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Abstract. Osteoarthritis (OA) is one of the most common 
causes of disability and its development is associated with 
numerous factors. A major challenge in the treatment of OA is 
the lack of early diagnosis. In the present study, a bioinformatics 
method was employed to filter key genes that may be responsible 
for the pathogenesis of OA. From the Gene Expression Omnibus 
database, the datasets GSE55457, GSE12021 and GSE55325 
were downloaded, which comprised 59 samples. Of these, 
30 samples were from patients diagnosed with osteoarthritis 
and 29 were normal. Differentially expressed genes (DEGs) 
were obtained by downloading and analyzing the original data 
using bioinformatics. The Gene Ontology enrichment and 
Kyoto Encyclopedia of Genes and Genomes pathways were 
analyzed using the Database for Annotation, Visualization 
and Integrated Discovery online database. Protein‑protein 
interaction network analysis was performed using the Search 
Tool for the Retrieval of Interacting Genes/proteins online 
database. BSCL2 lipid droplet biogenesis associated, seipin, 
FOS‑like 2, activator protein‑1 transcription factor subunit 
(FOSL2), cyclin‑dependent kinase inhibitor 1A (CDKN1A) 
and kinectin 1 (KTN1) genes were identified as key genes by 
using Cytoscape software. Functional enrichment revealed 
that the DEGs were mainly accumulated in the ErbB, MAPK 
and PI3K‑Akt pathways. Reverse transcription‑quantitative 

PCR analysis confirmed a significant reduction in the expres‑
sion levels of FOSL2, CDKN1A and KTN1 in OA samples. 
These genes have the potential to become novel diagnostic and 
therapeutic targets for OA.

Introduction

Osteoarthritis (OA) is a chronic degenerative disease of the 
joints, characterized by cartilage degeneration, chronic inflam‑
mation and decreased normal joint function (1). Its clinical 
manifestations are mainly local pain and limited activity of the 
joint (2). OA commonly occurs in females over 55 and males 
over 65 years of age (3). With economic improvements and the 
aging of the population, an increasing number of patients are 
diagnosed with OA, which is now the most common cause of 
disability worldwide. The number of patients with OA is esti‑
mated to be >47 million in the US and is forecast to increase 
to ~67 million in 2030 (25% of the adult population) (4). The 
quality of life of patients with OA is significantly lower than 
that of others and poses great physical, psychological and 
financial burdens. 

Although the pathogenesis of OA has received much clin‑
ical attention, genetic factors associated with the development 
of this disease remain elusive (5). Previously, OA was thought 
to be a heritable disease, but later studies have not determined 
any clear hereditary factors in the pathogenesis of OA (6). 
However, bioinformatics has advanced the study of OA and 
has identified specific genes involved in disease severity (7). 
Similar advances have been made in the study of rheumatoid 
arthritis  (8,9). While hub genes involved in OA have been 
identified as key genes in its pathogenesis, no comprehensive 
genetic analysis has yet been performed (10). Several studies 
have performed gene expression profiling of OA samples and 
screened thousands of differentially expressed genes (DEGs) 
using high‑throughput sequencing technology and other 
advanced techniques (11,12). However, a comprehensive anal‑
ysis of all gene data collected is still missing. An integrated 
bioinformatics approach is able to predict and identify the hub 
genes involved in ОA.

In the present study, three datasets, GSE12021  (13), 
GSE55457 (14) and GSE55235 (11), were analyzed. Screening 
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of DEGs between OA patients and normal controls was 
performed. Gene Ontology (GO) and DEG pathway enrich‑
ment, protein‑protein interaction (PPI) network and functional 
module analyses were then performed to explore the under‑
lying molecular mechanisms of the pathogenesis of OA.

Materials and methods

Microarray data. National Center for Biotechnology 
Information Gene Expression Omnibus (NCBI GEO) is a 
public online repository for high‑throughput gene queries 
and high‑throughput gene expression detection for the global 
research community (15). It was used in the present study 
to obtain OA‑related genes and their expression values were 
downloaded for further analysis. The GSE12021, GSE55235 
and GSE55457 gene expression profiles were downloaded 
from the GEO database. Subsequently, three datasets from 
OA patients and normal controls (GSE55235, GSE55457 and 
GSE77298) were used for analysis; however, the data were 
downloaded without OA stage identification.

