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Examination of permittivity 
for depolarization field 
of ferroelectric by ab initio 
calculation, suggesting hidden 
mechanisms
Yukio Watanabe

Electrostatics of depolarization field Ed in relation to the polarization is studied. In particular, 
the value of permittivity for Ed (εd) in prototypical situations of ferroelectrics, including Mehta 
formula, is examined by ab initio calculations. By using spontaneous polarization PS corresponding 
to accurate experiment ones, we show εd = 1, which suggests that the results of εd ≫ 1 indicate 
hidden mechanisms; εd = 1 suggests that the effect of Ed is significant to induce intriguing important 
phenomena overlooked by εd ≫ 1.  A bridge between εd = 1 and εd ≫ 1, i.e. the consistency of εd = 1 
with conventional results is presented. The exact electrostatic equality of head-to-head–tail-to-tail 
domains to free-standing ferroelectrics is deduced. Hence, most stoichiometric clean freestanding 
monodomain ferroelectrics and head-to-head–tail-to-tail domains are shown unstable regardless 
of size, unless partially metallic. This verifies the previous results in a transparent manner. This 
conclusion is shown consistent with a recent hyperferroelectric LiBeSb and “freestanding” monolayer 
ferroelectrics, of which origin is suggested to be adsorbates. In addition, this restriction is suggested 
to break in externally strained ultrathin ferroelectrics. The macroscopic formulas of Ed are found valid 
down to a several unit-cells, when electronic and atomic-scale surface effects are unimportant and 
accurate PS is used.

Ferroelectrics (FEs) have reversible spontaneous polarization PS that is useful in various applications, for which 
high insulativity is desired. Therefore, ideal insulativity of FE is assumed in most studies. In such high insulativity 
FEs, the depolarization field Ed exists universally even in the absence of external electric field Eext, owing to the 
charge − ∇·PS originating from inhomogeneity or the existence of surface; For a homogeneous PS, Ed disappears 
for infinite FE without surface or FE with no surface effect and ideal metal electrodes.

Although analytical formulas of Ed are unnecessary in ab initio calculations, they are indispensable for non 
ab initio examinations of PS configurations, stability of domains, and critical thicknesses of  FEs1–17. These for-
mulas use the permittivity for Ed (εd), of which difference affects critically the results. No controversy exists for 
εd = εf used in combination with an initial PS that is an ideal bulk PS for no macroscopic field in FE as in Kittel 
 models1,2. Here, εf is static linear permittivity εr of FE. Otherwise, the choice of εd is controversial.

Because the polarization P under Eext is P = PS + (εf − 1)ε0Eext (ε0: vacuum permittivity) and the permittivity of 
FE under Ed is still εf ≫ 1 (“Results”), the standard choice of εd is εf

4–10,16,17. We define accurate PS as PS obtained 
by accurate experiments of ideal samples; Accurate PS can be obtained from ion and electron distribution, e.g. 
by transmission electron microscopy TEM. When a FE is homogeneous or single-domained, accurate PS can be 
obtained by standard electrical measurements (“Results”). An alternate description of accurate PS is that PS is a 
total polarization under the influence of Ed and Eext = 0.

Examples of εd = εf are followings, which are for single domain homogeneous FEs. In this paragraph, “experi-
mental” PS refers to PS of each specific sample, which is obtain by the measurements of that sample or is PS of 
similar samples. Mehta et al.4 studied Ed in capacitors, using experimental εd = εf = 1000 and PS = 10 μC/cm2 
obtained from the saturated polarization of thin film capacitors. Black et al.5 studied Ed of thin film capacitors, 
using experimental εd = εf = 350 obtained from the polarization-hysteresis near saturation and PS obtained from 
the saturated polarization. Zhao et al.6 estimated Ed of poly-vinylidenefluoride–trifluoroethylene [P(VDF–TrFE)] 
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thin films by using Ed = − PS/εfε0 with PS from remnant polarization measurements (7 μC/cm2) and εd = εf = 10. 
In the electrostatic study of Tian et al.7, Ed in  BiFeO3 thin films was estimated by using εf = 60 (in Eq. (1) of 
Ref.7), where this P is initially a total polarization of a single domain state. Kim et al.8 estimated Ed in  BaTiO3 
(BTO) ultrathin films through the formula by  Mehta4 with the experimental remnant P obtained from pulse 
train methods and εd = εf = 80 from εf − Eext curves. In the Ginzburg–Landau–Devonshire (GLD) theory of BTO 
ultrathin films by Jo et al.9, Ed was given through the Mehta  formula4 with the same P as P in the GLD equation 
and εd = εf = 80 of Ref.8, where P in GLD theory is the total polarization. Schroeder et al.10 estimated Ed in  HfO2 
and PZT ultrathin films through the Mehta  formula4 with experimental PS and εd = εf = 20–300. Similar analyses 
with εd = εf ≫ 1 are frequently  employed16,17.

