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Shrimp aquaculture is an essential economic venture globally, but the industry faces
numerous challenges, especially pathogenic infections. As invertebrates, shrimp rely
mainly on their innate immune system for protection. An increasing number of studies
have shown that ubiquitination plays a vital role in the innate immune response to microbial
pathogens. As an important form of posttranslational modification (PTM), both hosts and
pathogens have exploited ubiquitination and the ubiquitin system as an immune response
strategy to outwit the other. This short review brings together recent findings on
ubiquitination and how this PTM plays a critical role in immune modulation in penaeid
shrimps. Key findings inferred from other species would help guide further studies on
ubiquitination as an immune response strategy in shrimp-pathogen interactions.
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INTRODUCTION

Shrimp aquaculture has become one of the world’s most extensive and most valuable farming
practices due to increased shrimp consumption. However, the rapid development of shrimp
aquaculture comes with several challenges, especially pathogenic infections, which therefore
hamper the development of the shrimp aquaculture industry. Penaeid shrimps are particularly
vulnerable to various microorganisms, including viruses, bacteria, fungi, and other parasites (1, 2)
due to the nature of their environment. Moreover, as invertebrates, penaeid shrimps mainly rely on
their innate immune system for protection against pathogens (3).

The innate immune system of shrimp comprises cellular and humoral immune responses, which
work in concert to offer protection against microbial infections (4, 5). The cellular arm of the innate
immune response is involved several immune functions such as phagocytosis and apoptosis through
immune cells such as hemocytes (6–8). On the other hand, humoral immune responses involve
non-specific enzymes or factors in hemolymph, such as phenoloxidase, lectins, antimicrobial
peptides (AMPs), etc., which eliminate pathogens by direct killing or inhibit their growth and
spread (2, 3, 9–11). In addition to the direct elimination of pathogens through immune factors in
shrimp body fluids, shrimp can also identify pathogens through pattern recognition receptors
org May 2021 | Volume 12 | Article 6973971
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(PRRs) to activate a series of downstream immune signaling
pathways that mediate the activation of cellular and humoral
immune responses (12, 13). For example, the carbohydrate
recognition domain (CTLD) of C-type lectins (CTLs) in
Marsupenaeus japonicus recognizes bacterial glycans, while the
coiled-coil domain (CCD) interacts with the surface receptor,
Domeless, to activate JAK/STAT signaling pathway, which then
regulates AMPs production to clear bacterial pathogens (14).
Similarly, the Toll and immune deficiency (IMD) pathways are
essential in shrimp antimicrobial response due to their major
role in regulating AMPs expression via the NF-kB/Relish
signaling pathways (15, 16).

A growing number of studies have shown that PTMs play an
essential role in regulating immune responses (17–20). For
instance, phosphorylation of Ser349 on tumor necrosis factor
receptor-related protein 3 (TRAF3) by the serine-threonine
kinase CK1ϵ facilitates the production of antiviral cytokines.
Thus, deficiency of CK1ϵ in mice attenuates its ability to
effectively produce antiviral factors during viral infection (21).
In M. japonicus, the phosphorylation of focal adhesion kinase
(FAK) promotes the activation of multiple immune signaling
pathways, including antiviral response during white spot
syndrome virus (WSSV) infection (22). The envelope proteins,
gp116 and gp64, of yellow head virus (YHV), possess N-linked
glycosylation (23), which accelerates the formation and release of
YHV virions into the hemolymph of infected shrimp (Penaeus
monodon), hence increasing the severity of the disease (24).
Similarly, we previously revealed that the glycosylation of
Penaeus vannamei hemocyanin increases its antibacterial and
agglutination activity against Vibrio alginolyticus and Vibrio
fluvialis (25). In mammals, infection of mouse embryo
fibroblasts (MEFs) with herpes simplex virus type 1 (HSV-1)
and vesicular stomatitis virus (VSV) induces acetylation of the
tumor suppressor p53 at Lys379, which is indispensable for the
transcriptional activation of p53-dependent genes in response to
viral infection and replication (26). Acetylation of interferon
regulatory factor 3 (IRF3) at Lys359 by lysine acetyltransferase 8
(KAT8) results in the inhibition of the transcriptional activity of
IRF3 in mouse macrophages, hence, decreasing type I interferons
(IFN-I) production and antiviral responses (27).

