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T cells play a key role in determining allograft function by mediating allogeneic immune
responses to cause rejection, and recent work pointed their role in mediating tolerance in
transplantation. The unique T-cell receptor (TCR) expressed on the surface of each T cell
determines the antigen specificity of the cell and can be the specific fingerprint for
identifying and monitoring. Next-generation sequencing (NGS) techniques provide
powerful tools for deep and high-throughput TCR profiling, and facilitate to depict the
entire T cell repertoire profile and trace antigen-specific T cells in circulation and local
tissues. Tailing T cell transcriptomes and TCR sequences at the single cell level provides a
full landscape of alloreactive T-cell clones development and biofunction in alloresponse.
Here, we review the recent advances in TCR sequencing techniques and computational
tools, as well as the recent discovery in overall TCR profile and antigen-specific T cells
tracking in transplantation. We further discuss the challenges and potential of using TCR
sequencing-based assays to profile alloreactive TCR repertoire as the fingerprint for
immune monitoring and prediction of rejection and tolerance.
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INTRODUCTION

Tcells recognize antigens through their TCRs binding to antigen-presenting cells (APCs) surface peptide-
major histocompatibility complex (pMHC) (1). The binding will result in changes in the CD3 molecule
complex and initiate downstream signaling pathways, which are called TCR triggering. Subsequently,
cells with foreign or self-mutated pMHC will be distinguished and eliminated by T cells (2, 3).

The T-cell repertoire covering the enormous foreign and self-mutated antigens is achieved via highly
polymorphic TCRs (4, 5). As the determining factor of antigen-specificity and the potential of being used
as the molecular identifiers of T cells, TCRs receive special attention in many fields of diseases, such as
infectious diseases, autoimmune diseases, and malignant tumors (5–7). In immune processes, TCR
repertoire analysis provides information on the T cells dynamics with respect to diversity and clonality.
The characterization of TCR repertoires in transplantation can depict the T-cell dynamics at multiple
timepoints, and recipient or donor antigen-specific TCR repertoires can be used for fingerprint
recognition in tracing the alloresponse and assisting with diagnosis and treatment.
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T CELLS IN TRANSPLANTATION

During the T cell selection process in the thymus, the affinity
between TCRs and self-pMHCmolecules play a central role. Only
those T cells with appropriate binding affinity with self-MHC and
do not recognize self-antigen will survive in the positive and
negative selection. This is the basis of T cell distinguishing foreign
antigens from self-antigens (8, 9).

Following the upregulation of S1P1, TN(naïve T cell) cells enter
the periphery via lymphatics or blood vessels (10), and express a
series of typicalmolecules, including CD62L and CCR7, which are
necessary for the subsequent trafficking of TN cells between the
secondary lymphoid organs (11, 12). After being exposed to
antigens, TN cells have no immediate effector functions. The
activation and proliferation of TN cells depend on signals. The
first signal is received through TCR engagement with pMHC
complexes and the second signal is relayed through costimulatory
receptors, of which CD28 is dominant. After the signals cross the
activation threshold, TN cells are activated, and will initiate clonal
expansion and effector differentiation to acquire capacity to
eliminate target cells by recognizing the alloantigen. A small
portion of the T cells can differentiate into long-lived memory
cells. When encountering the same antigen again, memory T cells
can be activated with limited co-stimulation signal and respond to
lower doses of antigen compared with TN cells (13, 14). Actually,
the memory T-cell repertoires in adult human contain high
frequencies of pre-existent alloreactive memory T cells that are
able to infiltrate the graft rapidly and cause rejection through
alloresponse (14–16). These alloreactive memory T cells, mainly
CD8 T cells (17), can locate within the lymph nodes (central
memory T cell, TCM), peripheral non-lymphoid tissues (resident
memory T cell, TRM), or periphery (effector memory T cell, TEM)
and stay resting until they encounter the same antigen again post-
transplantation. Through quantitative analysis of alloresponse in
vitro, up to 10% of peripheral T cells were considered potentially
alloreactive (18, 19).