Screening of DEGs by GEO2R. The GEO2R online database 
(https://www.ncbi.nlm.nih.gov/gds/) was used to identify 
DEGs between OA samples and normal controls from three 
databases (GSE55235, GSE55457 and GSE77298); |log fold 
change (FC)|>1 and P<0.01 were considered to be DEGs. 
Venn diagrams were used to screen for common significant 
differences among DEGs.

GO enrichment analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis. For GO analysis, 
functional terms enriched by the DEGs were determined 
in three distinct categories representing different biological 
aspects: Molecular function (MF), biological process (BP) 
and cellular component (CC)  (16). KEGG pathways were 
determined to analyze gene functions and link the genetic 
information in the genome with the biological functional infor‑
mation of genes. The Database for Annotation, Visualization 
and Integrated Discovery (DAVID; https://david.ncifcrf.gov/) 
was used to perform GO analysis and KEGG analysis.

Construction of PPI network. PPI network construction was 
performed using the Search Tool for the Retrieval of Interacting 
Genes/proteins (STRING) database (https://string‑db.
org/cgi/network.pl). Subsequently, the DEGs were imported 
into Cytoscape software (http://www.cytoscape.org/) for better 
visualization. Next, the MCODE plugin was used to screen for 
key DEGs among all DEGs.

Reverse transcription‑quantitative (RT‑q)PCR verification. 
RT‑qPCR was used to verify the four key genes. The RNA 
samples obtained from chondrocytes were extracted and 
transcribed into complementary DNA by an RNAiso Plus and 
PrimeScript® RT reagent kit (Takara Bio, Inc.). The DyNAmo 
SYBR‑Green and qPCR systems (Takara Bio, Inc.) were used 
to analyze gene expression. Fill the ice box with samples. 
A ribozyme free 200 µl EP tube was placed on ice, after which 
1,000 ng RNA samples were added. A total of 1 µl gDNA 
Eraser and 1 µl 5X gDNA Eraser Buffer was subsequently 
added to samples. Finally, RNase Free ddH2O was added to 

samples making a total volume of 10 µl. Amplification 2 min 
at 42˚C. Then at 4˚C, 4 µl 5X PrimeScript Buffer 2, 4 µl RNase 
Free ddH2O, 1 µl 1PrimeScrip Enzyme Mix1 and 1 µl RT Prime 
Mix was added to samples. Amplification 15 min at 37˚C and 
5 sec at 85˚C. A total of 20 µl cDNA was obtained by reverse 
transcription. Subsequently, 5 µl SYBR Premix Ex Taq II with 
3.5 µl dd H2O, 0.2 µl ROX, 0.5 µl cDNA, 0.4 µl PCR Forward 
Primer (10 µM) and 0.4 µl PCR Reverse Primer (10 µM) was 
added 96‑well plates. The plates were run on the fluorescence 
quantitative PCR instrument, using the following cycling condi‑
tions: 95˚C for 30 sec, followed by 40 cycles at 95˚C for 5 sec, 
60˚C for 30 sec, 90˚C for 15 sec and 60˚C for 60 sec. The paired 
primers for the four key genes are listed in Table I. All samples 
were compared with GAPDH. The 2‑ΔΔCq method was used to 
quantify the relative gene expression levels (17).

Cell culture and immunofluorescence assays. The collec‑
tion and culturing of chondrocytes was performed as 
described in detail in previous studies by our group (18‑20). 
Specimens of the knee joint and femoral head were collected 
from patients undergoing joint replacement surgery at the 
Bone and Joint Department of Shenzhen Second People's 
Hospital (Shenzhen,  China) between December  2017 and 
October 2019. According to the patient's imageological diag‑
nosis, all OA samples obtained were from patients with OA 
of grades III and IV in Kellgren‑Lawrence classification (21). 
In addition, as the control, the samples of patients with 
femoral neck fracture on radiographic diagnosis were used. 
The average age of the patients was 78.44±3.42 years in the 
control group, including 9 patients (2 males and 7 females), 
and 66.60±4.53 years in the OA group, including 5 patients 
(5 females). The following procedures were performed under 
sterile conditions. The samples were washed with normal saline 
three times and a surgical blade was used to cut the cartilage 
tissue blocks to final sizes of approximately 1x1x1 mm. The 
samples were incubated with collagenase type II (1 mg/ml; 
cat. no. C6885; Sigma‑Aldrich; Merck KGaA) working liquid 
and oscillated for digestion for 8‑12 h at 37˚C. The cell suspen‑
sion was then divided into two parts. One part was added to 
complete chondrocyte culture medium (containing 10% FBS; 
Gibco; Thermo Fisher Scientific, Inc.), 1% penicillin and strep‑
tomycin, 1% HEPES, 1% ascorbic acid, 1% proline solution and 
1% non‑essential amino acids) and cultured in a CO2 incubator. 
The other part was centrifuged and resuspended and cells 
were dropped onto a glass slide for subsequent experiments. 
The present study was approved by the Ethics Committee of 
Shenzhen Second People's Hospital (Shenzhen, China) and 
written informed consent was obtained from all subjects.