Recent studies have implicated other PTMs such as small
ubiquitin-related modifier (SUMO) modification (SUMOylation)
and ubiquitination in immune response in both vertebrates and
invertebrates (28–31). For instance, in the retinoic acid–inducible
gene I (RIG-I)-like receptors (RLRs) signaling pathway in mice,
ubiquitination of RIG-I and mitochondrial antiviral signaling
protein (MAVS) affects downstream TNF receptor-associated
factors (TRAFs) and IFN regulatory factors, thereby stimulating
IFN-I production for antiviral immunity (32–34). In zebrafish,
tripartite motif proteins (TRIMs) when induced during viral
hemorrhagic septicemia virus (VHSV) infection, display E3
ubiquitin ligase activity, which suggest that TRIMs could regulate
antiviral response via ubiquitination (35). The viral immediate early
(IE) proteins of WSSV can be modified by SUMOylation, thus
promoting viral gene transcription and replication in Procambarus
clarkii (36). During Staphyloccocus aureus and Vibrio
Frontiers in Immunology | www.frontiersin.org 2
parahaemolyticus infection in Chinese mitten crab Eriocheir
sinensis, the ubiquitin-like protein, neural precursor cells expresses
developmental downregulation 8 (NEDD8) is inhibited to prevent
its conjugation with Cullin4 (37), which attenuates the E3 ubiquitin
ligase activity of Cullin4 (38). For penaeid shrimps, there is limited
information on the role of ubiquitination in immune response. This
paper reviews recent findings on the significance of ubiquitination
during immune response to microbial pathogens and identify areas
that could be explored to understand the role played by
ubiquitination in penaeid shrimp immune defense.
UBIQUITINATION IN
HOST-PATHOGEN INTERACTIONS

Ubiquitination is an essential type of PTM, whereby ubiquitin
(76 amino acid polypeptides) units are attached to a target
protein through a series of three steps catalyzed by ubiquitin-
activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and
ubiquitin-ligase (E3) (39). In this cascade reaction, E1 activates
and transfers ubiquitin to E2 using ATP, followed by the
interaction between E2 and E3, allowing the transfer of
ubiquitin to the target protein. The seven lysine residues (Lys6,
Lys11, Lys27, Lys29, Lys33, Lys48, and Lys63) on ubiquitin or its
N-terminal methionine are the residues through which other
ubiquitin units bind to increase the number of ubiquitin
molecules on the target protein (40). Ubiquitination of target
proteins allows these proteins to be recognized by other enzyme
complexes or organelles in the cell (40), thereby executing their
functions (Figure 1), such as cell cycle, proliferation,
differentiation, DNA repair, energy metabolism, etc. (41–44).

Besides the primary functions of ubiquitination, recent studies
have implicated ubiquitination as an essential regulatory
mechanism in immune response (45, 46). For instance, in the
orange-spotted grouper Epinephelus coioides, the E3 ubiquitin ligase
TRIM8 can inhibit the replication of Singapore grouper iridovirus
(SGIV) and red-spotted grouper nervous necrosis virus (RGNNV)
by enhancing the expression of IR3, IR7 and interferon-related
factors (47). During bacterial infection, Drosophila E3 ubiquitin
ligase LUBEL catalyzes the conjugation of IkB kinase g (IKKg)
Kenny to form M1-linked linear ubiquitin (M1-Ub) chains, which
activates Relish-mediated AMPs gene expression to clear the
bacteria (48). In Scylla paramamosain, an E3 ubiquitin ligase
casitas B-lineage lymphoma (CBL) protein has been found to
decrease WSSV proliferation through hemocytes apoptosis (49).