Contrastingly, a primitive considerations show εd = 1 for PS, i.e. a total PS (≡ P(Ef(Eext = 0)))13, where Ef is the 
total macroscopic electric filed in FE. For freestanding FEs, for example, Ef(Eext) = Eext − P(Ef(Eext))/ε0 or Ef(Eext) 
= Eext/εf − P(Ef(Eext = 0))/ε0 (“Results”). This implies that εd = εf

4–10,16,17 may be double counting, while we note that 
the electrical measurements of PS

4–10,16,17 are indirect measurements based on induced charge per area in elec-
trodes Q. If εd = 1 is correct, the successes of the analyses using εd = εf are attributed to inappropriate parameters 
or unidentified screening mechanisms.

We think that the existence of this controversy on εd is due to explanations based on macroscopic quantities. 
Because macroscopic explanations are abstract, they are unsuitable to bridge the gap between two conflicting 
views of εd. On the other hand, ab initio estimation of εd is considered as the clearest method for this problem 
but is not reported to our knowledge. Hence, we clarify εd in the formulas of Ed, by ab initio simulations in which 
ab initio PS is exactly P(Ef(Eext = 0)), which is considered as PS obtained by accurate experiments of ideal samples. 
Here, the standard theoretical assumptions: pure, stoichiometric, clean FEs are used.

Ed is related to fundamental issues such as stability of monodomains, critical thicknesses of FE, and the emer-
gence of ferroelectricity in superlattices. Some of these subjects require the consideration of other effects such as 
strain-induced FE and electronic effect at  electrodes11. To avoid the complexity, we concentrate on free-standing 
insulating FE and its electrostatic identicals, i.e. head-to-head–tail-to-tail (HH–TT) domains. Thus, we estimate 
the value of εd in the formula of Ed in a clear manner.

As expected from the electronic interaction at the  electrode11, it may be argued that the formula of Ed based 
on electrostatics is not possible for nm-FEs. We resolve this by focusing on the formulas of Ed and using ab initio 
PS in the formulas. Therefore, PS in these formulas contains the effects of the interactions in slabs or superlattices, 
whereas the absence of these effects in conventional studies has limited the applicability. The use of nonlinear εf 
is often better than linear εf but can be approximated by an average linear εf

12. Therefore, the conclusions below 
are applicable also to the nonlinear εf (≫ 1).

Model
For simplicity, we discuss 1-dimensional (1D) cases with Eext = 0, where FEs with thickness lf are in periodic slabs 
(Fig. 1). Here, 1D refers not to the shape of object (Fig. 2) but to the case where all the properties change only along 
one coordinate; Fig. 1a,b show FE in vacuum with thickness lV and FE/paraelectric (Iadj) superlattice, respectively, 
while the latter mimics an inhomogeneous FE. Iadj stands for both vacuum and insulator, which is dielectric or 
FE having different PS. The polarization, thickness, and permittivity of Iadj are PI, lI, and εI, respectively, and the 
thickness of slab is lSC = lf + lI (lV). The angles of the polarization P of FE and Iadj to the slab direction are θ and 
θI, respectively.

The macroscopic and atomic electrostatic potential (ϕ) of these models are represented by Fig. 1c,d, respec-
tively. ab initio Ed (Ed

ab initio) was obtained from the envelope of the peak tops of atomic electrostatic potential, 
of which example is Fig. 1d. All these FE/vacuum and FE/paraelectric exhibited the density of states (DOS) of 
insulators (Fig. 1e,f). Additionally,  BaTiO3 (BTO) capacitors are examined, where metal layers are standard 
electrode materials for FEs:  SrRuO3 or Pt and ~ 20 Å (Fig. 1g).

Accurate estimation of PS is indispensable for estimating Ed correctly and achieved by direct Berry phase 
calculations. To enable these calculations, we designed special FE slabs and procedures described in “Meth-
ods”. This is because stable 1D-FEs in vacuum are  metallic14,15 and, hence, direct Berry phase calculations are 
not possible; Even a two unit-cell thick (~ 8 Å) BTO in vacuum is metallic, when FE is  enforced18. To achieve 
insulativity, we used tetragonal (P4mm)  SrTiO3 (STO) of which a-axis lattice constant increased by 0.5% and 
decreased by 0.01% from that of the theoretical cubic phase. For these a-axis lattice constants, bulk STO was  FE19. 
We refer to them as STO1.005 and STO.9999, respectively, of which bulk PS’s were 3.56 μC/cm2 and 6.15 μC/
cm2, respectively, by  VASP19–28.

Macroscopic equations of Ed are obtained in a following manner. The normal component of P of FE (P⊥) 
under Ed is P⊥ = PS cos θ + (εd − 1) ε0Ed in standard  approaches4–10,16,17. The equation of continuity of electric flux 
is PScos θ + εdε0Ed = PI cos θI + ε0EI, where EI is the macroscopic electric field in Iadj. The validity of this continu-
ity in the presence of peaks at the surfaces (Fig. 1d) is explained in “Methods”. The continuity of potential in a 
periodic boundary condition yields EIlI = − Edlf (Fig. 1c). Therefore, we have for θ = 0

For θ ≠ 0 and θI ≠ 0, Eq. (1) is Ed = − (PS cos θ − PI cos θI)/ε0(εd + lf/lI). In the present study, PS and PI in Eq. (1) 
are given by ab initio calculations that simultaneously yield Ed consistent with PS. Therefore, the only unknown 
quantity is εd.