For the immunofluorescence experiment, methods similar 
to those of other studies were used  (22,23). The steps of 
immunofluorescence labeling of target protein were as follows: 
After washing the cells with PBS two times, the cells were 
fixed with paraformaldehyde for 15 min. The cells were then 
washed with PBS six times for 5 min each. Triton X100 (0.5%, 
diluted with PBS) was added, and samples were incubated for 
15 min at room temperature. Cells were again washed by PBS 
six times for 5 min each. The cells were then blocked with 
5% bovine serum albumin (Amresco LLC) for 2 h at room 
temperature and then washed with 0.5% BSA six times for 
5 min each. The samples were then incubated with primary 
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antibody (rabbit anti‑Collagen II/FITC conjugated antibody; 
cat. no. bs‑10589R‑FITC; BIOSS) at 4˚C overnight. As these 
conjugated fluorescent dye primary antibodies demonstrated 
a strong specificity, secondary antibodies were not required. 
Subsequently, the cells were washed with 0.5% BSA six times 
for 5 min each. Subsequently, the cells were washed by PBS six 
times for 5 min each. DAPI (Thermo Fisher Scientific, Inc.) was 
added for 5 min and cells were washed with PBS three times for 
5 min each. Images of fluorescently labeled cells were acquired 
with an LSM800 confocal microscope (Zeiss AG). 

Statistical analysis. Prism 8 (GraphPad Software, Inc.) was 
used to generate figures. Experimental data were statistically 
analyzed using SPSS 19.0 software (IBM Corp.). Student's 
t‑test was used to assess differences between groups. P<0.05 
was considered to indicate a statistically significant difference.

Results

Screening of DEGs. Genes with significant differences in 
expression (P<0.051 and |log FC|>1) between the OA samples 
and normal controls were screened in the GEO2R website and 
181 DEGs, including 48 upregulated and 133 downregulated 
genes, were identified (Fig. 1).

GO functional enrichment analysis. The functions of the 
181 DEGs were classified using DAVID. In the GO category 
MF, these DEGs were significantly enriched in protein‑DNA 
binding, RNA binding and protein homodimerization 
activity. In addition, in the category CC, the DEGs were 
significantly enriched in the nucleoplasm, nucleus, cytoplasm 
and plasma membrane. However, in the category BP, there 
were fewer genes enriched compared with the other catego‑
ries (Fig. 2 and Table II). The upregulated DEGs were mainly 
enriched in the extracellular space and plasma membrane. 
The downregulated DEGs were significantly enriched in the 
nucleoplasm, nucleus and cytoplasm, and were involved in 
protein binding.

KEGG signaling pathway analysis. DEGs were mainly 
enriched in the MAPK and PI3K‑Akt signaling pathways 
(Fig.  3) according to the KEGG analysis. The signaling 
pathways of downregulated DEGs were mainly enriched 
in osteoclast differentiation, MAPK signaling, TNF 
signaling, Epstein‑Barr virus infection and insulin signaling. 

Upregulated genes were mainly enriched in influenza A 
signaling (Table III).