Ubiquitination and Shrimp
Antiviral Response
The key to successful virus infection is the entry of the virus into
cells, hence, most viruses use host receptor proteins to enter cells
by endocytosis followed by exploiting host nutrients for its
replication, proliferation, etc. For example, the WSSV envelope
protein, VP24, interacts with polymeric immunoglobulin
receptor (pIgR) to enable endocytosis of WSSV into cells,
through a pIgR-Calmodulin-Clathrin mediated mechanism in
M. japonicus (50). Similarly, the WSSV protein kinase 1 interacts
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with ferritin to block the binding of ferritin to free iron, which
facilitates the use of iron by the virus for its proliferation in M.
japonicus (51). Some viruses also exploit or hijack the immune
signaling pathways in shrimp, such as Toll/IMD-nuclear factor-
kB (NF-kB), JAK-STAT, andWnt/b-catenin signaling pathways,
for their proliferation (7, 52). For instance, upon WSSV
stimulation, NF-kB factor Relish binds to the promoter of the
immediate early gene of WSSV, ie1, to induce its expression and
WSSV replication (7). Toll4 is reported to mediate the
production of AMPs through the Toll4-dorsal pathway as an
antiviral immune response in P. vannamei (16). After JAK/STAT
silencing in P. vannamei, WSSV copies decreased significantly,
indicating that the JAK/STAT signal pathway plays an important
role in the antiviral activity of shrimp (53, 54).

In mammals and Drosophila, ubiquitination plays a role in
mediating innate immune response regulation (46, 55). The E3
ubiquitin ligase RNF125 in mammals, promote K48-linked
polyubiquitination and degradation of the mitochondrial adaptor
TRIM14 to suppress IFN-I production upon Sendai virus infection
(56). Similarly, polyubiquitination of IMD at Lys137 and Lys153 by
the E2 ubiquitin-conjugating enzymes (i.e., Effete (Ubc5) and
Bendless (Ubc13)-Uev1a complex) and E3 ubiquitin ligase DIAP2
in Drosophila, triggers the removal of K63-linked polyubiquitin
chains, thereby increasing K48 polyubiquitination to degrade IMD
via proteasome degradation as part of immune response
homeostasis (55). Some emerging evidence suggests the
involvement of ubiquitination in mediating antiviral immune
response in shrimp. For instance, transcriptome analysis revealed
dysregulation in ubiquitin-proteasome pathway genes in shrimp
hemocytes (57), while ubiquitination in gills (58) was found to alter
WSSV infection of P. vannamei, which suggest the modulation
involvement of the ubiquitin system in shrimp during WSSV
infection. In F. chinensis, the ubiquitin-conjugating enzyme
Frontiers in Immunology | www.frontiersin.org 3
FcUbc, was shown to ubiquitinate the really interesting new gene
(RING) domains (WRDs) of WSSV viral proteins WSSV277 and
WSSV304, to inhibit viral replication and reduces shrimp mortality
upon WSSV infection (59). Thus, ubiquitination can play a direct
antiviral role in shrimp.

Analysis of the hepatopancreas transcriptome of WSSV
infected shrimp (P. vannamei) revealed decreased expression
of Wnt signaling pathway genes (60). Indeed, ubiquitination is
reported to regulate the Wnt/b-catenin pathway in shrimp, as b-
catenin undergoes ubiquitination after treatment with the
proteasome inhibitor MG132 followed by WSSV infection (61).
Given that Pvb-catenin positively regulates AMPs production
(52), interacts with WSSV069, and attenuates the expression of
viral genes (61), it indicates that ubiquitination plays a positive
antiviral role in shrimp through b-catenin in the Wnt/b-catenin
pathway, especially during early viral replication (Figure 2).
Besides, ubiquitination is involved in antiviral immune
response through other proteins by indirectly affecting immune
signaling pathway. For instance, the E3 ubiquitin ligase tripartite
motif 9 protein (PvTRIM9) interacts with the NF-kB pathway
inhibitor beta-transducin repeat-containing protein (Pvb-TrCP)
in P. vannamei, hence knockdown of PvTRIM9 followed by
WSSV infection increases PvRelish expression and AMPs
production, coupled with a decrease in viral copy number (64).
This indicates that WSSV inhibits the NF-kB pathway and AMPs
production by annexing the E3 ubiquitin ligase PvTRIM9 in
shrimp (64).