When PI = (εI − 1)ε0EI, Eq. (2) for θ = 0 is

(1)Ed = −
PS − PI

ε0

(

εd +
lf
lI

) .
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Figure 1.  Atomic model of (a) FE/vacuum and (b) FE/Iadj, where FE is BTO and Iadj is STO. BTO/STO serves also as a mimic of an 
inhomogeneous FE. (c) Macroscopic model. The minimum and maximum electrostatic potential ϕ are 0 and ϕmax, respectively. (d) 
Example of estimation of Ed from the atomic − eϕ. The orange line shows the envelope yielding Ed. (e) Progressive development of 2D 
metallic layer: DOS of STO1.005/vacuum, where lf in unit-cells and lV in Å are shown on the right. 10-unit-cell-STO with lV = 100 Å is 
marginally insulating, while 16-unit-cell-STO with lV = 30 Å is metallic. The insulating slabs are used in Fig. 3. PS in the slab was typically 
1 μC/cm2. (f) DOS of 7 and 10-unit-cell BTO/5-unit-cell-STO calculated with PBEsol and PBE + U. (g) Atomic model of BTO/Pt.
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For θ ≠ 0 and θI ≠ 0, Eq. (2) is Ed = − PS cos θ/ε0(εd + εIlf/lI).
Equation (2) yields also Ed in FE capacitors, because equations of continuity of electric flux similar to the 

above hold; A short-circuited FE capacitor is modelled as a perfect-metal/insulator(lI/2)/FE/insulator(lI/2)/
perfect-metal29, where the perfect metal refers to a metal with zero screening length and the thickness of each 
screening layer λ is lI/2. Assuming PI = εIε0EI in screening layer, Eq. (2) is applicable and yields the Mehta  formula4 
with εd = εf and lI = 2λ. For FE capacitors with θ ≠ 0, the formula beneath Eq. (2) is applicable. Because we neglected 
the electronic interactions at the metal/FE interface of 1–2 unit-cell, e.g. quantum mechanical  smearing30, the 
formula for capacitors may be inaccurate for lf < several unit-cells.

The nominal FE thickness lf is the distance between the center position of a top ion and that of a bottom ion, 
but twice of the atom radius ~ 0.5 Å × 2 should be added. In case of FE/vacuum, this correction was examined 
by considering the smear-out of electrons into  vacuum29; When λsmear (~ 0.8 Å) is the distance between an 
outermost electron density and a center of ion position (“Methods”), FE thickness appropriate for electrostat-
ics is lf

eff = lf + 2λsmear. As seen below, Eqs. (1) and (2) can be valid down to a few nm lf in case of FE/vacuum. 
Additionally, surface buckling layer is electrostatically a dipole layer, and its net charge is zero. Therefore, even 
in the presence of buckling layer, these formulas for 1D are also valid, by regarding buckling layer as dead layer 
(“Methods”); The effective thickness is lfeff − 2lbuckle, where lbuckle is the thickness of a buckling layer ~ 1–2 unit-cells.

Results
Estimation of εd. εd was examined through the comparison of ab initio Ed with Ed of Eq. (1) or (2) that 
uses different values of εd. For FE/vacuum (PI = 0), PS in Eq. (1) was the rigorously calculated PS of the slab by 
Berry phase. For FE/insulators and FE capacitors, PS and PI in Eq. (2) were calculated ab initio. Therefore, all the 
parameters in Eqs. (1) and (2) except for εd are accurately known.

Figure 3 compares Ed’s by Eq. (1) with Ed
ab initio’s, where Eq. (1) uses εd = 1, 4. Here, εd = 4 is the lower bound 

of electronic permittivity of  STO29. Ed
ab initio is accurate for a long lf, and data for lV ≫ lf reflects the effect of εd 

explicitly because of Ed ~ − PS/ε0εd. Large symbols in Fig. 3 show the data points satisfying both conditions and, 
hence, are important.

In Fig. 3, Eq. (1) with εd = 1 agrees with Ed
ab initio within 10% always for λsmear = 0.8 Å and mostly for λsmear = c/2. 

The difference between Ed’s for λsmear = 0.8 Å and = c/2 provides typical error bar and is approximately 10%. Equa-
tion (1) with εd = 4 deviates from Ed

ab initio’s by more than 140%, and the deviations increase monotonically with εd. 
Additionally, Eq. (1) yields the potential difference ϕmax =|Ed|lf = PS/ε0(εd/lf + 1/lV), which, with εd = 1, quantitatively 
agrees with bandgap Eg that decreases with lf and lV in Fig. 1e.

For BTO/STO, Fig. 4 compares Ed’s by Eq. (1) with Ed
ab initio’s, where Eq. (1) uses ab initio PS and ab initio PI. 