PPI network builds and MCODE analysis. To further 
analyze the relationships among all DEGs, PPI networks were 
constructed, including 161 nodes and 375 edges. The network 
included 181 protein interactions with combined scores of 
>0.4 (Fig. 4A). By further analyzing the PPI networks, four 
modules were detected using the MCODE plugin in Cytoscape. 
According to the MCODE score, key genes in four modules 
were screened, including BSCL2 lipid droplet biogenesis 
associated, seipin (BSCL2), FOS‑like 2, activator protein‑1 
transcription factor subunit (FOSL2), cyclin‑dependent kinase 
inhibitor 1A (CDKN1A) and kinectin 1 (KTN1) (Fig. 4B‑D).

Validation of key genes. To verify the results, the expression 
levels of four key genes were determined in human articular 
chondrocytes (Fig. 5). First, normal chondrocytes (Ctrl group) 
and osteoarthritis chondrocytes (OA group) were obtained from 
patients undergoing joint replacement and subsequently, cells 
were cultured and stained with toluidine blue (Fig. 5A and B). 
To further identify the two types of cells, immunofluorescence 
was used to observe differences in the expression of type II 
collagen, which was decreased significantly in OA chondro‑
cytes  (Fig. 5C). Subsequently, the expression levels of the 
four key genes were determined by RT‑qPCR. The results 
indicated that the expression level of BSCL2 in OA samples 
was increased but with no significant difference (P>0.05, n=3; 

Table I. Primer sequences for four hub genes (5'‑3').

Gene	 Forward primer	 Reverse primer

BSCL2	 ATGGTCAACGACCCTCCAGTA	 GCTGACTGTCGGCATATAGGAA
FOSL2	 CAGAAATTCCGGGTAGATATGCC	 GGTATGGGTTGGACATGGAGG
CDKN1A	 TGTCCGTCAGAACCCATGC	 AAAGTCGAAGTTCCATCGCTC
KTN1	 AAATGTCTTCGTAGATGAACCCC	 TTTGTCAGTTTCGGTCTTCAGTT
GAPDH	 GGCACAGTCAAGGCTGAGAATG	 ATGGTGGTGAAGACGCCAGTA

BSCL2, BSCL2 lipid droplet biogenesis associated, seipin; FOSL2, FOS‑like 2, activator protein‑1 transcription factor subunit; 
CDKN1A, cyclin‑dependent kinase inhibitor 1A; KTN1, kinectin 1.

Figure 1. Common differentially expressed genes from three datasets. By 
analyzing the differential genes of GSE12021, GSE55235 and GSE55457 
datasets, 181 common differential genes were obtained.
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Fig. 5F), while the expression levels of FOSL2, CDKN1A and 
KTN1 were significantly decreased. The differences between 
OA and normal chondrocytes in the expression levels of the 
four key genes were consistent with the analytical results of 
PCR (P<0.05, n=3; Fig. 5D, E and G).

Discussion

OA is considered to be the most common cause of 
disability (24); it seriously affects the quality of life, creating 
physical, psychological and economic burdens for patients. 
The diagnosis and treatment of OA require an interdisciplinary 
approach. Bioinformatics is a tool widely used to predict 
potential target genes for numerous diseases. In the present 
study, three sets of data from patients with OA and normal 

controls were analyzed by using GEO2R. Between the OA and 
control groups, 181 DEGs were identified, including 48 upreg‑
ulated and 133 downregulated genes. The upregulated DEGs 
were mainly enriched in the extracellular space and plasma 
membrane. Downregulated DEGs were significantly enriched 
in functional terms associated with the nucleoplasm, nucleus, 
cytoplasm and protein binding, and this explains that the main 
difference between patients with OA and individuals without 
OA is in the cartilage cells. Cellular changes are an impor‑
tant part of the process of OA. OA is a chronic degenerative 
disease characterized by cartilage defects and chondrocytes 
are the only cell type in articular cartilage (25). Cartilage cell 
apoptosis is a key part of OA (26). The present study suggested 
that the downregulated gene CDKN1A, which regulates the 
occurrence and development of apoptosis, may participate 

Table II. Significant enrichment of DEGs in osteoarthritis.

