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Abstract: We aimed to investigate the effect of weight status on inflammation-related markers
and thyroid function tests in overweight and obese pediatric patients. Children and adolescents
diagnosed between January 2017 and January 2019 with overweight or obesity were included in
the study. Neutrophil-to-lymphocyte ratio (NLR), platelet-to lymphocyte ratio (PLR) and systemic
immune-inflammation index (SII) were calculated for the groups defined according to Body Mass
Index (BMI)-for-age z-score: overweight (≥1 BMI-for-age z-score), obese (≥2 BMI-for-age z-score)
and severely obese (≥3 BMI-for-age z-score). Severely obese patients had significantly higher value of
white blood cells (WBC) counts (median = 7.92) compared with overweight patients (7.37, p = 0.014).
Absolute lymphocyte count was significantly associated with obesity degree in children (Spearman’s
Rho coefficient ρ = 0.228. p = 0.035), whereas absolute polymorphonuclear neutrophils (PMNCs)
count was significantly higher in severely obese adolescents than overweight adolescents (overweight:
4.04 vs. severely obese: 5.3 (p = 0.029)). In 8.19% of patients an elevated thyroid-stimulating hormone
(TSH) level was found, and 3.36% of patients had a low level of free thyroxine with an elevated
level of TSH. Total absolute WBC count may be a reliable inflammation-related marker in obese
pediatric patients without metabolic syndrome, but needs to be validated in the context of all possible
covariates. Subclinical and overt hypothyroidism may develop from an early age in overweight or
obese patients.

Keywords: pediatric obesity; differential leukocyte count; inflammation; thyroid function tests

1. Introduction

Obesity is associated with increased mortality in adulthood [1] and the risk of car-
diometabolic multimorbidity (defined as the presence of at least two out of type 2 diabetes,
coronary heart disease, and stroke) rises from twice in overweight to 15 times in severely
obese individuals (WHO class II and III obesity, where WHO = World Health Organiza-
tion) [2]. Consensus upon definition of cardiometabolic risk (CMR) in children has not
been reached [3–5], but adiposity, lipid profile, glycaemia, insulin level and blood pressure
are common elements of the CMR cluster across studies and higher degrees of obesity are
associated to an increase in metabolic risk [6,7]. Longitudinal studies showed that obesity
in childhood—defined as BMI-for-age (where BMI = body mass index) and sex above the
95th percentile (International Obesity Task Force (IOTF) references)—increases the CMR in
adulthood [8], mainly via inflammation and oxidative stress [9].
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In the American pediatric population, based on CDC (Centers for Disease Control and
Prevention) thresholds, a new definition for obesity has been recently proposed: class I
obesity (≥95th percentile to <120% of the 95th percentile), class II obesity (≥120% to <140%
of the 95th percentile or BMI ≥ 35), and class III obesity (≥140% of the 95th percentile or
BMI ≥ 40). Following these criteria, the prevalence of severe obesity in American children
(≥120% of the 95th percentile) has increased between 1999–2014 from 4% to 6.3% [10].

World Health Organization (WHO) growth charts from 2007 state a threshold of ≥ +1
BMI-for-age z-score for overweight, ≥ +2 BMI-for-age z-score for obese and ≥ +3 BMI-for-
age z-score relative to the median for severe obesity [11]. Cole et al. proposed cutoffs for
overweight and obesity using country-specific centile curves corresponding to BMI at the
age of 18 (IOTF BMI cutoff values) [12].

According to the WHO European Childhood Obesity Surveillance Initiative (COSI),
which included data from 21 European countries, 1 in 4 obese children are severely obese
based on WHO and IOTF criteria. During the first three COSI rounds of data collection
(2007–2013), the prevalence of severe obesity among 4274 school-aged Romanian children
was 2.2% [13].

Systemic subclinical inflammation plays a central role in the onset of obesity-driven
comorbidities in children and adults [14–16]. Novel biomarkers for subclinical inflamma-
tion in obesity are tested as cardiovascular risk assessment tools [17,18]. The neutrophil-
to-lymphocyte ratio (NLR) and platelet-to lymphocyte ratio (PLR) derived from com-
plete blood cell counts are associated with changes in BMI status in adults [19] and
children [20,21]. Neutrophil-to-lymphocyte ratio is emerging as a biomarker for sub-
clinical atherosclerosis in adults and is associated with visceral adiposity excess and pro-
inflammatory cytokines release [22]. An increased NLR was found in adults with a high
risk of type 2 diabetes (i.e., low insulin sensitivity) [23]. No differences in the NLR were
observed in patients with differentiated thyroid cancer and those with benign thyroid nod-
ules [24], but higher values were associated with tumor size, invasion and metastasis [25].
Neutrophil-to-lymphocyte ratio showed elevated values among patients with Hashimoto’s
thyroiditis [26,27], but the results regarding the associations with anti-thyroglobulin (TG)
antibodies or anti-thyroid peroxidase (TPO) antibodies, thyroid-stimulating hormone
(TSH), and free thyroxine (fT4) are still conflicting [26,28,29].

The mechanism of inflammation in obesity implies early recruitment of neutrophils
followed by infiltration of macrophages [30], this latter step requiring lymphocyte (mainly
CD8+ subtype) activation [16]. Accordingly, peripheral neutrophils and lymphocytes
counts increase with BMI [31]. Thus, NLR may be a more sensitive indicator of inflamma-
tion than differential cell counts, and several studies confirmed that NLR is more increased
in obese youth than in normal-weight patients [20,21]. A significant trend of increasing
NLR with progressive BMI group in the pediatric population was reported (from a mean
value of 1.44 (±1.96 × SD: 1.38–1.49) in normal-weight children to a mean value of 1.74
(±1.96 × SD: 1.64–1.83) in obese children) [32].