For εd = 1, Eq. (1) agrees within ± 20% with Ed
ab initio. In particular, the agreements are within ± 6% in the results by 

PBE + U (a method of ab initio calculation (“Methods”)). Equation (2) with εd = 20 deviated by more than 1000% 
from Ed

ab initio. The deviation increased monotonically with εd, whereas εf > 20 is usual for inorganic  FEs4,5,7–10,16,17.
For capacitors, Fig. 5a,b compare Ed by Eq. (2) with Ed

ab initio, where Eq. (2) uses ab initio PS and lI/2εI ≈ 0.1 Å, 
0.05 Å; Ed’s by Eq. (2) with εd = 1 agrees best with Ed

ab initio’s. The disagreements of Eq. (2) with Ed
ab initio’s increases 

with εd. The differences between open and filled symbols provide typical error bar and are 10–20%. Consequently, 
all the studied cases indicate εd = 1 (Figs. 3, 4, 5).

Bridge between εd = 1 and εf
13. We showed εd = 1 and will use it below. By noting that electrical measure-

ments of PS are based on the change of charge per area in electrodes ΔQ induced by Eext, a bridge between εd = 1 
and εd = εf will be shown. Because most  studies4–10,16,17 are for FE capacitors, the followings are for 1D FE capaci-
tors with θ = 0, which can represent FE/vacuum for εI = 1 and freestanding FE for lI/εI ≫ lf.

(2)Ed = −
PS

ε0

(

εd +
εI lf
lI

) .

Figure 2.  Definition of (a) three, (b) two, (c) one-dimensions for FE in this article. Dimensionality is not 
referred to the shape of an object. θ is the angle between the normal to the surface in (c) and the direction 
of PS. (d) Typical measurement of PS in a capacitor. This is smaller than bulk PS (Ed = 0), because of nonzero 
screening length in electrodes.
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Figure 3.  FE/vacuum. Comparison of Ed
ab initio with Eq. (1) with εd = 1, 4 for STO1.005/vacuum and STO0.9999/

vacuum. The yellow band shows the range of 1 ± 0.1. The filled and open symbols represent data in which 
lf in Eq. (2) is estimated with λsmear = 0.8 Å and λsmear = c/2, respectively. The shape of symbol indicates a 
slab structure: For STO1.005, orange circles, red triangles, light blue diamonds, and blue inverted triangles 
correspond to 7-unit-cell-STO with lV = 30 Å, 7-unit-cell-STO with lV = 200 Å, 10-unit-cell-STO with lV = 30 Å, 
and 10-unit-cell-STO with lV = 100 Å, respectively. For STO0.9999, red squares, green pentagons, and blue 
90°-rotated triangles correspond to 5-unit-cell-STO with lV = 300 Å, 6-unit-cell-STO with lV = 30 Å, and 7-unit-
cell-STO with lV = 30 Å, respectively.

Figure 4.  FE/paraelectric. Comparison of Ed
ab initio with Eq. (1) with εd = 1, 20 for BTO/5-unit-cell-STO. The 

yellow band shows the range of 1 ± 0.2, and the dotted lines inside of the band show the range of 1 ± 0.1. Inset 
explains the BTO thickness lf in unit-cells and ab initio method (PBEsol or PBE + U).
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Using the total electric field in FE Ef and the total polarization of FE P, PS ≡ P(Ef(Eext = 0)) and Ed ≡ Ef(Eext = 0). 
When the potential difference between the electrodes is V, Eq. (2) changes to Ef(V) = V/(lf + lI/εI) − P(Ef(Eext))
/ε0(1 + εIlf/lI)13. EI, the field in the screening layer of the electrode, is EI(V) = V/εI(lf + lI/εI) + P(Ef(Eext))lf/ε0lI(1 + 
εIlf/lI).

Ef(V) can be written as Ef(Eext) = Eext + Ed(Ef(Eext)), where Eext ≡ V/(lf + lI/εI) (= V/lf for lf ≫ lI/εI) and 
Ed(Ef(Eext)) ≡ − P(Ef(Eext))/ε0(1 + εIlf/lI) similar to Eq. (2).

εf is defined by εf − 1 = {P(Ef(Eext)) − PS}/ε0(Ef(Eext) − Ed), where Ed = Ef(Eext = 0) = − PS/ε0 for lf ≫ lI/εI, and εf (≫ 1) 
is linear for |Eext| ≪ |PS|/ε0. Hence, P(Ef(Eext)) = PS + (εf − 1)(ε0Ef(Eext) + PS) for lf ≫ lI/εI.

The substitution of this P(Ef(Eext)) in the expression of Ef(Eext) yields Ef(Eext) = Eext/εf − PS/ε0 for lI/εI ≫ lf (free-
standing), suggesting that the measured permittivity is εf.

We show an example: ΔQ = εIε0(EI(V) − EI(V = 0)) = V/(lf/εfε0 + lI/εIε0)13 from the above expression of EI(V). This 
is equal to ΔQ = CV, where C = (Cf

−1 + CI
−1)−1 (Cf ≡ εfε0/lf, CI ≡ εIε0/lI) is a series capacitance per area. In particular, 

for lf ≫ εflI/εI, ΔQ = εfε0V/lf = Cf V. Therefore, the permittivity of FE under Ed = Ef(Eext = 0) = − PS/ε0 is εf.
Additionally, Eq. (2) with εd = 1 shows D = PS − PS/(1 + εIlf/lI), while D = Q. Because lI/εI ~ 0.1 Å, the difference 

between the real PS and the measured PS is detectable only for lf < 10 Å. As for potential difference, Eq. (2) is well 
approximated by Ed = − PSlI/(εIε0lf) for lf > 10 Å, because lI/εI is short ~ 0.1 Å. Therefore, the potential difference 
across the capacitor is independent of the FE thickness lf, when the quality of FE is independent of lf and FE is 
ideally stoichiometric.

