) has become a widely used method to provide a sensitive as-

sessment of genomic accessibility (Buenrostro et al. 2013). The

combination of epigenetic and transcriptional approaches has

been used to decipher regulators in hematopoiesis and leukemia
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(Corces et al. 2016), find loci influencing pancreatic a- and b-cell
differentiation (Ackermann et al. 2016), identify regions influenc-
ing gestational duration (Sakabe et al. 2020), characterize inter-
mediate states in melanoma cell cultures (Wouters et al. 2020),
among many other applications. Still, a comparison of the epige-
netic and transcriptional profiles of sorted normal melanocytes
to melanoma tumors in a native, in vivo biological context utiliz-
ing an animal model has been limited, thus diminishing our abil-
ity to dissect mechanisms governing melanoma initiation.

Animal models represent a powerful tool to understand dis-
ease initiation and progression, discover therapeutic targets, and
test drugs. Utilizing the Tg(BRAFV600E)/p53lf/lf zebrafish model, we
probed the natural biological context of normal melanocytes and
related disease development, specifically that of melanoma can-
cer, using RNA- and ATAC-seq (Patton et al. 2005; White et al.
2011; Kaufman et al. 2016). Furthermore, we compared the tran-
scriptional profiles of zebrafish melanocytes (MC) and melanoma
cells (MA) to existing human RNA-seq datasets classifying sub-
types of melanoma (Jönsson et al. 2010; Harbst et al. 2012; Cancer
Genome Atlas Network 2015; Cirenajwis et al. 2015; Nsengimana
et al. 2015; Lauss et al. 2016; Badal et al. 2017; Gan et al. 2018; Kunz
et al. 2018) to further confirm the relevance of these animal mod-
els. We present a transcriptomic and genome-wide chromatin ac-
cessibility analysis of precancerous MC and fully transformed
MA in the most widely used zebrafish melanoma model to be
used as a resource for identifying pathways, genes, and loci
which differentiate melanoma from normal pigment cells.

Materials and methods
Zebrafish husbandry
Zebrafish were raised in the Washington University Zebrafish
Consortium in accordance with animal protocols and the
Washington University IACUC. Pair or harem crosses generated
embryos, which were then raised at 28.5�C. The following wild
type (WT), mutant, and transgenic strains were utilized: AB*,
Tg(MiniCoopR; mitfa:mCherry), Tg(mitfa:BRAFV600E); p53lf/lf; Tg(crestin:EGFP),
Tg(mitfa:BRAFV600E/þ); p53þ/lf; mitfaþ/�; Tg(MiniCoopR; mitfa:mCherry),
Tg(mitfa:BRAFV600E)/p53lf/lf/mitfaþ/�/Tg(MiniCoopR; mitfa:mCherry) and
Tg(mitfa:BRAFV600E); p53lf/lf; mitfa�/�.

Transgenic fish generation
First, we injected WT AB* zebrafish with MiniCoopR:mitfa:mCherry.
Fish with germline transmission of Tg(MiniCoopR; mitfa:mCherry)
(source of MC_WT) were then crossed to Tg(mitfa:BRAFV600E); p53lf/lf;
mitfa�/� zebrafish and scored for presence of mChþ melanocytes.
These Tg(mitfa:BRAFV600E/þ); p53þ/lf; mitfaþ/�; mitfa:mCherry fish
(source of MC_Het) were crossed to Tg(mitfa:BRAFV600E); p53lf/lf;
mitfa�/� zebrafish and scored for presence of mChþ melanocytes,
and PCR genotyped for BRAF and p53 status to confirm generation
of Tg(mitfa:BRAFV600E)/p53lf/lf/mitfaþ/�/mitfa:mCherry zebrafish (source
of MC_Homo).