Exploitation of Ubiquitination by Viruses to
Outwit Penaeid Shrimp Immune Response
Viruses invade their host through interactions between host and
viral proteins, especially via the use of viral envelope proteins for
recognition and entry (7, 65), recruiting cellular proteins in order
FIGURE 1 | Schematic representation of the functional relevance of ubiquitination. During ubiquitination, E1 is first activated to transfer ubiquitin (Ub) to E2 using
ATP. Through the interactions of E2 and E3, E3 and ubiquitinated substrates, Ub is transferred to the substrates, which allows the substrates to be recognized by
enzyme complex or organelles. The ubiquitinated substrate can then perform multiple functions, including cell cycle, proliferation, differentiation, DNA repair, energy
metabolism, signal transduction and immune regulation, etc.
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to invade the cytoplasm (7, 66), etc. Furthermore, viruses can
manipulate and exploit the host ubiquitin system to elude host
immune response (67). For instance, the immediate-early 1
protein (IE1) of congenital human cytomegalovirus (HCMV)
promotes the ubiquitination and degradation of Hairy and
Enhancer of Split 1 (Hes1), an essential downstream effector of
Notch signaling (68). By this, IE1 acts as an E3 ubiquitin ligase to
dysregulate Notch signaling, thereby resulting in aberrant
differentiation of in neural progenitor cells (NPCs) (68, 69).
Similarly, proteins that contain the RING domain are reported to
act as an E3 ubiquitin ligase, such as TRIM proteins (70, 71). In
E. coioides, the TRIM32 protein, which has a deletion of the
RING domain, cannot positively regulate the expression of IFN-
stimulated genes, hence attenuating antiviral response to SGIV
or RGNNV infection, an indication of the importance of the
RING domain in host antiviral response (72). Recent studies
show that some WSSV proteins, such as WSSV199, WSSV222,
WSSV249, and WSSV403, contain the RING domain; hence,
they modulate the ubiquitin system of shrimp to benefit (73). For
instance, in the presence of shrimp ubiquitin-conjugating
enzyme UbcH6, WSSV222 acts as E3 ubiquitin ligase to
mediate ubiquitination and degradation of shrimp tumor
suppressor-like protein (TSL), which aids viral replication (74).
Furthermore, knockdown of WSSV222 by small interfering RNA
(siRNA) reduces the severity of WSSV infection by delaying
Frontiers in Immunology | www.frontiersin.org 4
WSSV replication in shrimp (75). The WSSV222 viral protein,
therefore, promotes WSSV replication by annexing the ubiquitin
system in shrimp during WSSV infection. Similarly, the viral
protein, WSSV403, is reported to exert its E3 ubiquitin ligase
activity with shrimp ubiquitin-conjugating enzyme E2 (76).
WSSV403 can interact with protein phosphatase (PPs) in
shrimp, which suggests that WSSV403 uses its E3 ubiquitin
ligase activity to regulate WSSV latent infection (76). However,
whether PPs are the ubiquitinated substrate of WSSV403 under
WSSV infection has not been reported. Details on this would
identify new strategies or potential targets for preventing and
treating WSSV infection in shrimp.