Discussions
Here, we discuss only monodomain FE (Fig. 2c).

Permittivity for non-polarization field (built-in field). Because the polarization P in standard GLD 
 theories9,31–34 are formulated with a single total polarization, εd = 1 should be used in standard GLD theories.

The preceding results have shown that the permittivity that expresses the change of P in response to Eext is εf 
(≫ 1) even for FE under Ed. By the same logic, the change of P by built-in internal field Ebi is also expressed by 
εf (≫ 1), where Ebi is not due to P or a dipole that is not expressed by P. Ebi exists in FEs by various mechanisms 
such as the diffusion potentials at pn and Schottky junctions and chemical orders, e.g.  LaAlO3 in the polar 
catastrophe model.

For example, PS = 0 and Ed = 0 in a bulk cubic BTO. However, Ebi ≠ 0, when the surfaces of a cubic BTO slab are 
asymmetrically terminated to form a dipole, e.g., BaO/TiO2/BaO/…/TiO2/BaO/TiO2. Hence, to achieve Ebi = 0, 
the present study used chemically symmetric slabs (Fig. 1a,b,g), e.g. BaO/TiO2/BaO/…/TiO2/BaO.

Insulativity condition. For 1D-FE to remain insulating without artifactual screening, elf|Ed| < Eg (e: ele-
mentary charge), for which Eq. (2) and εd = 1 yield 1/lf > ePS cos θ/ε0Eg − εI/lI. Therefore, the condition of insula-
tivity is one of the followings

where Eg* and PS*(TC) are bulk Eg normalized by 2 eV and PS of bulk FE at TC normalized by 10 μC/cm2, respec-
tively, and the unit of lf and lV is Å. PS of bulk FE at TC approximates the critical PS of FE that is about to become 
paraelectric by Ed

12. Equations (3) and (4) explain the insulativity of FEs in Fig. 1e,f.

(3)lI ≤ 1.8ÅεI
Eg∗

P∗S (TC)cos θ
,

(4)lf < 1.8Å

(

P∗S (TC)cos θ

Eg∗
− 1.8Å

εI

lI

)−1

,

Figure 5.  FE capacitor. Comparison of Ed
ab initio with Eq. (2) with εd = 1 (orange), 20 (green), and 100 (blue) 

for (a) BTO/SrRuO3 and (b) BTO/Pt. The filled and open symbols represent the data for lfeff = lT-B − ucBTO, 
lT-B − 1.5ucBTO, respectively.
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Freestanding insulating FE and HH–TT. The giant permittivity and large piezoelectric coefficients of FE 
are regarded as an electrical softness due to the tailing-effect of structural instabilities, i.e. phase transitions. This 
suggests that these properties are incompatible with an extremely stable FEs. For freestanding FEs (lI = ∞, θ = 0), 
Eq. (3) yields lf < 1.8 Å(Eg/2 eV)/(PS(TC)/10 μC/cm2). This suggests that freestanding FEs with normal bulk prop-
erties are FEs with metallic layer or insulating  paraelectrics12,15 as explained by the following GLD analysis. This 
conclusion is valid also for HH–TT domains with θ = 0.

Standard GLD theories are based on a single polarization vector P as the order parameter. We approximate the 
polarization possibly missed in such GLD  theory29 by an extra permittivity εNG − 135,36, while εNG is speculatively 
close to electronic  permittivity29. The GLD energy F of an insulating FE is F = (T − T0)P2/2Cε0 + βP4/4 + γP6/4 − PEd
/2, where T0, C, β, γ, and θ are Curie–Weiss temperature, Curie constant, and GLD coefficients, respectively. The 
effect of strain can be incorporated in T0 and β31–34,37. Curie temperature TC is T0 + ΔT, where ΔT = 3β2/16γCε0. 
For 2nd order transition, γ = 0, β > 0, and TC = T0. The effect of Ed = − PS/ε0εNG is the change of T0 to T0 − C/εNG in 
F, where Eq. (2) with εd = εNG and lI = ∞ is used.

Hence, the existence of freestanding FE that undergoes 2nd order FE transition is TC > C/εNG. This means 
χGL < εNG/2 at T = 0, because χGL = C/2TC at T = 0. The total permittivity εf = χGL + εNG at T = 0 is < 3εNG/2 and < 7.5 
for εNG = 529.