Tissue collection
For RNA-seq, we utilized mChþ melanocytes sorted from the skin
of three independent AB* zebrafish expressing MiniCoopR:
mitfa:mCherry, three independent zebrafish heterozygous for
Tg(BRAFV600E/þ)/p53þ/lf/mitfaþ/�, and GFPþ melanoma tumor cells
from five distinct tumors from three Tg(BRAFV600E)/p53lf/lf/
Tg(crestin:EGFP) fish. The melanoma samples from MA3A, MA3B,
and MA3C were isolated from one fish with three tumors: a tumor
near the dorsal fin, a tumor on the tail, and a tumor on the head.
For ATAC-seq, we utilized mChþ melanocytes from three zebrafish

heterozygous for Tg(BRAFV600E/þ)/p53þ/lf/mitfaþ/� and one zebrafish

with homozygous BRAF/p53 status [genotype Tg(BRAFV600E)/p53lf/

mitfaþ/�], and GFPþ melanoma tumor cells from eight

Tg(BRAFV600E)/p53lf/lf/Tg(crestin:EGFP) fish.
Animals were euthanized using approved methods and bulk

nodular tumors were excised using a razor blade. Skin samples

were isolated by decapitating the euthanized zebrafish and peel-

ing the skin off the muscle using two sets of forceps. Tumor or

skin samples were manually sheared with a shortened pipette tip

or using a homogenizer and then incubated in fresh 0.9� PBS

with 12.5 mg/ml liberase for up to 30 min to dissociate cells. Fetal

bovine serum terminated the reaction and the cells were passed

through a 40 mm filter. Cells were centrifuged at 2000 � g for

5 min at 4�C. Supernatant was removed and the cells were resus-

pended in 500 ml 0.9� PBS and kept on ice. Fluorescence-activated

cell sorting (FACS) was performed by the Washington University

in St Louis core facility to isolate GFPþ tumor cells from sorted

tumor samples or mChþ melanocyte cells from sorted skin sam-

ples. Unpigmented and pigmented GFPþ and GFP� tumors were

utilized to set the gating for GFPþ melanoma cells. Skin from

mCh� AB* zebrafish was used to set the gating for isolating

mChþ melanocytes. Briefly, we gated first to exclude debris and

doublets, then gated for the desired fluorescent marker based on

comparison to a nonfluorescent sample.

Imaging
Images were acquired using a Nikon SMZ-18 with RiD2 color

camera. For whole adult zebrafish images, multiple images were

taken at 0.75� magnification and then merged in Adobe

Lightroom 2020. Magnification of additional images for

Supplementary Figure 1 specified in figure legend.

RNA library preparation and sequencing
RNA was isolated from cells using the Machery Nagel Nucleospin

XS kit (Fischer Scientific cat No. NC0389511). Quantity and qual-

ity of RNA were assessed using a High Sensitivity RNA

ScreenTape on an Agilent 2200 TapeStation. Sample preparation

for sequencing was performed by the Genome Technology Access

Center (GTAC). Briefly, cDNA was generated using a Clontech

SMARTer cDNA amplification kit as per manufacturer’s recom-

mendation. 1� 50 base pair single-end sequencing was per-

formed on an Illumina HiSeq 3000.

RNA-seq analysis
Demultiplexed fastq files were provided by the GTAC. Gene set

enrichment analysis (GSEA) was performed using the GSEA soft-

ware (Mootha et al. 2003; Subramanian et al. 2005). Quality of se-

quenced reads was assessed by FastQC (Andrews 2010). Reads

were aligned to GRCz11/danRer11 by STAR with the following

parameters: –outSAMtype BAM SortedByCoordinate –outFilterType

BySJout –outSAMunmapped Within –outSAMattrIHstart 0 –

outFilterIntronMotifs RemoveNoncanonical –quantMode Tran

scriptomeSAM –outSAMstrandField intronMotif (Dobin et al. 2013).

Transcriptome quantification was performed by RSEM using the

danRer11 NCBI RefSeq gene annotations (Li and Dewey 2011).

RNA-seq reads were normalized with DESeq2 (Anders and Huber

2010). Boxplots were made using ggplot2 (Wickham 2016), heat-

maps with either ggplot2 or the pheatmap function (Kolde 2015),

and principal component analysis (PCA) was performed using the

plotPCA function in the DESeq2 package (Anders and Huber 2010).
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ATAC-seq library preparation and sequencing
Up to 50,000 cells per sample were tagmented with Nextera Tn5
transposase using the Illumina Nextera kit and purified with a
Qiagen MinElute reaction kit per methods modified from
Buenrostro et al. (2013). The DNA was then PCR amplified to add
indexing primers in nine cycles. SPRI AMPure beads enriched for
fragments under �600 bp. The library was then amplified again
with the nine-cycle protocol, followed by cleanup with SPRI
AMPure beads. The DNA library was quantified with a Qubit DNA
High Sensitivity assay and analyzed for quality and size distribu-
tion on an Agilent 2200 TapeStation with a High Sensitivity
D5000 ScreenTape. Samples were pooled at a 10 nM final concen-
tration. Sequencing was run with an Illumina HiSeq 2500 system
with 2 � 50 bp read length by the Washington University in St
Louis School of Medicine GTAC.