There are many mechanisms for the generation of pre-existing
alloreactive memory T cells before transplantation. Humans
exposed to alloantigens through previous transplantation, blood
transfusion, or pregnancy may produce alloantigen-specific
memory T cells (20–22). Without contact with allogeneic MHC
molecules, the exposure to commensal bacteria or environmental
antigens is also probably to induce potent heterologous immunity,
which is one way for the generation of alloreactive memory T cells
(23, 24). Many studies have identified that alloreactive T-cell
clones can also stem from other immune events (25, 26), such
as dozens of virus-specific (CMV, EBV, Flu, HIV, Zika Virus,
SARS-CoV-2) memory T cells that show cross-reactivity to
allogeneic pMHC complexes (27–32). Thereby, these memory T
cells can also pre-exist in the host even if they have not previously
encountered donor-derived antigens.

A series of studies have indicated that both naïve and memory
alloreactive T cells are the mediators of the alloreactive immune
response in transplantation (33, 34). They make contribution to
both acute and chronic rejection episodes depending on the
pathway recognizing donor antigens (35, 36). Host T cells
Frontiers in Immunology | www.frontiersin.org 2
recognizing processed donor allogeneic peptides presented by
host MHC is indirect allorecognition (37). Allogeneic T cells
that recognize nonself MHC molecules from the same species
are also responsible for the alloresponse in allotransplantation,
called direct T-cell allorecognition (38). In some settings, intact
donor MHC can be transferred to the surface of recipient APCs,
activation of recipient allogeneic T cell by the engagement of
recipient TCRs with this donor-derivedMHC on recipient APC is
called semidirect pathway (39, 40). Direct pathway responses are
considered strong but only last a short time and likely mediate the
acute rejection, whereas indirect pathway responses are viewed as
be more long-term and responsible for mediating chronic
rejection. These pathways may be involved in mediating
allograft rejection at the same time or at different times. During
the process of transplantation, both alloreactive naïve T cells and
pre-existing memory T cells are exposed to high and long-lasting
alloantigen loads to mediate rejection through direct and indirect
pathways. Indirect pathway-mediated rejection largely depends
on the TN repertoire, while direct pathway-mediated rejection
involves both naïve and memory T cells (41). Oberbarnscheidt
et al. reported that TEM played an important role in immune
surveillance of grafts and had no need to return to secondary
lymphoid tissues to differentiate for effector functions in mouse
model (42). In humans, through measuring peripheral T cells
from healthy donors based on flow-cytometry, Macedo and
colleagues reported the proliferation rate of CD4+ and CD8+ TN

cells under the stimulation from allogeneic cells was similar with
theirmemory counterparts in vitro (43). Similar findings were also
reported in mouse model for direct allorecognition by naïve and
memory T cells (44, 45).

Although the contribution is small, alloreactive T cells can
also derive from dual TCR T cells with two distinct TCR a chains
that give one T cell two distinct antigen-specificities and double
the chance of antigen recognition (46, 47). In studies of mice, it
has been shown that dual TCR T cells have a high frequency of
alloresponse (48). In acute graft versus-host disease (GVHD)
patients, the frequency of dual receptor T cells is 5.3 times higher
than that in healthy controls (49).

To suppress rejection or to induce tolerance, treatment is
usually targeted at both naïve and memory T cells. Long-term
administration of immunosuppressive drugs after transplantation
is the most common therapeutic option for depleting naïve and
memory T cells or preventing their full activation for acute cellular
rejection (ACR). A similar effect can be induced by alloreactive T-
cell exhaustion. Long-term or large loads of foreign antigen
exposure to T cells may lead to antigen-specific T-cell
exhaustion (50). During the first 6 to 12 months post-
transplantation, the faltering demand for immunosuppressive
therapy as well as the decline in the incidence of ACR coincided
with the increase in the frequency of exhausted T cells (TEXH) (51).
Fribourtg et al. demonstrated that TEXH development was
correlated with better clinical outcomes (52). Another way to
induce tolerance is through the adoptive transfer of regulatory T
cells (Tregs). Tregs are a suppressive subset of T cells and can
inhibit the function of conventional T cells and other immune
cells (53), and have been well demonstrated to induce tolerance in
January 2022 | Volume 12 | Article 778559
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various types of transplantations (54–57). For example, in solid
organ transplantation clinical trials, polyclonal Tregs had been
proved to be safe and effective in alloresponse repression. Antigen-
specific Treg therapies, such as Treg engineered with antigen-
specific TCRs (TCR-Tregs) and chimeric antigen receptor (CAR)-
modified Tregs (CAR-Tregs), further overcame the shortage of a
limited number of ex vivo Tregs expansions by performing the
suppressive function in a more effective and antigen-specific way
on alloreactive T cells (58–60).
TCR IN ALLORESPONSE