Similarly, for FE undergoing 1st order FE transition, it is known that χGL = 1/{(T − T0)/Cε0 + 3βP2 + 5γP4}
ε0 at T < TC. Stable state satisfies ∂F/∂P = (T − T0)/Cε0 + βP2 + γP4 = 0. Therefore, χGL = 1/(4T0/Cε0 − 2βP2)ε0 < C/
4T0 at T = 0 (We assume T0 > 0), and TC = T0 + ΔT = T0 + 3β2/16γCε0. Because ΔT ≪ T0 in almost all  FEs2, 31–34, 
we may assume TC < 2T0. Under this assumption, χGL < C/2TC at T = 0, and C < εNGTC means χGL < εNG/2 at T = 0. 
εf = χGL + εNG < 3εNG/2 at T = 0, which is < 7.5 for εNG = 5.

These εf’s of FEs undergoing 2nd and 1st transitions appear too small for experimentally observed bulk 
metal oxide FEs. Therefore, freestanding insulating FEs satisfying C < εNGTC are unlikely to exist, unless εNG is 
far larger than 5; That is, for freestanding FE materials, there exists virtually one choice between a partial loss 
of insulativity and a loss of FE.

Design of freestanding insulating FE. For freestanding insulating FE (θ = 0), C < εNGTC was shown, 
while Δϕ ~ PS(Ed)lf/ε0. Therefore, FE materials having a very large εNG (≫ 5) can retain FE and remain insulating, 
when ultrathin. Such FE materials are unlikely to exist. Alternatively, we may consider electrically freestanding FE 
or FE with clean surface that is not mechanically freestanding. In this case, T0 (~ TC) of common FEs increases 
to T0

eff by inplane strain, while ab initio calculations shows that T0
eff is much larger than those of standard GLD 

 theories37. Therefore, heavily strained FE materials may retain FE and remain insulating, when ultrathin (For-
mula estimating an effective T0 from ab initio PS is Ref. [88] of Ref.37). The above indicates that εf of such FE 
is extremely low for Ed = 0 but can be large for Ed ≠ 0, because the coefficient of the first term GLD energy F is 
(T − T0

eff + C/εNG)/2Cε0 (freestanding).

LiBeSb. LiBeSb with  P63mc  symmetry38 is reported as a hyper-FE that retains both FE and insulativity in FE/
paraelectric superlattices, which may contradict the above conclusion on insulativity and FE stability. Therefore, 
we ab initio calculated one-unit-cell LiBeSb (lf = 6.08 Å) in vacuum (Fig. 6a). Figure 6b shows a metallic DOS 
of LiBeSb for lV = 31.7 Å, while metallicity increases with lV. This is consistent with the above conclusion and 
the previous  reports14,15,39–41. Equations (3) and (4) explain the insulativity of  LiBeSb38 as the effect of adjacent 
dielectric. Actually, similar to LiBeSb, BTO/STO superlattices are insulating as in Fig. 1f, while BTO/vacuum is 
partially  metallic18.

Freestanding and free-surface FE: hidden mechanism. Mechanically freestanding FE is customar-
ily referred to as freestanding; Ji et al.42 reported exceptionally intriguing results of the freestanding insulating 
 BiFeO3 (BFO) that retains FE down to monolayer. This appears to contradict both the reports of metallicity 
at HH–TT domains of BFO and the present results, esp. the single choice between insulating paraelectric and 
partially metallic FE.

If εd = εf = 100, the potential difference Δϕ across freestanding insulating BFO of 1–4 unit-cell thickness with 
a moderate PS ~ 20 μC/cm2 is 0.09–0.36 V by Eq. (2) with lI = ∞, which allows this BFO to be insulating in agree-
ment with Ji et al.42. For εd = 1, Δϕ increases by 100 times, by which BFO’s have to be partially metallic.

Figure 6.  (a) Atomic model of LiBeSb/vacuum. (b) DOS showing metallicity of LiBeSb/vacuum.
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Hence, we shall look at the measurements of Ji et al.42. For freestanding FE, it was shown that the surface or 
boundary of 1 ~ 2 unit-cell thickness was metal and the rest was insulating  FE14,15,39,40. So, the metallicity is detect-
able only by inplane conductance, which is absent in Ji et al.42. Second, because the crystallographic properties of 
FE with these metal layers was shown to be those of  FE14,15,39,40, the crystallographic measurements of Ji et al.42 
do not exclude metallic layers. Third, because piezoelectric measurements use bottom and top electrode (or tip) 
and may move  ions43, those by Ji et al.42 are not that of freestanding FE. Consequently, all the measurements of 
Ji et al.42 do not contradict the conclusion of the present paper.

More importantly, the interdisciplinarity of nano FE hides true mechanisms. In the present case, “freestand-
ing” is defined by surface science and electrostatics. For example, Fong et al. found monodomain FE of 3 unit-
cell thickness as opposed to Ed-limited domain and size effect, which was later attributed to  adsorbates44. This 
agrees with recent ab initio  study45. Further, photoemission spectroscopy in UHV showed that  SrTiO3 surface 
was covered by adsorbates even in ultrahigh vacuum (UHV)46. Actually, the free surface with PS ⊥ surface is 
insulator-like in air and metallic in UHV when  cleaned14. Because the insulating freestanding  FE42 was exposed 
to air and water, we suggest adsorbates as its hidden mechanism.