ATAC-seq analysis
Demultiplexed fastq files were provided by GTAC. Quality of fastq
files was assessed by FASTQC (Andrews 2010). Adapter sequences
were removed using CutAdapt (Martin 2011), and reads were
aligned to GRCz11/danRer11 using Burrows–Wheeler Aligner using
default parameters (Li and Durbin 2009). BAM files were sorted us-
ing samtools, and reads with Mapping Quality (MAPQ) scores <30
and improperly paired were removed using bamtools filters with
the following commads: -mapQuality “>30” -isProperPair “true” (Li
et al. 2009; Barnett et al. 2011). We used the MarkDuplicates com-
mand from the Genome Analysis Tool Kit to remove duplicates
(McKenna et al. 2010). BAM files were converted to the BED format
using bedtools bamtobed command (Quinlan and Hall 2010) and
used as input for peak calling with MACS2 (Zhang et al. 2008). We
used the callpeak command with the following parameters: –g 1e9,
–nomodel, –extside 100, –shift –50, –keep-dup 999, –call-summits.
Output bedGraph files were sorted, clipped, and converted to
BigWig format using the bedGraphToBigWig command (Kent et al.
2010). Quality of peaks was assessed by ChIPQC (Carroll et al. 2014).
The irreproducible discovery rate (IDR) was performed between rep-
licates using the idr command (Li et al. 2011). Differentially accessi-
ble regions were called using DiffBind (Stark and Brown 2011). All
motif analyses were performed using Homer (Heinz et al. 2010).

Histology
Three Tg(mitfa:BRAFV600E)/p53lf/lf/mitfaþ�/mitfa:mCherry zebrafish
and three Tg(mitfa:BRAFV600E); p53lf/lf/crestin:EGFP) zebrafish were
euthanized and each whole fish was placed in a 50 ml conical
with 40 ml 10% formalin for fixation and shipped to HistoWiz for
further preparation. Briefly, zebrafish were decalcified and em-
bedded; then, five sagittal sections along the midline were
stained with hematoxylin and eosin.

Results
Isolating melanocyte and melanoma populations
from adult zebrafish skin
To compare the transcriptional and chromatin accessibility
states of normal (WT) and precancerous melanocytes (MC; har-
boring the BRAFV600E mutation and p53 lf mutation) to fully trans-
formed melanoma (MA) cells, we generated a stable transgenic
zebrafish line with fluorescently labeled melanocytes expressing
mCherry driven by the melanocyte-specific melanocyte inducing
transcription factor a (mitfa) promoter (Ceol et al. 2011; White et al.
2011; Kaufman et al. 2016). A stable MiniCoopr; mitfa:mCherry
transgenic line was generated in WT AB* zebrafish using Tol2-

mediated insertion (Figure 1, A and B) and then crossed to
Tg(BRAFV600E)/p53lf/mitfa�/� zebrafish (Ceol et al. 2011) to generate
Tg(BRAFV600E/þ)/p53þ/lf/mitfaþ/�/Tg(MiniCoopr; mitfa:mCherry)
zebrafish to investigate the impact of overactivation of BRAF in
melanocytes (Figure 1, A and C and Supplementary Figure S1).
Zebrafish heterozygous at the key BRAF and p53 melanoma driver
loci had thicker and darker melanocyte stripes, with minor mela-
nocyte expansion into the interstripe as compared with WT AB*
fish (Figure 1, B and C and Supplementary Figure S1), consistent
with the melanocyte pattern seen with homozygous BRAFV600E

shown previously (Patton et al. 2005). The presence of the mitfa
minigene in the MiniCoopR backbone containing the
mitfa:mCherry transgene did not appear to alter the normal strip-
ing pattern (whereas the presence of the BRAF and p53 altera-
tions did, comparing Figure 1, B and C), and we detected
upregulation of mitfa in the MA vs. both MC populations
(Supplementary Table S1), consistent with prior expression stud-
ies (Kaufman et al. 2016).