Although platelets’ role is primarily associated with hemostasis and thrombosis,
these non-nucleated cells have a wide range of functions involving inflammation, im-
mune responses and host defense against pathogens [33,34]. Release of pro-inflammatory
chemokines and cytokines from platelet alpha (α) granules and platelet interaction with
leukocytes triggers adaptive immune response via dendritic cell maturation and natural
killer cells followed by monocyte/macrophage activation, which further affect B and T
cell responses [35,36]. Among complex relationships between activated platelets with
leukocytes, circulating platelet-neutrophil complexes may be necessary for neutrophil
recruitment in inflammatory processes [37]. On the other hand, lymphocytes influence
platelet aggregation and secretion [38].

Systemic immune-inflammation index (SII)—defined as a product of peripheral
platelet and neutrophil counts divided to lymphocyte counts—and PLR—defined as pe-
ripheral platelets and absolute lymphocyte count ratio—were positively associated with
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BMI in children with morbid obesity (> WHO 99th percentile), and young patients (mean
age of 33 ± 7 years) with BMI ≥ 45 kg/m2, respectively [39,40].

The above evidence legitimates the use of PLR, NLR and SII as inflammatory markers
of subclinical obesity-induced inflammation. Age-specific reference values for these ratios
have been proposed [41,42].

Subclinical hypothyroidism (SHT) (or isolated hyper-thyrotropinemia)—defined as
a mild elevation of serum TSH concentration and a normal peripheral thyroid hormones
concentration—has a prevalence of 1.7% in the pediatric population [43] and is more
common in obese pediatric patients than in normal-weight patients (24.3% vs. 12.8%,
p = 0.002) [44]. Thyroidal and non-thyroidal diseases may induce SHT, among which the
most common are Hashimoto’s disease and isolated non-autoimmune hyper-thyrotropinemia,
the latter being more prevalent in obese children [45,46]. In adults, NLR is more increased
in patients with malignancy than in patients with benign thyroid nodules and is associated
with a higher degree of thyroid function loss [47,48].

The objectives of the present study were:

(i) to investigate the effect of weight status defined according to WHO criteria on mea-
sures of laboratory tests performed in pediatric patients (as routine evaluation accord-
ing to the national guideline);

(ii) to evaluate the effect of weight status on inflammation-related markers in pediatric
patients; and

(iii) to explore the relationships between the inflammation-related markers and thyroid
profile in the overweight or obese pediatric patients.

2. Materials and Methods

A cross-sectional study design with retrospective data collection was conducted
between January 2017 and January 2019 in two medical services from Cluj-Napoca, namely
the Children’s Emergency Hospital and the Ambulatory Unit of Infectious Disease Hospital.
Medical records of children aged from 2 to 18 years old diagnosed with overweight or
obesity (ICD diagnosis code—E 66.0 or E 66.9) were retrieved for data collection.

We excluded patients with missing data regarding the anthropometric measures,
neutrophils or lymphocyte counts. We also excluded patients with syndromic obesity,
those who did not meet the WHO criteria for overweight and obesity, data from the
second visit of the same patient and patients with acute or chronic known inflammatory
diseases (i.e., juvenile arthritis, thyroiditis with hypo- or hyperthyroidism) and infectious
disease (acute upper or lower respiratory tract diseases, urinary infections or gastroenteritis,
etc.). Patients with leukocytosis, human C-reactive protein serum concentration (CRP)
≥10 mg/dL, positive pharyngeal exudate, positive urine test, or positive stool culture were
also excluded.

Height and weight were measured once by stadiometer and mechanical beam scale
to ± 0.1 cm and ± 0.1 kg, respectively, after a minimum 8-h fasting period. We col-
lected data for the following characteristics: anthropometric measures (weight and height),
inflammation-related markers such as total absolute white-blood cells count (WBC), abso-
lute polymorphonuclear neutrophils count (PMNCs), lymphocytes, absolute peripheral
platelets counts, human C-reactive protein (hCRP), liver enzymes: alanine aminotrans-
ferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, gamma-glutamyl
transferase (GGT), uric acid, fasting blood glucose and lipid panel (triglycerides, high-
density lipoprotein-cholesterol (HDL-c), measures of thyroid function (thyroid-stimulating
hormone level (TSH), free thyroxine level (fT4), anti-thyroid peroxidase antibody level
(anti-TPO)), fasting blood insulin and morning cortisol levels.

The ancillary laboratory blood tests evaluated in the study are part of the routine
evaluation for obesity-related comorbidities in obese children in the Romanian Ministry of
Health guideline from 2011 [49].

Blood parameters measurements were performed according to standard guidelines for
each technique. Differentiated blood cell count was performed via cytometry, impedance,
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and colorimetry. Biochemical parameters were measured via spectrophotometry, and
hormonal measurements were performed on chemiluminescence. NLR was calculated
as a ratio between absolute PMNCs and lymphocyte counts. SII was calculated based on
PMNCs, absolute lymphocytes (L) and peripheral platelets (P) counts as PMNCs×L/P. PLR
was calculated as the ratio between peripheral platelets (P) and absolute lymphocyte counts.