Conclusion
We studied the electrostatics of Ed, especially, the value of permittivity εd in the formula of Ed by ab initio 
simulations, where ab initio PS corresponded accurately to experimental PS. For this, the standard theoretical 
assumptions: pure, insulating, stoichiometric, and clean FEs were used. To validate the analyses of Ed based on 
electrostatics, we concentrated on the formulas of Ed for accurate ab initio total P(Ef(Eext = 0)) that contained 
various atomic effects and corresponded to experimental PS. Further, we focused on the simplest cases of Ed: 
freestanding 1D-FE, HH–TT domains, and superlattices that mimicked inhomogeneous FE and FE/dielectric.

The present ab initio simulations showed εd = 1 ± 0.06–1 ± 0.2. That is, εd = 1 should be applied to experimental 
and standard-GLD PS’s. A contradiction between εd = 1 and εd = εf was resolved by a bridge; Even under Ed, the 
permittivity for Eext and built-in field Ebi was εf. Therefore, if a study requires εd ≫ 14–10,16,17, the value of PS is incor-
rect, the values of the parameters are inappropriate, or, most likely, hidden screening mechanisms  exist14,15,43–48.

For freestanding insulating FEs (lI = ∞), Eq. (2) yields Ed = − PS/ε0 (or Ed = − PScos θ/ε0), while, for HH–TT 
insulating domains, Eq. (1) with PI = − PS and lI = lf yields the same Ed. Therefore, when the effects at surface of 
1–2 unit-cell is unimportant, freestanding FEs are electrostatically exactly identical with HH–TT domains.

Consequently, both the electrostatic energy of Ed and the FE free energy of insulating freestanding and 
HH–TT FEs scale linearly with lf. This implies that the stability of 1D-freestanding and HH–TT insulating FEs is 
independent of  size12,15, when the energy increase by surface effect and domain walls energy is ignored. A strain 
effect to overcome this restriction was suggested.

Because lfPS/ε0 < Eg/e by εd = 1, the insulativity required an extremely small bulk PS ≪ 1 μC/cm2 or paraelec-
tricity (Fig. 7). Alternatively, the stability of 1D-freestanding and HH–TT FEs for of (θ ≈ 0) required a partially 
metallic FE. This conclusion verified the previous  results14–16, 39–41 in a material-independent manner and was 
confirmed also for hyper-FE LiBeSb that was reported to be insulating in FE/paraelectric38. This conclusion 
appeared inconsistent with “freestanding” monolayer  BFO42. But, the examinations of experimental  procedures42 
suggested adsorbates as a hidden  mechanism43–46.

The electrostatic formulas of Ed (Eqs. 1 and 2) were valid down to a several unit-cell scale (Figs. 3, 4, 5), when 
atomic-scale surface effects, e.g. interactions with  electrodes11,28 were unimportant. Even with buckling at FE 
surfaces, these formulas can be valid by regarding buckling layers as dead layer.

Figure 7.  Ab initio electrostatic potential ϕ of paraelectric insulating BTO in vacuum showing peaks due to 
surface dipoles formed by electron smear-out and buckling. In this calculation of 26.5 unit-cell-BTO slab, all the 
ion positions are fully relaxed, and the insulting paraelectric state is the lowest energy state. ϕ = 0 in FE means 
Ed = 0, for which Eq. (2) suggests PS = 0. PS = 0 is also directly confirmed by ab initio calculations. Similarly, Ed = 0 
in vacuum. Therefore, D = 0 in FE and vacuum.
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Methods
Ab initio calculations. In the examinations of FE/vacuum, the results of SrO-terminated STO slabs are 
presented, because they have Eg wider than Eg of the  TiO2-terminated STO slabs (Fig. 1e). To enforce FE, the 
ion-positions in the STO/vacuum slabs were not optimized, because, otherwise, FE disappears (Fig. 7). There-
fore, the STO unit-cells in the slabs retained the ion positions of bulk STO1.005 or STO.9999. These calculations 
of STO/vacuum were only for the examination of Ed and εd and do not correspond to standard experiments. PS 
of STO1.005 in the slab was typically 1 μC/cm2.

The models of FE/paraelectric are BTO/STO superlattices. All the calculated forces were < 1 meV/Å after 
geometry relaxation, and the a-axis lattice constant of STO was expanded by 1.1–1.3%. The bulk STOs that had 
these a-axis lattice constants were  paraelectric19. The a-lattice constant of BTO/SrRuO3 and BTO/Pt capacitor 
was fixed at the theoretical a-axis lattice constant of cubic STO and bulk tetragonal BTO, respectively, and all 
other ion positions were relaxed (Fig. 1g). The atomic models of BTO/SrRuO3 are similar to BTO/STO (Fig. 1b). 
The use of the theoretical a-lattice constant of cubic STO corresponds to the thin films on STO substrates. The 
surfaces of the BTO and  SrRuO3 were  TiO2 and SrO, respectively, and Pt atoms at the interface aligned with O 
atoms of  TiO2 plane.

The present study is about the formulas of Ed for given structure parameters. Here, the change of PS by the 
interactions in the slabs is included consistently in these formulas by the use of ab initio PS in these formulas.