Using FACS, we carefully isolated mCherry-positive (mChþ)
melanocytes from Tg(MiniCoopr; mitfa:mCherry) (MC_WT) and
Tg(BRAFV600E/þ)/p53þ/lf/mitfaþ/�/Tg(MiniCoopr; mitfa:mCherry) (MC_
Het) zebrafish skin (Supplementary Figure S2, A, D, and E). We could
visualize mChþ melanocytes in both isolated scales and in the un-
derlying hypodermis when overlying scales were removed
(Supplementary Figure S2, C and D), and as we stripped the skin in
its entirety after euthanasia, our melanocyte population likely
includes both scale associated and hypodermal sources. mChþ
melanocyte cells were similarly�1–5% abundant during FACS from
the skin of AB* or BRAFV600E/þ/p53þ/lf/mitfaþ/� zebrafish
(Supplementary Figure S2). We also performed FACS on previously
described Enhanced Green Fluorescent Protein (EGFP)-positive
(GFPþ) melanoma tumors from Tg(BRAFV600E)/p53lf/lf/crestin:EGFP
(MA) zebrafish to isolate melanoma cells (Figure 1D and
Supplementary Figure S2, B, C, F, and H; Kaufman et al. 2016). As
previously described, these melanoma tumors are identifiable as
raised, highly cellular masses that are locally invasive
(Supplementary Figure S2, G and H) and readily differentiated from
normal skin regions, both grossly (Figure 1, B–D) and on histological
sections (Supplementary Figure S2, G and H). Zebrafish crestin is
expressed in embryonic neural crest (NC) and is re-expressed with
emergence of melanoma (Kaufman et al. 2016). We then performed
RNA- and ATAC-seq with each cell population (see Materials and
methods; Figure 1A and Supplementary Table S2).

As expected, GFPþ melanoma tumor cells and mChþ melano-
cyte samples clustered based on crestin, EGFP, and mCherry normal-
ized read counts by Euclidean distance. GFPþ samples show high
crestin expression supporting the fidelity of the crestin:EGFP trans-
gene as a faithful reporter of endogenous crestin expression
(Figure 1E). Although melanocytes had some reads aligning to cres-
tin, crestin expression was 109 times higher in melanoma (39,232 av-
erage reads) than in melanocytes (359 average reads), consistent
with previously reported massive upregulation of crestin in mela-
noma tumors (White et al. 2011; Kaufman et al. 2016; Figure 1E).

ATAC-seq and RNA-seq libraries from sorted cells passed
established Encode QC metrics for library quality and read depth.
Samples for RNA-seq were sequenced to an average of 29,103,353
reads, of which 9,897,358 (34%) aligned to the transcriptome
(Figure 1F). Of all genes with at least 1 count per million (CPM)
mapped reads, the majority (�55%) had >10 CPM, suggesting ad-
equate read depth. Similarly, ATAC-seq samples were sequenced
to an average of 35,69,8542 paired reads of which 13,594,823
(38.1%) uniquely mapped to the genome (Figure 1G). The average
fraction of uniquely mapped reads in peaks is 39.2% (Figure 1G).
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Transcriptomic comparison of normal
melanocytes, BRAF/p53 mutant melanocytes, and
melanoma cells
Transcriptional profiles of GFPþ (melanoma) were highly corre-

lated (Pearson R� 0.85; Figure 2A), even from different fish.

mChþ (melanocytes) samples also had highly correlated tran-

scriptional profiles (Figure 2A). Melanocytes from WT fish

(MC_WT) and fish heterozygous for the BRAFV600E-driver onco-

gene and p53 lf allele (MC_Het) were also highly correlated with

one another with small differences in correlation coefficients be-

tween origin genotype, which is notable given the presence of the

activated BRAFV600E oncogene in the MC_Het melanocytes

(R¼ 0.88–0.91 within WT fish, R¼ 0.85–0.87 within heterozygotes,

and R¼ 0.85–0.87 across genotypes; Figure 2A). Melanoma sam-

ples were similarly highly correlated (R¼ 0.87–0.93) with slightly

higher correlation for multiple tumors isolated from the same

fish (R¼ 0.93 for MA3A, MA3B, MA3C, and R¼ 0.87–0.92 for

external replicates). Melanocytes and melanoma cells readily

separated using unsupervised hierarchical clustering (correlation

coefficients between 0.74 and 0.81) indicating that transcriptional

profiles alter during transformation from a BRAF mutant melano-

cyte to a fully oncogenic melanoma cell, but remain more closely

correlated in a WT (MC_WT) or premalignant (MC_Het) state.