Ubiquitination as an Immune Response to
Other Microorganisms or Environmental
Cues in Penaeid Shrimp
During host-pathogen interactions, the host can regulate its
ubiquitin system to eliminate the pathogens (30). For example, a
74 amino acid residue containing ubiquitin obtained from gills of
Pacific oyster Crassostrea giga shows strong antimicrobial activity
against Gram-positive (e.g., Streptococcus iniae) and Gram-negative
bacteria (e.g., Vibrio parahemolyticus) (77). Host cells can eliminate
pathogens through ubiquitination and degradation mediated by
proteasome, phagosome, and autophagosome (30, 78). In MEFs,
an E3 ubiquitin ligase, neuronal precursor cell expressed,
FIGURE 2 | Ubiquitination of b-catenin is important for penaeid shrimp antiviral immune response. b-catenin is a key regulator in the Wnt/b-catenin signaling
pathway. (1) In mammals, b-catenin in cytoplasm could be ubiquitinated by an E3 ubiquitin ligase b-TrcP for degradation (62, 63). (2) In the cytoplasm of shrimp,
b-catenin is ubiquitinated by WSSV infection, which also promotes the translocation of b-catenin into nucleus to inhibit the expression of virus immediate early gene
wssv069. b-catenin can also interact with wssv069 (61). Thus, b-catenin plays a positive role through ubiquitination to inhibit WSSV replication during infection.
However, which protein could ubiquitinate b-catenin in penaeid shrimp has not been found.
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developmentally downregulated 4 (NEDD4), promotes autophagy
to clear bacteria via ubiquitination of BECN1 (79). During infection
with fungi or Gram-positive bacteria, Drosophila Spätzle activates
the Toll receptor, resulting in the ubiquitination and proteasome
degradation of the Toll receptor adaptor protein Cactus, thereby
enhancing AMPs production to clear the pathogens (31). Apart
from the modulation of the ubiquitin system by the host during an
immune response, some pathogens also exploit or interfere with the
host ubiquitin system to replicate and escape immune surveillance
(80). For example, the NleL ligase (Non-Lee encoded effector ligase),
a virulent protein of enterohemorrhagic Escherichia coli (EHEC),
acts as an E3 ubiquitin ligase that ubiquitinates the Lys68 of human
c-Jun NH2-terminal kinases (JNK), which results in the
dephosphorylation and deactivation of JNK to enhance EHEC
infection (81).

In shrimp, few studies have explored ubiquitination as an
immune response to invasion by pathogens other than viruses.
Nonetheless, transcriptomic analysis of hemocytes from
lipopolysaccharide (LPS) treated P. vannamei revealed the
upregulation of some ubiquitin-proteasome pathway genes
including ubiquitin, ubiquitin-conjugating enzyme E2C,
ubiquitin-conjugating enzyme H1 and ubiquitin-conjugating
enzyme H5b (82). Similarly, ubiquitin-related genes, such as
ubiquitin, ubiquitin-activating enzyme E1, ubiquitin-conjugating
enzyme E2, various E3 ubiquitin ligases and deubiquitinating
enzymes, were significantly changed in the transcriptome of
hemocytes from P. vannamei infected with acute hepatopancreas
necrosis disease (AHPND) V. parahemolyticus (Figure 3) (83).
Significant changes in the expression of ubiquitin-mediated
pathway genes have also been found in the transcriptomic study
of hemocytes from V. parahaemolyticus infected mud crab S.
paramamosain (84). All these studies indicate a strong association
between the ubiquitin system and bacterial infection in
crustaceans. Although there is currently no sufficient evidence
in penaeid shrimps relating the use of the ubiquitin system by
host to clear invading bacteria or it being hijacked by pathogens
to invade immune clearance, a number of studies including in
vivo knockdown of the E3 ubiquitin ligase Pellino in P. vannamei,
have shown decreased AMPs production and increase shrimp
mortality upon V. parahaemolyticus challenge (85). This suggests
that PvPellino plays a positive role in the antibacterial response
in shrimp. However, the specific role of Pellino in shrimp
antibacterial response and its ubiquitinated substrate has not
been reported. In any case, Pellino proteins are involved in the
TLR signaling pathway, acting as conserved scaffold proteins
and also function as an E3 ubiquitin ligase (86, 87). In mouse
macrophages, Pellino is induced by LPS stimulation, thus
promoting the ubiquitination of TANK-binding kinase 1
(TBK1) and TRAF6 to regulate the TLR signaling pathway
(88). Similarly, Pellino can also interact with and ubiquitinate
MyD88 to maintain innate immune homeostasis (89). All these
pieces of evidence can be used as references to explore the
ubiquitinated substrates of Pellino and its response to micro
organisms in shrimp (Figure 4).