Blood samples were evaluated in the clinical laboratories of each center. As the normal
ranges of blood parameters were slightly different between the two laboratories, each value
was interpreted as “normal”, “high”, “low”, “lower border”, or “upper border”. For the
“border” categories, we included data with values within ± 0.5 units caliper. The results,
expressed as dichotomous variables (i.e., above or under the threshold) were analyzed
accordingly, as categorical variables.

WHO guidelines (WHO Child Growth Standards for children aged 0–60 months and
the WHO Reference 2007 for the older children and adolescents) were used for defining
weight status: overweight, obesity, and severe obesity. AnthroPLus application v1.0.4
was used to compute the z-scores for BMI-for-age. We grouped patients as overweight
(≥1 BMI-for-age z-score), obese (≥2 BMI-for-age—z-score), or severely obese (≥3 BMI-for-
age z-score), respectively. Age was expressed in months both for analysis and BMI-for-age
z-score computation.

The age classes were defined according to the MESH term in MEDLINE for Pe-
diatric obesity: childhood—between 2 years (24 months) and 11 years and 11 months
(143 months)—and adolescence—between 12 years (144 months) and 17 years and 11
months (215 months).

Median values of cell subtypes’ absolute counts were graphically represented accord-
ing to the following age groups: 2–<6 years, 6–<10 years, 10–<13 years, 13–<15 years,
15–<18 years. These groups follow worldwide hematology reference ranges in pedi-
atrics [50,51] and had been previously reported in studies on Romanian children [52].

Statistical Analysis

Statistical analysis was performed using Statistica program (Version 13.5, StatSoft, OK,
USA). Qualitative nominal variables were reported as absolute and relative frequencies
(expressed as %).

Quantitative variables with deviations from Gaussian distribution were presented
as median with interquartile interval (IQR: 25–75 percentile) and range values (minimum
to maximum values). The arithmetic mean and standard deviation (SD) were used as
descriptive measures for quantitative variables that followed Gaussian distribution. The
Kolmogorov-Smirnov test was used to investigate if distributions of studied variables
followed the Normal Probability Law.

Spearman’s rank correlation coefficient (ρ) was used to evaluate the monotonic cor-
relations between quantitative variables while Pearson’s correlation coefficient (r) was
used to assess linear correlations. Chi-Squared or Fisher’s Exact tests were used to test the
bivariate associations between qualitative variables.

For identifying significant differences in distributions of biochemical, hormonal, and
inflammation-related characteristics between two independent samples, we used Student
t-test for independent samples or Mann-Whitney U Test, while for three independent
samples, one-way ANOVA or Kruskal-Wallis test were used. In the case of significant
differences for multiple groups, we performed the post-hoc analysis with Tukey-HSD test
or Dunn’s test.

All statistical tests used in data analysis were two-sided tests, a significant result being
achieved if p-value < 0.05.

Graphical representations were designed in R statistical software (version 4.03., R
Foundation for Statistical Computing, Vienna, Austria).
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3. Results
3.1. Description of the Children and Adolescents Sample

One hundred and seventy-six patients aged from 2 to 18 years were eligible for the
study. Thirty-four children were excluded due to missing data regarding neutrophil and
lymphocyte counts, a sample size of 142 being included in the analysis. Differences in
BMI-for-age z-score and laboratory measurements (as routine evaluation in obese children)
of all the patients included in the study according to weight status, gender, and age are
summarized in Table 1. There were significant differences in the means of BMI z-scores
between children and adolescents (Student t-test, p = 0.008), with higher mean values of
BMI z-scores in children (2.82 ± 1.00 versus 2.33 ± 0.83). The significant differences in BMI
z-scores were also related to gender (Student t-test, p = 0.045) with higher mean values in
boys (2.79 ± 1.03 versus 2.47 ± 0.80).

Table 1. BMI-for-age z-score, biochemical and hormonal measurements by weight status, gender and age.

Variables

Age Groups Gender Groups WHO Weight Status

Children
(n1 = 85)

Adolescents
(n2 = 57) Stat. (p) Boys

(n1 = 69)
Girls

(n2 = 73) Stat. (p) Overweight
(n1 = 44)

Obesity
(n2 = 57)

Severe Obesity
(n3 = 41) Stat. (p)

AST (U/L) a

Median (Q1-Q3)
Min–Max

29 (25–33)
17–75

23 (18–26)
14–56

4.88
(<0.001) 29.5 (23–31)

14–75
26 (22–31)

14–50

0.78
(0.434) 25 (22–29)

14–41
27 (22–31)

14–75
28 (23.5–35)

14–71

4.06
(0.132)

ALT (U/L) a

Median (Q1-Q3)
Min–Max

21 (17–27)
8–139

20 (15–28)
8–91

1.00
(0.315) 21 (17–28.5)

8–139
20 (16–26)

8–75

0.98
(0.323) 18.5 (14–24)

9–75
20.0 (17–31)

8–139
22 (17–27)

8–109

4.23
(0.120)

Alkaline phosphatase

(U/L) b

Mean ± SD
263.4 ± 72.9 171.2 ± 97.8

−4.29
(<0.001) 256 ± 59.7 199.9 ± 114.1

2.48
(0.014) 231 ± 91.5 229 ± 111.7 224.9 ± 76.3

0.03
(0.973)

GGT (IU/L) c

Median (Q1-Q3)
Min–Max

14 (10.5–18.5)
2–72

14 (11–20)
0–152

−0.09
(0.93) 16 (11–23)

0–59
12 (10–17)

2–152

2.35
(0.018) 13 (0–152)

9–17
14.5 (11–19)

2–59
14 (11–21)

5–72

1.39
(0.499)