Furthermore, PCA readily separates melanocytes from melano-

mas, with the first principal component accounting for 38% of

the variance (Figure 2B). Principal component two (accounting for

11% of the variance) likely captures the lesser transcriptional dif-

ferences between the WT and Het MC samples.
We identified 1144 genes significantly upregulated in melano-

mas vs. melanocytes, and 2984 genes significantly upregulated in

melanocytes compared with melanoma cells [log2 fold change

(log2FC) > 1 and adjusted P-value < 10�6, Supplementary Figure

S3A]. Surprisingly, the number of melanoma-upregulated genes

meeting increasing log fold change cutoffs dropped off more

Figure 1 Isolation of zebrafish melanocytes and melanoma cells for RNA- and ATAC-seq analysis. (A) Schematic depicting experimental set up with
relevant genotypes, crosses, and sources for each analysis. (B, C) Representative image of zebrafish with mCherry labeled melanocytes (note 7� high
magnification inset with melanocytes with central dark pigment and visible surrounding fluorescence) and EGFP labeled melanoma tumor (D, outlined).
(E) Heat map quantifying mCherry, crestin, and EGFP log2 read counts in each RNA-seq sample. (F) Quantification of proportion of unique and
transcriptomic reads for RNA-seq. (G) Quantification of unique reads in ATAC-seq, and the fraction of reads located in peaks. MC, melanocyte sample;
Het, heterozygous for BRAFV600E and p53 transgenes; WT, wild-type AB* fish; MA, melanoma sample.
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steeply than melanocyte-upregulated genes, indicating that

more genes are downregulated in melanoma as compared with

melanocytes (Supplementary Figure S3B).
Comparing WT and Het (Tg(BRAFV600E/þ)/p53þ/�) melanocytes,

there are far fewer significantly differentially expressed genes

with 12 genes upregulated in WT over Het melanocytes and 41

genes upregulated in Het over WT melanocytes with log2FC > 1

and adjusted P-value � 10�6 (Supplementary Figure S3C). These

results highlight the surprising similarity within melanocytes

and premalignant (i.e., BRAF mutant/p53 mutant) melanocytes

as compared with the more dramatic changes that occur when

compared with transformed melanocytes/melanoma. To facili-

tate further inquiry, we provide a list of all gene expression

changes and P-values between melanocytes, premalignant mela-

nocytes, and melanoma cells (Supplementary Table S1).

Gene expression programs
We compared gene expression profiles between our melano-

cyte and melanoma samples to the four gene lists from

Jönsson et al. (2010) stratifying human cutaneous melanoma

into proliferative, pigmentation, high immune, and normal-like

subtypes. First, we assessed which subtype of human mela-

noma our zebrafish melanoma samples most resembled and

found the highest average expression of genes associated with
the pigmentation subtype (Figure 2C). This was further con-
firmed with GSEA detecting significant enrichment of genes as-
sociated with the human melanoma pigmentation subtype
(GSEA ES ¼ 0.4299, P ¼ 0.036; Figure 2D). Finally, comparing
expression in zebrafish melanocytes to melanoma cells, genes
in the pigmentation list had the most significant upregulation
in melanoma cells (paired P-value ¼ 0.007; Supplementary
Figure S3, D–H).

Previous studies have shown that melanoma reactivates
aspects of an embryonic NC program, with prominent NC genes
such as sox10 the subject of much interest (Shakhova et al. 2012;
Cronin et al. 2013; Mohamed et al. 2013; Kaufman et al. 2016). The
central gene regulatory network, or “wiring diagram,” for NC de-
velopment has been well-described, and we used the NC gene
regulatory network described by Kunz et al. (2018) to examine
gene expression changes in each condition for NC pathway genes
(Supplementary Table S3). We found sox10 and dlx2a are upregu-
lated in melanoma in agreement with previous smaller scale
transcriptional analyses (black boxes, Figure 2E; Kaufman et al.
2016). Interestingly, important melanocyte-specific genes includ-
ing mitfa, tyrp1b, kita, dct, tyr, and tyrp1a were upregulated in the
melanoma samples, supporting that melanoma cells sustain a