A, Downregulated DEGs

Category	 Term	 Description	 Gene count	 P‑value

BP	 GO:0071850	 Mitotic cell cycle arrest	 2	 8.41x10‑2

BP	 GO:0045821	 Positive regulation of glycolytic process	 2	 9.02x10‑2

BP	 GO:0010839	 Negative regulation of keratinocyte proliferation	 2	 9.02x10‑2

BP	 GO:0070498	 Interleukin‑1‑mediated signaling pathway	 2	 9.02x10‑2

BP	 GO:0097009	 Energy homeostasis	 2	 9.64x10‑2

CC	 GO:0005654	 Nucleoplasm	 39	 2.45x10‑6

CC	 GO:0005634	 Nucleus	 56	 5.71x10‑5

CC	 GO:0005737	 Cytoplasm	 48	 4.78x10‑3

CC	 GO:0005667	 Transcription factor complex	 5	 3.59x10‑2

CC	 GO:0000790	 Nuclear chromatin	 5	 3.59x10‑2

MF	 GO:0005515	 Protein binding	 80	 3.11x10‑4

MF	 GO:0042803	 Protein homodimerization activity	 15	 4.81x10‑4

MF	 GO:0044822	 poly(A) RNA binding	 19	 6.78x10‑4

MF	 GO:0000166	 Nucleotide binding	 9	 2.78x10‑3

MF	 GO:0003677	 DNA binding	 22	 4.73x10‑3

B, Upregulated DEGs

Category	 Term	 Description	 Gene count	 P‑value

BP	 GO:0007155	 Cell adhesion	 6	 4.97x10‑3

BP	 GO:0016525	 Negative regulation of angiogenesis	 3	 1.00x10‑2

BP	 GO:0030336	 Negative regulation of cell migration	 3	 2.25x10‑3

BP	 GO:0071257	 Cellular response to electrical stimulus	 2	 2.89x10‑2

BP	 GO:0007399	 Nervous system development	 4	 3.27x10‑2

CC	 GO:0005615	 Extracellular space	 11	 6.34x10‑4

CC	 GO:0005578	 Proteinaceous extracellular matrix	 5	 3.02x10‑3

CC	 GO:0005886	 Plasma membrane	 18	 5.37x10‑3

CC	 GO:0005788	 Endoplasmic reticulum lumen	 4	 9.15x10‑3

CC	 GO:0030133	 Transport vesicle	 3	 1.93x10‑2

MF	 GO:0001786	 Phosphatidylserine binding	 3	 2.97x10‑3 
MF	 GO:0008201	 Heparin binding	 4	 5.12x10‑3

BP, biological process; CC, cellular component; MF, molecular function; GO, Gene Ontology; DEG, differentially expressed gene.
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in the development of OA. Further analysis indicated that 
these DEGs were mainly enriched in the ErbB, MAPK and 
PI3K‑Akt signaling pathways. These pathways are associated 
with chondrocyte apoptosis in OA. MAPK modulates joint 
inflammation and joint damage (27). The major pathological 
changes in OA are cartilage damage and poor healing (1), so 
the MAPK pathway is able to promote the aggravation of OA 
or rheumatoid arthritis to exert an important role in the patho‑
genesis of arthritis (26,28). Erb activates PI3K to generate 
phosphatidylinositol‑3,4,5‑triphosphate that effectively 

activates the Akt pathway. Apoptosis‑associated proteins are 
competitively inhibited by the Akt pathway. Thus, recruiting 
this gene may promote cell survival and inhibit cell apop‑
tosis (29). There is a definite correlation between the degree of 
cartilage damage and chondrocyte apoptosis (26). Therefore, 
inhibiting chondrocyte apoptosis may be effective in regu‑
lating cartilage degeneration during OA. Animal experiments 
have indicated that the use of MAPK inhibitors effectively 

Figure 2. GO analysis results of hub genes. GO analysis classified the differ‑
entially expressed genes into three groups: Molecular function, biological 
process and cellular component. GO, Gene Ontology.

Table III. Kyoto Encyclopedia of Genes and Genomes analysis result of DEGs.

A, Downregulated DEGs

Term	 Description	 Gene count	 P‑value

hsa04380	 Osteoclast differentiation	 7	 9.17x10‑4

hsa04010	 MAPK signaling pathway	 9	 1.46x10‑3

hsa04668	 TNF signaling pathway	 6	 2.30x10‑3

hsa05169	 Epstein‑Barr virus infection	 6	 4.05x10‑3

hsa04910	 Insulin signaling pathway	 6	 6.81x10‑3

B, Upregulated DEGs

Term	 Description	 Gene count	 P‑value

hsa05164	 Influenza A	 3	 8.21x10‑3

DEG, differentially expressed gene; hsa, Homo sapiens.