Glycemia (mg/dL) d

Mean ± SD 81.5 ± 7.2 84.8 ± 9.3
2.33

(0.021) 84.6 ± 8.0 81.1 ± 8.2
2.44

(0.015) 86.5 ±8.2 82.6 ± 8.0 79.3 ± 7.3
8.44

(<0.001)

Uric acid b

Mean ± SD 5.1 ± 0.9 5.5 ± 1.2
1.58

(0.118) 5.4 ± 1.3 5.1 ± 0.9
1.29

(0.201) 4.9 ± 0.7 5.4 ± 1.1 5.3 ± 1.3
0.92

(0.404)

Triglycerides (mg/dL) e

Median (Q1-Q3)
Min–Max

79 (59–122)
27–248

92.5 (72–124)
39–223

−1.45
(0.155) 85 (59–142)

27–248
83 (68–108)

42–241

0.20
(0.839) 81 (60–124)

29–241
85 (70–118)

27–236
88 (60.5–123)

40–248

0.59
(0.744)

HDL-c (mg/dL) f

Mean ± SD 49.3 ± 11.4 44.7 ± 11.5
−2.16
(0.033) 46.9 ± 11.3 7.9 ± 12.0

−0.41
(0.681) 52.7 ± 12.5 45.9 ± 10.4 4.6 ± 10.8

5.41
(0.006)

Insulinemia (µIU/mL) g

Median (Q1-Q3)
Min–Max

11.1 (6–19)
3.3–61

14.6 (11–22)
0.0–5.9

−2.51
(0.012) 13.9 (9–19)

3.3–67.9
11.5 (9–10)

3.3–61

0.40
(0.685) 9.1 (7–13)

3.3–61
18.2 (13–24)

4.3–67.9
12.1 (9–19)

4.5–46.5

14.54
(0.000)

Cortisolemia (µg/dL) h

Median (Q1-Q3)
Min-Max

9.2 (6–13)
2.6–24.7

9.4 (8–12)
3.8–24

−0.74
(0.454) 9.4 (6–12)

2.6–24.7
9.1 (7–15)

3.8–24

−0.51
(0.609) 9.3 (7–16)

4.2–24.7
9.4 (7–12)
3.8–16.3

9.2 (7–13)
2.6–19.2

0.28
(0.869)

Stat. = Test statistics; a complete case data n = 137; b complete case data n = 64; c complete case data n = 98; d complete case data n = 135;
e complete case data n = 133; f complete case data n = 116; g complete case data n = 97; h complete case data n = 80; p-values obtained from
Student-t test or Mann Whitney test, one-way ANOVA or Kruskal-Wallis tests; level of significance was set at 0.05; bold values denoted
significant test results; Abbreviations: SD: standard deviation, Q1: first quartile (25th percentile); Q3: third quartile (75th percentile); Min:
minimum value; Max: maximum value; ALT = alanine aminotransferase; AST = aspartate aminotransferase; GGT = gamma-glutamyl
transferase; HDL-c = high-density lipoprotein-cholesterol.

Glycemic levels were physiological in all patients (minimum to maximum value:
66 mg/dL–104 mg/dL) and only four patients (3.65%) had both increased ALT and AST
levels, with a maximum value of 138 UI/L and 75 UI/L, respectively.

As far as lipid profile is concerned, hypertriglyceridemia was found in 15 (10.56%)
patients, among whom 14 had low or low-border HDL-cholesterol levels. A total of 76
patients (53.52%) had low-border levels of HDL-cholesterol (range values: 36–59 mg/dL)
and 17 (11.97%) had low HDL-cholesterol levels (below 36 mg/dL). High uric acid levels
were found in 17 (26.56%) patients. No cortisol secretion impairment was present in our
patients and hyperinsulinemia was found in only seven (4.9%) patients.

Post-hoc analysis showed that HDL-cholesterol mean values were significantly higher
in overweight as compared to obese (Tukey’s HSD test, p = 0.025) and severely obese
(Tukey’s HSD test, p = 0.007) children. In addition, there was a negative significant
monotonic relationship between HDL-cholesterol and age in the whole sample (Spearman’s
Rho coefficient, ρ = −0.28, p = 0.003).
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3.2. Distribution of Inflammation-Related Markers Values and Measures of Thyroid Function
Amongst Overweight and Obese Children and Adolescents

Differences of inflammation-related marker values (hCRP, total WBC and subtypes
(lymphocytes and PMNCs) absolute counts, peripheral platelet count, along with NLR,
PLR and SII)) and measures of thyroid function according to weight status, age, and gender
groups, are presented in Table 2.

Table 2. Inflammation-related markers and thyroid function measures by weight status, age and gender.

Variables

WHO Weight Category Age Groups Gender Groups

Overweight
(n1 = 44)

Obesity
(n2 = 57)

Severe Obesity
(n3 = 41) Stat. (p) Children

(n1 = 85)
Adolescents

(n2 = 57) Stat. (p) Boys
(n1 = 69)

Girls
(n2 = 73) Stat. (p)

WBC (×103/µL)
Median (Q1–Q3)

Min–Max
7.2 (5.8–7.9)

3.8–10.8
7.4 (6.6–8)

4.8–15
7.9 (6.9–9.3)

3.8–15.4

7.59
(0.022) 7.2 (6.2–8)

3.8–15.4
7.8 (6.8–9.1)

3.8–13.6

−2.25
(0.024) 7.4 (6.5–8.2)

4.8–15.4
7.4 (6.4–8.5)