Figure 2 RNA-seq analysis of melanocyte and melanoma cell populations. (A) Correlation plot depicting the Pearson correlation between each sample.
(B) PCA plot with the components with the highest variation. (C) Box plot comparing zebrafish ortholog expression in melanoma cells of genes
associated with 4 subtypes of human melanoma (Jönsson et al. 2010). PIG, pigmentation (median ¼ 7.950548); NL, normal-like (median ¼ 5.982954);
PROL, proliferative (median ¼ 5.43669); HI, high immune (median ¼ 5.063983). (D) Positive correlation using GSEA of genes associated with the
pigmentation subtype of human melanoma and zebrafish upregulated melanoma genes. Enrichment score ¼ 0.4299, P-value ¼ 0.036, q-value ¼ 0.134.
(E) Heat map depicting relative gene expression between zebrafish melanoma and melanocyte populations for NC genes associated with specific NC
populations (e.g., early NC, neural plate border) or descendant lineages (e.g., glia, chondrocytes, melanocytes). NC genes of note in black boxes. Select
melanocyte genes in red boxes. MC, melanocyte sample; Het, heterozygous for BRAFV600E and p53 transgenes; WT, wild-type AB* fish; MA, melanoma
sample.
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continued presence of an active melanocyte identity (red boxes,
Figure 2E). To further probe this finding, we assessed whether ei-
ther cell population had enrichment of human melanocyte genes
(Reemann et al. 2014). Indeed, both zebrafish melanocytes and
melanoma cells had high expression of human melanocyte genes
(Supplementary Figure S3H).

Another recurring and important question relates to the idea
that the NC incorporates a spectrum of developmental time (e.g.,
from specification, to delamination, to migration, etc.), spatial
differences (e.g., cranial, thoracic, caudal NC), and descendant
lineages (e.g., glia, melanocyte, chondrocyte), each with defining
genetic markers in its transcriptional program (Supplementary
Table S3; Sim~oes-Costa and Bronner 2015; Williams et al. 2019).
We reviewed our melanoma differential gene sets in relation to
these NC subsets and, aside from a “strengthening” of the mela-
nocyte program as noted above and decrease in expression of
glial (mbpa/b) and chondrocyte (sox9b) factors, we did not note
other clear unifying NC subsets that aligned more closely to the
melanoma program (Figure 2E). Given the widespread dysregula-
tion of gene expression in the cancerous melanoma state, this is
perhaps unsurprising that the malignant phenotype would entail
a broad and not entirely faithful amalgamation of melanocyte
and NC transcriptional identities.

Chromatin accessibility profiles in melanocytes
and melanoma cells
To characterize the genome-wide chromatin accessibility of pre-
malignant Tg(BRAFV600E)/p53lf/lf mutant melanocytes and mela-
noma, we isolated premalignant melanocytes (mChþ) from four
zebrafish, including three MC_Het and one sample from a
Tg(BRAFV600E)/p53lf/lf/Tg(MiniCoopR; mitfa:mCherry) zebrafish
(MC_Homo). Since MC_WT and MC_Het read counts were highly
correlated in the RNA-seq, we utilized MC_Het zebrafish for
ATAC-seq analysis. We compared these profiles to those from
eight melanoma tumors sorted for crestin:EGFP expression
(Figure 3A).

As in the RNA-seq analysis, melanocyte samples and mela-
noma samples clustered according to normal vs. malignant state
(Figure 3, A and B). To assess the reproducibility of each identified
accessible site within a condition, we evaluated the IDR, setting a
threshold of 0.05. For MC samples, an average of 53% of sites
passed IDR 0.05, and for the MA samples, the average was 33%
(Supplementary Figure S4A).