Prokaryotes have acquired a complex system for hijacking host
cells in evolution. As much as most bacterial genome components
Frontiers in Immunology | www.frontiersin.org 5
are used for host infections (91), some bacterial proteins can
modulate the host’s immune response as E3 ubiquitin ligases. For
instance, in mice infected with Shigella flexneri, bacterial E3
ubiquitin ligase invasion plasmid Ag H (IpaH) protein IpaH4.5
promotes K48-linked polyubiquitination of TBK1 for degradation,
which inhibits IFN production and contributes to bacteria
colonization (92). The ubiquitin-like protein NEDD88 in
Drosophila modifies Cullin family. The effector protein Cif,
derived from EHEC, deaminates NEDD8, thus disrupting Cullins’
modification, which leads to accumulation of cell cycle regulatory
factor and cell cycle retardation of the host (93, 94). In addition, 5’
expressed sequence tags (ESTs) analysis of Perkinsus marinus, a
protozoan parasite of the eastern oyster Crassostrea virginica,
revealed ubiquitin-specific proteases, which are thought to be
involved in the degradation of host protein substrates to obtain
normal cell function and proliferation necessary for nutrition (95).
Ubiquitin components, proteasome, and autophagy pathway are
involved in the defense of C. elegans against microsporidian
Nematocida parisii infection (96). Thus far, no bacterial proteins
or proteins from other pathogens have been identified as E3
ubiquitin ligase or found to interfere with the ubiquitin system in
shrimps to mediate immune response. It, therefore, indicates that
few studies have explored ubiquitination as an immune response
feature of shrimp to bacteria, fungi, or other parasites infections.

Besides microbes, environmental factors, such as temperature
and ammonia nitrogen stress, can directly affect protein
modification. For instance, phosphorylation of p38MAPK in gills
of P. vannamei increased rapidly under acute cold stress (97).
Under chronic low-salinity stress, the acetylation of histone H4
changed significantly in the hepatopancreas of P. vannamei (98).
In P. monodon, the expression of ubiquitin-conjugating enzyme
E2 increased significantly in muscle but decreased in gut tissue in
response to low salinity stress (99). Moreover, ubiquitin-related
proteins, oxygen-free radicals, and oxidative stress-related
proteins all changed significantly under long-term low salinity
stress in the hepatopancreas of P. vannamei (100), which suggest
that changes in the ubiquitination pathway in shrimp may be
related to detoxification and immunity (100). It has also been
reported that environmental factors affect the survival and
proliferation of microorganisms. For instance, water
temperature changes could promote Vibrio abundance in
aquatic environments (101, 102). Similarly, low salinity levels
could decrease the immune response of P. vannamei and
attenuate their resistance to pathogens (103). As discussed in
this short synthesis, microbial invasion could elicit host immune
response via the ubiquitin system in penaeid shrimp. It is
therefore conceivable that aquatic environmental factors such
as temperature and salinity could also impact on ubiquitination
thereby directly or indirectly affecting microorganisms and their
interaction with hosts.
SUMMARY AND FUTURE PERSPECTIVE

Aquatic pathogens are still a threat to shrimp aquaculture.
Ubiquitination regulates many biological processes in cells,
May 2021 | Volume 12 | Article 697397
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including host immune response to pathogens. The synthesis
presented in this paper provides a snapshot of ubiquitination as a
host-pathogen immune response strategy in shrimp. Most
current studies have shown that microbial infection of shrimp
could induce ubiquitination through ubiquitin-conjugating
enzymes, ubiquitin ligases, or ubiquitinated substrates (64, 85,
104). On the one hand, the ubiquitin system in shrimp could be
exploited as a mechanism to resist pathogen invasion or annexed
by microbial pathogens for replication and survival. For instance,
WSSV viral proteins WSSV277 and WSSV304 are ubiquitinated
by FcUbc, thereby inhibiting WSSV replication in Chinese white
Frontiers in Immunology | www.frontiersin.org 6
shrimp F. chinensis (59), while ubiquitination of b-catenin in
shrimp promotes viral replication (61). Pathogens can also
exploit the ubiquitin system for their benefit. Some viral
proteins act as E3 ubiquitin ligases to promote viral infection
and survival using the host ubiquitin system. The RING proteins
of WSSV, including WSSV199, WSSV222, WSSV249, and
WSSV403, could serve as E3 ligases to coopt the ubiquitin-
proteasome pathway of shrimp for viral replication (74, 76, 104).
Furthermore, WSSV249 acts as an E3 ligase through interaction
of ubiquitin-conjugating enzyme E2 for viral pathogenesis in P.
vannamei (105). Besides, the ubiquitination pathway might also
FIGURE 3 | |eat map showing changes in the expression pattern of ubiquitin-related genes in penaeid shrimp (Penaeus vannamei) hemocytes infected with
V. parahaemolyticus and V. parahemolyticus (AHPND strain). The numbers represent Log2 fold change. Hemocytes samples were pulled from 30 individual shrimps
(n=30). Data used for the figure was culled from the transcriptome data of (83).
May 2021 | Volume 12 | Article 697397
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be related to detoxification and shrimp immunity with salinity
stress (100).