3.8–15

−0.24
(0.812)

Lymphocytes (×103/µL)
Median (Q1–Q3)

Min–Max
2.5 (2.1–2.9)

1.7–3.5
2.6 (2.2–3.2)

1.6–7.8
2.7 (2.4–3.4)

1.3–5.9

6.4
(0.040) 2.7 (2.4–3.3)

1.3–7.8
2.5 (2.1–2.8)

1.7–3.9

2.14
(0.032) 2.6 (2.2–3.2)

1.5–5.9
2.6 (2.2–3.1)

1.3–7.8

0.66
(0.509)

PMNCs (×103/µL)
Mean ± SD 3.9 ± 1.4 4.0 ± 1.5 4.2 ± 1.5

0.69
(0.500) 3.6 ± 1.1 4.7 ± 1.7

4.37
(<0.001) 4.0 ± 1.6 4.0 ± 1.3

−0.01
(0.991)

Peripheral platelet

(×103/µL),
Mean ± SD

307.3 ± 65.7 309.2 ± 53.3 302.7 ± 80.1
0.12

(0.887) 314.6 ± 0.7 294.9 ± 54.9
−1.77
(0.078) 312.2 ± 69.9 301.6 ± 60.8

0.97
(0.335)

hCRP (mg/dL) a

Median (Q1–Q3)
Min–Max

0.2 (0.1–0.3)
0.0–1.6

0.4 (0.2–0.4)
0.0–0.8

0.31 (0.1–0.4)
0.1–5.9

1.92
(0.382) 0.3 (0.1–0.4)

0.0–1.9
0.3 (0.2–0.4)

0.0–5.9

−0.67
(0.501) 0.3 (0.13–0.4)

0.0–5.9
0.3 (0.1–0.4)

0.0–2.0

−0.19
(0.843)

NLR
Mean ± SD 1.6 ± 0.7 1.6 ± 0.8 1.6 ± 0.8

0.04
(0.962) 1.4 ± 0.6 1.9 ± 0.8

4.49
(<0.001) 1.6 ± 0.8 1.6 ± 0.7

−0.16
(0.874)

PLR
Mean ± SD 127.7 ± 40.7 119.8 ± 31.1 111.6 ± 50.0

1.69
(0.187) 120.0 ± 46.3 119.8 ± 30.1

−0.03
(0.978) 121.0 ± 40.6 118.8 ± 40.6

0.31
(0.753)

SII
Mean ± SD 6876±2749 6399 ± 2389 5943 ± 3470

1.14
(0.322) 6083 ± 3138 6911 ± 292

1.709
(0.089) 6443 ± 2918 6389 ± 2803

0.11
(0.909)

fT4 (ng/dL) b

Mean ± SD 1.0 ± 0.2 0.9 ± 0.2 1.0 ± 0.2
2.6

(0.075) 1.0 ± 0.2 0.9 ± 0.2
−1.65
(0.101) 1.0 ± 0.2 1.0 ± 0.2

−0.50
(0.613)

TSH (µIU/mL) c

Mean ± SD 2.8 ± 1.3 3.3 ± 2.0 3.0 ± 1.4
1.06

(0.349) 3.2 ± 1.7 2.7 ± 1.4
−1.79
(0.076) 2.7 ± 1.5 3.3 ± 1.7

−2.05
(0.040)

anti-TPO (IU/mL) d

Median (Q1–Q3)
Min–Max

1.8 (0.8–22.6)
0.1–810

0.8 (0.5–13.4)
0.0–438.4

1.5 (0.6–14.8)
0.0–96.8 2.57 (0.277) 1.0 (0.5–12.5)

0.01–47
2.55 (0.8–19.7)

0.2–810
2.10 (0.035) 1.3 (0.6–12.5)

0.0–46
1.25 (0.7–22.8)

0.01–810

−1.36
(0.173)

Stat. = Test statistics; a complete case data n = 53; b complete case data n = 119; c complete case data n = 122; d complete case data n = 91, we
excluded 16.6% values that were reported as qualitative results by the laboratory (under 10 IU/mL); p-values obtained from Student-t test
or Mann Whitney test, one-way ANOVA or Kruskal-Wallis tests; level of significance was set at 0.05;bold values denoted significant test
results; Abbreviations: SD: standard deviation, Q1: first quartile (25th percentile); Q3: third quartile (75th percentile); Min: minimum value;
Max: maximum value; WBC = total absolute white-blood cells count; PMNCs = absolute polymorphonuclear neutrophils count; hCRP =
human C-reactive protein; NLR = neutrophil-to-lymphocyte ratio; PLR = platelet-to lymphocyte ratio; SII = systemic immune-inflammation
index; fT4 = free thyroxine level; TSH = thyroid-stimulating hormone level; anti-TPO = anti-thyroid peroxidase antibody level.

There was a significant difference in distributions of absolute lymphocyte counts and
WBC counts between weight groups (Kruskal-Wallis, p = 0.040 for lymphocyte and p = 0.022
for WBC). Post-hoc analysis showed that severely obese patients had significantly higher
value of WBC counts compared with overweight patients (Dunn’s test, adjusted p = 0.014).
When stratified by age group, a significant relationship between WBC counts and weight
status was found in adolescents (Kruskal-Wallis, p = 0.027) and children (Kruskal-Wallis,
p = 0.024).