In our ATAC-Seq analysis, 56,936 sites demonstrated differen-
tial accessibility (P < 0.05, IDR < 0.05) between melanocyte and
melanoma cells. Open regions, or peaks, within 3 kilobases (kb) of
transcriptional start sites (TSS) were centered at the TSS

Figure 3 ATAC-seq analysis of melanocyte and melanoma cells. (A) Correlation plot of overall chromatin accessibility across the genome, with darker
green color indicating greater correlation between samples. (B) PCA plot comparing similarity of chromatin accessibility across conditions. (C) Predicted
TF binding sites, based on HOMER analysis, enriched in open chromatin domains more accessible in melanoma vs. melanoma cells. Each TF is reported
with its associated TF family, as TF families frequently have similar or identical binding sites which are not differentiated by HOMER. (D) Epigenome
browser tracks near and upstream of the NC and melanoma gene sox10 on chromosome 3. MC, melanocyte sample; Het, heterozygous for BRAFV600E

and p53 transgenes; Homo, homozygous for BRAFV600E and p53 transgenes; MA, melanoma sample.

6 | G3, 2022, Vol. 12, No. 1



(Supplementary Figure S4B). Of promoter annotated peaks, 85%

of differentially accessible sites were more open in melanoma as

compared with melanocytes (Supplementary Figure S4C and

Table S4).

Open chromatin regions and putative
transcription factor binding sites
We examined the differentially accessible chromatin regions us-

ing HOMER de novo analysis to identify over-represented DNA

motifs representing putative transcription factor (TF) binding

sites (Figure 3D). In order of significance, sites associated with

CCCTC-binding factor (CTCF) topped the list—a TF commonly

mutated in cancer and known to normally function widely in

controlling chromatin architecture (Kim et al. 2015). TF binding

motif families corresponding to key NC-associated factors also

rounded out the top 10 list, including the Forkhead, SOXE, and

ETS families. Melanocyte and NC programs are particularly ac-

tive in melanoma cells, with increased sox10 and mitfa expres-

sion, respectively, seen in the RNA-seq data (Figure 2E), and this

appears consistent with enrichment of SOX9/10 (SOXE family)

and MITF (E/M-boxes) binding sites in more accessible regions in

melanoma (Figure 3C). Finally, we noted the overall similarity in

the contour of chromatin accessibility within premalignant mela-

nocytes and melanomas as well as the numerous areas of differ-

ential accessibility as, for example, near sox10 and mitfa

(Figure 3D and Supplementary Figure S4D).

Modeling gene expression as a function of peak
accessibility
To examine potential relationships between open chromatin and

gene expression, we assessed the relationship between log2FC for

differentially expressed genes and differentially accessible pro-

moter peaks. As expected, the majority of genes with greater ex-

pression in melanoma had more accessibility with peaks within

3 kb of the promoter (n¼ 2386 pairs of genes and peaks; one gene

can be linked to multiple ATAC-seq peaks), while genes with less

expression were less accessible at the promoter (n¼ 499).

Interestingly, 1213 genes had greater accessibility at the pro-

moter in melanoma, yet had lower expression. We then focused

on evaluating the relationship between accessibility and

Figure 4. Integration of gene expression and accessibility. (A) Significantly differentially expressed genes between melanoma and melanocyte cells
(RNA-seq, jlog2FCj > 1, P <0.05) plotted against the most differentially accessible peak (ATAC-Seq, jlog2FCj > 1, P < 0.05) within 3 kb of each gene’s
promoter. Genes upregulated in melanoma are to the right, and genes with a more open chromatin region near the promoter in melanoma are on the
top half. (B, C) All genes from ZFIN.org associated with NC (long list, Supplementary Table S3) with expression plotted with all accessible peaks (B)
within 3 kb of the TSS (Pearson correlation coefficient R¼ 0.3951) and (C) only at the TSS (R¼ 0.6067). Points representing genes significantly
differentially expressed (jlog2FCj > 1, P < 0.05) in RNA-seq are in green, points representing peaks significantly differentially accessible in ATAC-seq
(jlog2FCj > 1, P < 0.05) are in black, points neither significantly expressed nor significantly accessible in blue, and points representing genes and peaks
which are both significantly differentially expressed and significantly differentially accessible are in pink. (D, E) Genes associated with specific NC gene
regulatory network stages discussed in the literature (shortlist, Supplementary Table S3) with expression plotted with all peaks (D) within 3 kb of the
TSS (R¼ 0.6686) and (E) at the TSS with each point labeled with the gene name (R¼ 0.8488). Significance color scheme same as in (B, C).
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expression in NC genes using a “long list” of 329 genes associated
with NC from ZFIN.org and a curated shortlist of 44 genes associ-
ated with specific NC developmental stages (Supplementary
Tables S3 and S5). Utilizing the long list, we found a modest cor-
relation (Pearson’s correlation coefficient R¼ 0.3951) between
gene expression accessibility at promoter-proximal peaks within
3 kb of the promoter (Figure 4B). This relationship was strength-
ened when focusing only on peaks at the TSS (Figure 4C;
R¼ 0.6067). Further, focusing specifically on genes previously
shown to be involved in NC development, this association was
even more pronounced (Figure 4D; R¼ 0.6686), with peaks at the
promoter showing a clear correlation with expression (Figure 4E;
R¼ 0.8488).