Although an increasing number of studies show that
ubiquitination plays a vital role in immune response to
pathogens, the detailed mechanisms and key players have not
been elucidated in penaeid shrimps. For instance, the E3
ubiquitin ligases of some ubiquitinated proteins have not been
identified. Although ubiquitination of Pvb-catenin is reported to
inhibit WSSV replication, the corresponding E3 ubiquitin ligase
of Pvb-catenin in shrimp remains unknown. Furthermore, it is
unclear whether penaeid shrimp b-catenin also requires
phosphorylation to initiate the ubiquitination process as in
mammals. Besides, if phosphorylation of b-catenin does occur
in shrimp, whether the regulation of phosphorylation and
ubiquitination modification affects the antimicrobial immune
function of b-catenin remains to be delineated. Currently, the
specific functions of some identified E3 ubiquitin ligases in
shrimps remains unknown. For instance, while the E3
ubiquitin ligase activity of PvTRIM9 in P. vannamei has been
demonstrated, PvTRIM9 involvement in shrimp antiviral and
antibacterial response is still unknown. Most reports on the
relationship between ubiquitination and immune response in
Frontiers in Immunology | www.frontiersin.org 7
penaeid shrimp have mainly focused on WSSV infection.
However, numerous studies have established links between
ubiquitination and immune response to several pathogens in
other species. For example, depletion of the E3 ubiquitin ligase
TRIM62 in mice increases their susceptibility to fungal infection
(106). Similarly, TRIM8 (47) and TRIM32 (72) are found to
inhibit the replication of DNA (e.g., SGIV) and RNA (e.g.,
RGNNV) viruses in E. coioidest. Treating human peripheral
blood mononuclear cells (PBMCs) with the proteasome
inhibitor MG132 inhibits the ubiquitin-proteasome system and
attenuates the replication of Plasmodium falciparum (107).

Given that the ubiquitin-proteasome system is conserved, it is
conceivable that ubiquitination also serves as an immune
response strategy to fungal and parasite infections in shrimp.
Studies could therefore explore the significance and relevance of
ubiquitination in penaeid shrimp immune response. A better
understanding of the specific role of ubiquitination in host-
pathogen interaction as an immune response strategy in
penaeid shrimps would provide new avenues for improving
shrimp immunity and, therefore, disease prevention. Some key
components of the ubiquitin system, such as E1, E2, E3, and the
ubiquitinated substrates, could be explored as potential targets to
FIGURE 4 | The E3 ubiquitin ligase Pellino plays a positive role in shrimp antibacteria response. Pellino acts as a conserved scaffold protein and E3 ubiquitin ligase
in the TLR signaling pathway. (1) Pellino promotes the K63-linked ubiquitination of TARF6 (88). (2) In addition, Pellino can ubiquitinate MyD88 for degradation to
negatively regulate TLR signaling and maintain innate immune homeostasis (89). Pellino can also interact with Pelle in shrimp. The expression of Pellino is up-
regulated upon pathogens stimulation, and to increase the activity of Dorsal, thus enhancing AMPs expression with V. parahaemolyticus challenge (85), in which
Dorsal is also involved in defense against gram-positive bacterial in S. paramamosain (90). However, the ubiquitinated substrates of Pellino in shrimp (such as
whether MyD88 is ubiquitinated) is currently unknown.
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enhance shrimp immunity or treatment (108). Focused studies
on the interplay between the ubiquitin system of penaeid shrimp
and microbial pathogens would help unravel the molecular
mechanism of shrimp immune response and how resistance to
pathogens can be improved, which is vital for the development of
penaeid shrimp aquaculture industry.
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