The ab initio calculations with  VASP20–22 used the projector augmented wave  method23 with a Monk-
horst–Pack24 mesh of 8 × 8 × 2 for slabs and an energy cutoff of 650 eV. PBEsol  functional25 was used, unless 
otherwise mentioned. Ab initio PS was calculated through Berry  phase26. The results of BTO/STO were reexam-
ined with PBE  functional27 with Hubbard U (PBE + U)28, which was used also for BTO/Pt. In the slab calculations, 
graphic processing units  acceleration49,50 was used. The supercells were produced by  VESTA51.

Accurate estimation of PS under Ed. For correct εd, accurate estimations of a total polarization PS under 
Ed are essential. Because we compare Eqs. (1) and (2) using ab initio PS with Ed for the ion positions same as those 
of this PS, the accuracy of PS for given ion positions matters.

Berry phase calculation of PS for given ion positions is accurate but only possible for insulators. For example, 
the present Berry phase calculations yields PS of bulk  BaTiO3 that agree with experimental PS within 4%, when 
experimental ion positions and lattice constants of at 303 K are  used37.

Therefore, to obtain accurate PS, the dipole moment of a whole slab was calculated with Berry phase; We 
treated these slabs as unit-cells to apply Berry phase calculations directly, unlike conventional approaches. PS 
was obtained by dividing the dipole moment by the volume of FE part of the slab. These PS’s were referred to 
“rigorously calculated PS’s of the slab” and obtained for all the FE/vacuum and BTO/STO slabs. Here, STO1.005 
and STO.9999 slabs are insulating, allowing accurate Berry phase calculations.

Additionally, PS of the unit-cell that possessed exactly the same ion positions as those in the slab was calcu-
lated with Berry phase and, then corrected with atomic polarization by Ed by the procedures in Ref.29. These PS’s 
agree perfectly with “rigorously calculated PS’s of the slab”, which further confirmed the accuracy of the present 
PS’s of FE/vacuum and BTO/STO. These corrected PS’s29 were used for capacitors. Therefore, in the present study, 
PS’s are accurate total PS’s and self-consistent with Ed. Hence, PS’s in Figs. 3, 4 and 5 are accurate.

Validity of continuity of electric flux and surface dipoles. Equations (1) and (2) are applicable to the 
regions much larger than unit-cell. Here, the peaks of 1.5 Å width at the surface in Fig. 1d may be suspected to 
invalidate Eqs. (1) and (2). These peaks are due to effective surface dipoles caused by electron tunneling smear-
out; Surface electrons smear out in vacuum, making positive charge density inside the surface and negative 
charge density in vacuum.

The heights and shape of the two peaks from the baseline (yellow line in Fig. 1d) are the same (1.53 V). 
This means σ+

R = σ+
L and σ−

R = σ−
L as expected from their origin, where σ+

R, σ−
R, σ+

L, and σ−
L are positive and 

negative charge densities that yield the right and left peak, respectively. Because of the charge neutrality of FE, 
σ+

R + σ+
L + σ−

R + σ−
L = 0, i.e. σ−

R + σ+
R = 0. Therefore, the continuity of the electric fluxes DFE in FE and DI in Iadj 

(Fig. 1b) is DFE − DI = σ−
R + σ+

R = 0, i.e. the continuity of electric flux DFE = DI, where DFE = PScos θ + εdε0Ed and 
DI = PI cos θI + ε0EI. A clearer example is shown in Fig. 7, which evidently shows the continuity of electric flux 
and, hence, validates the use of Eqs. (1) and (2).

Because surface buckling in vacuum is electrostatically dipole due to ion displacements, the arguments exactly 
the same as the above hold. Therefore, the electric flux of the inside DFE and the outside DV of the buckling layer 
is continuous (DFE = DV).

Effective lf (lf
eff). For FE/vacuum, the effective lf (lfeff) was estimated from the planer averaged electron den-

sity ρ  profiles29. Below, z = 0 corresponds to the position of bottom ion. Because ρ at z = − 0.8 Å was same as 
the minimum ρ of inner part in all the ρ–z curves, the region of z = 0 ~ − 0.8 Å was considered as a part of FE 
(λsmear = 0.8 Å), and lfeff was lfeff = lf + 2λsmear. In addition, λsmear = c/2 (half unit-cell) was also tested, and lV = lSC − lfeff. 
For BTO/STO, lf was defined as the distance between the top and bottom Ti ions of BTO (Fig. 1b), and lI = lSC − lf.

For FE capacitors, lfeff was lT-B − ucBTO (outermost ions are Ti,  ucBTO: length of a BTO unit-cell), for which the 
quantum mechanical  smearing29 may be responsible. The estimations with lT-B − 1.5ucBTO were also tested. The 
effective thicknesses of the screening layer, i.e. the effective passive layer lI/2εI of BTO/SrRuO3 and BTO/Pt were 
estimated as 0.1 Å and approximately 0.05 Å,  respectively29.
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Data availability
The data required to reproduce these findings can be provided upon reasonable requests to the corresponding 
author.
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