When we explored the association between WBC and BMI-for-age z-scores stratified
by age groups (Figure 1), we found a significant positive correlation in children (Spearman’s
Rho coefficient ρ = 0.293, p = 0.006), while for adolescents a positive correlation was found
with a tendency toward significance (Spearman’s Rho coefficient ρ = 0.23, p = 0.081).
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The post-test analysis performed to identify differences in WBC subtype counts high-
lighted that severely obese patients had significantly higher values of absolute lymphocyte
count than overweight patients (severely: 2.70 (IQR: 2.23–2.89) vs. overweight: 2.47 (IQR:
2.16–2.81), Dunn’s test, adjusted p = 0.022). When stratified by age group, the relationship
between peripheral white cell subtypes counts and weight status had a tendency toward
statistical signification for children (Kruskal-Wallis, p = 0.056) and it was not significant
for adolescents (Kruskal-Wallis, p = 0.849). When stratified by age groups, it was only
in children that absolute lymphocyte count was significantly correlated to BMI-for-age
z-score (Spearman’s Rho coefficient ρ = 0.228, p = 0.035). We found no significant difference
in distributions of PMNC values and peripheral platelet count between the three weight
groups (p > 0.05; see Table 2). In adolescents, absolute PMNC count distributions were
significantly different between overweight and severely obese patients (overweight: 4.04
(IQR: 3.33–4.71) vs. severely: 5.3 (IQR: 4.68–5.6), Dunn’s test, adjusted, p = 0.029) while for
the children subgroup we did not find a significant difference in absolute PMNC count
distribution by weight status (Kruskal-Wallis, p = 0.258).

The white blood cell (WBC, lymphocytes, PMNCS) values stratified by different age
groups are also described in Figure 2.

We found no significant differences in mean values of NLR, SII and PLR between
the three weight groups (one-way ANOVA, p > 0.05; Table 2). When we performed the
stratified analysis by age groups, NLR, SII and PLR mean values were not significantly
different between the three weight subgroups, neither for children, nor for adolescents
(Kruskal-Wallis test, p > 0.05). In addition, when we explored the association between these
biomarkers and BMI-for-age z-scores, we found no significant correlation between NLR
and SII with BMI-for-age z-score (Spearman’s Rho coefficient, ρ = −0.06, p = 0.45), whereas
PLR was significantly correlated with BMI-for-age z-score (Spearman’s Rho coefficient,
ρ = −0.17, p = 0.03). In the whole sample, the NLR and SII values increased with age
(Spearman’s Rho coefficient, ρ = 0.34, p < 0.0001, and ρ = 0.24, p = 0.003, respectively)
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with significantly different NLR mean values among adolescents as compared to children
(Student-t test, p < 0.001).
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No significant differences in mean values of NLR, PLR and SII were observed between
boys and girls (Student-t test, p > 0.05; Table 2).

We found no significant differences in mean values of fT4 by weight status neither in
children (one-way ANOVA, p = 0.452, mean ± SD for overweight = 0.99 ± 0.16, mean ± SD
for obese = 0.96 ± 0.18, mean ±SD for severe obese = 1.02 ± 0.21), nor in adolescents
(one-way ANOVA, p = 0.221, mean ± SD for overweight = 0.96 ± 0.19, mean ± SD for
obese = 0.90 ± 0.12, mean ± SD for severe obese = 0.99 ± 0.09). We found a low positive
correlation between fT4 level and BMI-for-age z-score (Pearson’s correlation coefficient,
r = 0.18, p = 0.046). No significant correlation with age was found (Spearman’s Rho coef-
ficient ρ = −0.12, p = 0.192). A tendency toward statistical significance was noticed for
difference in TSH mean values by weight status in children (one-way ANOVA, p = 0.074,
mean ± SD for overweight = 2.58 ± 1.27, mean ± SD for obese = 3.80 ± 2.17, mean ± SD
for severe obese = 3.09 ± 1.39), but not for adolescents (one-way ANOVA, p = 0.774, mean
± SD for overweight = 2.87 ± 1.38, mean ± SD for obese = 2.673 ± 1.40, mean ± SD for
severe obese = 2.50 ± 1.51).

When we interpreted anti-TPO, TSH and fT4 blood levels according to laboratory
normal reference limits (as “normal”, “low”, “high” and “upper limit”), we found no
significant association with weight status (Fisher’s-Exact test, p > 0.05). In 10 (8.19%)
patients an elevated TSH as a unique change was found and only four (3.36%) patients had
a low level of fT4 and an elevated level of TSH. Positive thyroid antibodies were found in
three patients.

3.3. Correlations between Inflammation-Related Markers and Thyroid Function Measures

We found a significant positive correlation between absolute peripheral platelets count
and fT4 value when the whole sample was evaluated (Spearman’s Rho coefficient, ρ = 0.29,
p = 0.001; Table 3). A positive correlation between absolute WBC count and fT4 level with a
tendency to statistical significance was also found, whereas when the correlation between
WBC subtypes and fT4 was considered, we found a significant positive correlation with
absolute lymphocyte count with a tendency to significance (Table 3).
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Table 3. Spearman correlation matrix between inflammation-related markers and thyroid function measures.