Figure 3. Kyoto Encyclopedia of Genes and Genomes analysis results of 
differentially expressed genes. The color gradient represents the P‑value; the 
size of the dots represents the gene number.
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improves inflammation and joint degeneration in mice with 
OA (30), which demonstrates the potential of inhibiting MAPK 
in OA treatment. The PI3K/Akt pathway is associated with 
TNF‑α‑induced activation of OA fibroblast‑like synoviocytes, 
which may be involved in OA pathogenesis (31). It promotes 
cartilage degeneration, subchondral bone function damage 

and inflammation during OA (32). The use of MAPK inhibi‑
tors reduces the pathological changes of OA (31). CDKN1A 
is able to activate the AKT pathway and induce MAPK8 to 
participate in the inactivation of MAPK, further reducing 
apoptosis (33,34). It has been reported that CDKN1A is signifi‑
cantly downregulated in the synovium of arthritis patients and 

Figure 4. PPI networks constructed by Search Tool for the Retrieval of Interacting Genes/proteins. (A) PPI network constructed with the upregulated and 
downregulated differentially expressed genes. Red nodes represent upregulated genes and blue nodes represent downregulated genes. The potential interaction 
networks of (B) cluster 1 containing 11 molecules and (C) cluster 2 containing 14 molecules and (D) cluster 3 containing 8 molecules identified from Molecular 
Complex Detection (MCODE). Three significant modules were obtained from the PPI network. PPI, protein‑protein interaction.
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is associated with inhibition of chondrocyte proliferation (35), 
suggesting that upregulation of CDKN1A may have a positive 
role in the early treatment of OA.

By contrast, the expression of BSCL2 in OA samples was 
significantly increased compared with that in normal samples. 
BSCL2 has a key role in lipogenesis, lipid metabolism and 
lipid droplet synthesis (36). The loss of BSCL2 may lead to 
serious disorders in metabolic dysfunction and a significant 
reduction in fat (37), whereas upregulation of BSCL2 may 
lead to weight gain. Obesity is a major cause of OA (38), and 
thus, upregulation of BSCL2 may induce its development. 
Furthermore, various transforming (FOS) proteins affect the 

physiology of chondrocytes, osteoblasts and osteoclasts (39). 
FOSL2 is the key regulator of leptin expression in fat cells (40) 
and its deficiency is able to promote obesity. In the present 
study, its low expression in OA samples was noted, which 
is consistent with obesity being a leading cause of OA (38). 
Recent studies have indicated that FOSL2 is suppressed in the 
early hypertrophy state of chondrocytes, suggesting that this 
gene is strongly associated with the early initiation of OA (41). 
Therefore, overexpressed BSCL2 and decreased expression of 
FOSL2 in OA samples promotes obesity in patients with OA, 
and their regulation may have a positive role in the prevention 
of OA. Furthermore, KTN1 is a receptor on the endoplasmic 
reticulum (42) that has an important part in adjusting protein 
biosynthesis in cells (43). A proteomics analysis of human 
mesenchymal stem cells undergoing inhibited chondrogenesis 
indicated reduced levels of KTN1 (44), suggesting an asso‑
ciation of KTN1 with chondrogenesis enhancement. Thus, 
enhancing KTN1 may induce chondrocyte proliferation.

Of note, the present study had a limitation: When NCBI 
GEO was used to obtain the microarray data, the informa‑
tion on the OA stage was unclear or the diagnosis of the OA 
classification by different doctors was biased. Therefore, it 
is difficult to ensure that all patients whose data were down‑
loaded had the same OA classification. In order to confirm 
certain key genes that regulate the occurrence of osteoarthritis 
identified in bioinformatics screenings, more data and further 
experimental verification are still required.

A limitation of the present study was that cells were prepared 
using collagenase II. Further experiments are therefore required 
to determine whether this may have affected results.

In conclusion, bioinformatics and experimental data 
suggested that BSCL2, FOSL2, CDKN1A and KTN1 are key 
DEGs in OA compared with normal samples. Therapeutic 
targeting of these genes may positively contribute to the 
treatment and prevention of OA and consequent disability. 
One limitation of the present study is the limited amount of 
collected data. Further analyses and experiments are required 
prior to performing some potential targets.
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