Discussion
Here, we present a zebrafish model allowing for efficient isolation
of melanocytes and melanoma cells and provide a resource cap-
turing transcriptional and chromatin accessibility changes occur-
ring in vivo during de novo tumor development. Independent
replicates from genetically related animals add robustness to the
dataset while limiting the background genetic complexity of a
fully outbred population. This combined RNA- and ATAC-seq
analysis of normal, premalignant, and transformed melanocytes/
melanoma offers a tool for gene and pathway discovery in mela-
noma biology. Moreover, the tumor diversity with pigmentation
status and tumor location (Supplementary Table S2) provides a
comprehensive picture of cutaneous melanoma in a BRAF-
driven, MITF-high model (Travnickova et al. 2019). Based on
widely used QC metrics, we conclude that our RNA- and ATAC-
seq data accurately reflect the in vivo transcriptional and chro-
matin accessibility state of the average premalignant BRAF/p53
mutant melanocyte and melanoma cell and provide an impor-
tant and broadly useful tool for further investigating transcrip-
tional and epigenetic programs underlying these related but
crucially different pre- and fully malignant states. Similar studies
have shed light on the epigenetic regulation of dysregulated
genes that promote melanoma, such as sox10 (Cunningham et al.
2021), or have been used to delineate developmental programs
underlying erythroid differentiation (Ludwig et al. 2019). Studies
have found a reactivation of an NC program in melanoma
(Kaufman et al. 2016), and indeed we observed upregulation of NC
genes such as crestin, sox10, tfap2a, dlx2a, among others. However,
when we expanded the analysis to include NC genes segregated
by stage of expression in NC, there was not a clear program upre-
gulated in melanoma (i.e., not all migratory NC markers were
upregulated). This further supports a widespread dysregulation
of expression programs in the disease state and begs the question
of which consistent gene program is reactivated in melanoma.
Nevertheless, there is an apparent relationship between accessi-
bility at the TSS and gene expression of NC-associated genes
(Figure 4E).

Interestingly, our dataset shows that in melanoma there are
more genes with significant downregulation in melanoma rela-
tive to melanocytes, despite the presence of more accessible
regions in the melanoma genome, supporting previous findings
that points of control other than promoter accessibility, such as
TF and chromatin regulatory protein abundances and activities,
may be primary influencers of gene expression and thus changes
in cell identity in the transition to a malignant state (Travnickova
et al. 2019; Santoriello et al. 2020; Baggiolini et al. 2021; Fazio et al.
2021; Terranova et al. 2021). Indeed, it has been shown that very
distal enhancers can control gene expression, indicating that

open regions of chromatin may not necessarily regulate the most

proximal gene (Lettice et al. 2003; Amano et al. 2009; Lacomme

et al. 2018). Most changes in accessibility occur in distal nonpro-

moter regions (Supplementary Figure S4C; Thurman et al. 2012;

Pliner et al. 2018; Friman et al. 2019), and deciphering the relation-

ship between gene expression and cis-regulatory regions has been

a topic of immense focus (Ackermann et al. 2016; Gonen et al.

2018; Zhao et al. 2019; Cai et al. 2020; Cunningham et al. 2021;

Panigrahi and O’Malley 2021). Our study serves as a foundation

to probe open chromatin regions and potential regulatory

functions.
Furthermore, though all samples had an active melanocyte-

specific program, genes typically associated with melanocytes

were upregulated and more accessible in melanoma, consistent

with a widespread dysregulation in additional gene programs in

the melanoma cell state. We anticipate these data will contribute

to ongoing functional analyses testing candidates that control

the crucial epigenetic and transcriptional differences driving the

transition between the normal and diseased cell state.
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