Variables Char. fT4
(ng/dL)

TSH
(µIU/mL)

Anti-TPO
(IU/mL)

WBC
(×103/µL)

Lymphocytes
(×103/µL)

PMNCs
(×103/µL)

Peripheral
Platelet

(×103/µL)

hCRP
(mg/dL) NLR PLR

WBC
(×103/µL)

ρ 0.18 −0.05 0.14
n 119 122 91
p* 0.051 0.559 0.177

Lymphocytes
(×103/µL)

ρ 0.16 0.05 −0.02 0.44
n 119 122 91 142
p* 0.090 0.571 0.867 <0.001

PMNCs
(×103/µL)

ρ 0.11 -0.11 0.13 0.84 -0.01
n 119 122 91 142 142
p* 0.255 0.247 0.225 <0.001 0.885

Peripheral
platelet

(×103/µL)

ρ 0.29 −0.14 −0.05 0.03 0.04 0.03
n 119 122 91 142 142 142
p* 0.001 0.113 0.669 0.694 0.652 0.721

hCRP
(mg/dL)

ρ −0.34 0.11 −0.28 −0.06 0.09 −0.11 0.06
n 38 39 22 53 53 53 53
p* 0.038 0.502 0.204 0.686 0.506 0.416 0.683

NLR
ρ −0.05 −0.11 0.10 0.35 −0.62 0.75 −0.01 −0.08
n 119 122 91 142 142 142 142 53
p* 0.562 0.211 0.371 <0.001 <0.001 <0.001 0.934 0.553

PLR
ρ 0.04 −0.14 −0.04 −0.35 −0.75 0.01 0.58 −0.01 0.47
n 119 122 91 142 142 142 142 53 142
p* 0.674 0.135 0.711 <0.001 <0.001 0.937 <0.001 0.926 <0.001

SII
ρ 0.01 −0.15 0.03 −0.09 −0.77 0.33 0.44 −0.05 0.76 0.92
n 119 122 91 142 142 142 142 53 142 142
p* 0.947 0.102 0.800 0.271 <0.001 <0.001 <0.001 0.719 <0.001 <0.001

Char. = characteristics; p* = p-value; n = complete case data; level of significance was set at 0.05; bold values denoted significant test results;
WBC = total absolute white-blood cells count; PMNCs = absolute polymorphonuclear neutrophils count; hCRP = human C-reactive protein;
NLR = neutrophil-to-lymphocyte ratio; PLR = platelet-to lymphocyte ratio; SII = systemic immune-inflammation index; fT4 = free thyroxine
level; TSH = thyroid-stimulating hormone level; anti-TPO = anti-thyroid peroxidase antibody level.

4. Discussion

No considerable differences in NLR, SII and PLR with different weight status were
found in our study. The main cell subtype counts that changed were lymphocyte and
polymorphonuclear neutrophils. The absolute white blood cells count varied in close
relation to different age groups according to weight status. In addition, absolute WBC
and PMNC counts showed higher values with advancing age group in overweight pe-
diatric patients (see Figure 1). Considering that the severely obese subgroup consisted
mainly of children and that peripheral lymphocyte count—significantly higher than in the
overweight subgroup (as shown in Table 2)—increased in an age-independent manner,
we might assume that their increase occurs earlier in severe obesity than in obesity and
overweight subgroup. Our results are partially consistent with those previously reported
on an American pediatric population [53].

Contrarily, the polymorphonuclear neutrophils count changes later in life in both
severely obese pediatric patients and patients with a lower degree of obesity (see Table 2).
Similar variations of differential white blood cell count in normal-weight healthy pedi-
atric patients have been acknowledged in other studies and reference values have already
been proposed (i.e., in early childhood polymorphonuclear neutrophils count is the low-
est and lymphocyte count is the highest and they change in an opposite direction with
time) [54–57].

Macrophages M2 are the most abundant innate immune cells activated in obesity [58],
but recent studies showed that neutrophil activation also mediates subclinical inflammation
in obesity mainly via elastase and myeloperoxidase secretion [59,60]. In both children
and adults, neutrophil count was associated with obesity degree, even in the absence of
metabolic syndrome [61,62].

We found a significant positive monotonic relation of WBC counts with BMI-for-
age z-score in children and a positive correlation with a tendency toward significance
in adolescents. Similar trends in WBC count elevation with age have been reported in
healthy European adolescents with a higher increase rate in overweight adolescents [54].
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Our findings on differences in WBC count between weight groups agree with reported
results of higher WBC count levels in obese than overweight or overweight than normal
weight pediatric patients [21,63]. WBC count in obese adults and adolescents was shown
to be closely related to leptin concentration, a hormone secreted by adipose cells: leptin
serum concentration is associated to WBC counts [64–66]. In vivo experiments on murine
models revealed that myeloid proliferation is enhanced by high leptin concentration in
obesity [67,68].

Our results regarding differential peripheral white blood cell counts indicate an age-
independent degree of dynamic relation with obesity that may be further investigated
in prospective studies including pediatric patients. The accessibility of complete blood
count in pediatrics and the need for markers for evaluating the risk of obesity-driven
complications is an incentive to search for new methods which may serve this scope. White
blood cell count may provide support for the clinical use of markers in childhood obesity.

Early age onset of overweight is associated with a higher risk of morbidity of coronary
heart disease than late-onset overweight [69] and childhood obesity is associated with a
higher prevalence of cardiovascular risk factors during adulthood [70]. More than half of
our patients had low-border level or low HDL-cholesterol level—a known cardiovascular
risk factor in adults and a component of metabolic syndrome in children [71] —leading
to a significant difference between weight groups (Table 1). Subclinical inflammation is
the linking mechanism of obesity with metabolic syndrome and elevated WBC count is
a biomarker of inflammation in obese adults [72,73] and pediatric patients [74,75] with
metabolic syndrome. However, inconsistent results were reported regarding association
of NLR with the severity of metabolic syndrome and risk of type 2 diabetes mellitus in
adults [73,76,77]. Fasting glycaemia and fasting insulinemia in obese children were not
significantly associated with the degree of obesity or the risk of progression to type 2
diabetes [78–80]. In this sense, performing OGTT (oral glucose tolerance test) or proinsulin
levels and proinsulin/insulin ratio were more significant for the assessment of metabolic
impairment [78–80].

One possible cause for children with severe obesity included in our study having
slightly lower values of fasting glucose compared to those with overweight/moderate
obesity (Table 1) could be an imbalance between insulin resistance and insulin sensitiv-
ity, with fasting hyperinsulinemia and episodes of reactive, functional hypoglycemia. In
addition, evidence has also shown that some obese children have episodes of nocturnal hy-
poglycemia, while others have episodes of hyperglycemia without any obvious cause, more
likely to be associated with altered secretion of other hormones/polypeptides involved in
glycemic control [81,82].

Regarding the measures of thyroid function, we found no significant relation with
inflammation-related markers (see Table 3). However, we observed significant correlations
between fT4 level and absolute WBC and peripheral platelet counts (Table 3). Interpretation
of changes in fT4 level should carefully consider the possibility of inter-assay interferences
known to affect TSH, fT4 and fT3 levels when measured on immunoassay platforms [83].
To avoid misinterpretation, only concordant changes were taken into consideration (i.e.,
low/lower normal limit TSH level with normal/high fT4 level—overt or subclinical hy-
pothyroidism) in our analysis. Another common pitfall is the overlooking the adaptive
changes during inflammatory moderate to severe acute or chronic illness—the “non-
thyroidal illness” [84]. In 8.19% of patients, we found changes suggestive of subclinical
hypothyroidism and 3.36% patients had changes of overt hypothyroidism. Similarly, a
higher prevalence of elevated TSH level than positive antibody dysfunction was reported
in the literature [46]. A possible explanation may be the obesity related TSH elevation
in the former and primary thyroid disease in the latter [46,85]. The TSH serum levels
in overweight and obese children and adolescents showed a significant reduction with
the decrease of BMI (from 5.4 ± 1.4 to 4.9 ± 1.5 mU/L, p < 0.0001) without significant
changes in serum level of fT4 (p = 0.210) and a tendency to a significant increase in NLR
(p = 0.08) [86]. In obesity, subclinical inflammation leads to tissue resistance to TSH fol-
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lowed by a high blood level of this hormone. This mechanism can be explained by the role
of inflammatory cytokines upon the iodide uptake activity of thyroid cells [87,88], leptin
inhibition of TSH-induced function [89] or induced thyroid autoimmunity via T-regulatory
cell function [90,91].

The present results with respect to thyroid dysfunction in relation to the subclinical
inflammation in childhood obesity provide support for prospective studies that may
elucidate whether it plays a causative or consequential role.

Study Limitations and Further Studies

As our subgroups were not comparable for age, we adjusted the analysis by perform-
ing stratified analysis. However, some limitations of our study should be acknowledged.
The main limitation is related to the design of the experiment. The retrospective collection
of data does not assure that all eligible patients are evaluated since missing data in medical
records cannot be prevented. The absence of normal controls is another drawback of
our study that emerged from the retrospective collection of data. Inclusion of children
in medical studies is still challenging and, in the absence of electronic health records to
capture medical visits for routine check-ups and access to healthy controls, their inclusion
in our study was not possible. In the prospective study currently conducted by our team
with a focus on new inflammatory markers in childhood obesity we overcome this problem
by including a control group in the analysis. Furthermore, a retrospective collection of
data does not allow to control for covariates that could be related to observed changes in
the reported blood measurements. Cigarette smoking status (passive or active), ethnicity,
low-birth weight, medication use within 24 h, and organic pollutants may considerably
influence the results of this analysis [92–94]. The control of covariates could be achieved by
epidemiological longitudinal populational studies. Puberty status also may be important as
it is known that normal ranges of WBC increase until puberty and decrease in post-pubertal
patients [54]. All the above-mentioned limitations could be eliminated in a prospective
longitudinal study. The inclusion of eligible participants from two different healthcare
units is also a limitation of our study. To withdraw this limitation, we reported some
quantitative measurements as qualitative data according to each laboratory reference for
-age and -gender. The limited number of investigated patients along with the absence of a
control group limit the generalizability of the reported results.

The WBC, as a routine laboratory measurement, could be used as an inflammation
related marker in paediatric obesity that could be useful in identification of changes prior
to the onset of metabolic syndrome. Identification of the cut-off point will bring the
evidence into clinical daily practice but the determination of the cut-off values must be
done in populational studies with an appropriate inclusion of participants in terms of
stages of obesity, stratified by age (children vs. adolescents) and gender, in the presence of
healthy controls.

Nonetheless, a real advantage of studying blood cell parameters in children is that
potential comorbidities that may influence them may be more easily ruled out than in
adults (i.e., neoplasms, diabetes, and cardiovascular disease). Therefore, the identification
of a marker-based on routine blood cell parameters able to characterize the obesity status
in children and adolescents is of interest.

5. Conclusions

Total absolute white-blood cells count (WBC) proved to be a reliable inflammation-
related marker in pediatric obesity prior to the onset of metabolic syndrome, but this result
needs to be validated in the context of all possible covariates. The changes in absolute
lymphocyte and polymorphonuclear neutrophils counts with age may influence absolute
WBC count’s role in reflecting subclinical inflammation.

Laboratory changes suggestive of subclinical and overt hypothyroidism indicate an
obesity-driven thyroid dysfunction, possibly inflammation-mediated.
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