The specificity of T cells is determined by their TCRs (4, 61).
The TCR consists of two distinct chains. For human beings, the
overwhelming majority (95%) of circulating T cells express
TCRs composed of an a chain and b chain. And there is a small
subset, the TCR of which is composed of a g chain and d chain
(62, 63) (Figure 1A). ab T cells are the central mediators of the
adaptive immunity with great diversity, recognizing antigens
presented related to MHC Class I and II proteins. To cover a
wide range of potential pathogens and harmful substances,
billions of unique TCR molecules need to be generated in vivo,
and this extraordinary heterogeneity of TCRs is achieved
through their variable region. Both chains of TCRs include a
highly variable complementarity determining region 3 (CDR3),
which are the binding sites with MHC peptide and mediate
TCR engagement (64). The rearrangement of variable (V),
joining (J), and diversity (D) gene segments and the random
insertion or deletion of nucleotides at the junction of gene
segments leads to generation of variable exons, that is the major
factor contributing to the diversity of TCR sequences (65, 66)
(Figure 1B). The theoretically estimated number of possible gene
combinations generated during the lifespan of human beings is
1015 to 1020 (67).

V(D)J recombination influenced by both genetic and
epigenetic factors leads to the formation of pre-selection TCR
repertoire (68, 69). During the thymus selection, the TCR
repertoire will be selected by self-MHC ligand and antigen.
Thymic selection will purge the majority of clonotypes and
only a few T cells that are granted access to the periphery to
make up the naïve TCR repertoire. T cells selected by self-
MHC, and clones bearing TCRs within additional affinity to
allo-MHC will not be removed during this process. Thus, the
process initially shapes a naïve T cell repertoire containing T cells
that have the potential of interacting with allo-antigen/
MHC (Figure 1C).

Moreover, recent experimental evidence also supports that
each T cell has the potential to interact productively with more
than one pMHC complex (70). The cross-reactivity of TCRs on
specificity not only provides potential immune coverage but also
increases the risk for transplant rejection. The clones from
antigen-experienced TCR repertoire could also be involved in
alloresponse (Figure 1C). Distinct pMHC complexes could have a
similar surface conformation due to the shared conformation
between MHC molecules and peptides. Therefore, allogeneic
Frontiers in Immunology | www.frontiersin.org 3
pMHC could be recognized by TCRs through imitating the
unique features of peptides presented by self-MHC (71). The
overlap between alloreactive clones and known public virus-
reactive clones has been proved by the shared TCR sequences of
them. And crystal structures have shown that due to the plasticity
of the CDR loops, TCR could adapt to structurally diverse pMHC
ligand by small conformational changes or rearrangements of its
central CDR loops, this recognition can be driven by unique
features of both the peptides and allo-MHCmolecules (64, 72, 73)
(Figure 1D). Recent in vivo finding dictates that the self-peptides
bound to a handful of allogeneic MHC-peptide complexes
account for a large proportion of the alloresponse, and the
complex of self-peptide and allo-MHC molecule plays a critical
role in transplant tolerance induction (74).

Many examples of TCR bias have been observed in various
diseases. Based on the CDR3 sequences, the T cell clones within
different tissues, timepoints, individuals, and even species are able to
be traced and quantified (75, 76).The analysis of total CDR3 lengths
and distribution has been adopted to measure the degree of
clonality and diversity of T cells during the immune response.
Certain clonal expansion and reduction also exhibit T cell-mediated
immune responses caused by specific antigens (77). In addition,
these sequences can be identified by matching with a reference
antigen-specific TCR repertoire (78). The unique TCR repertoires
are used as the fingerprints to monitor immune status and
predict response.

Through one-way mixed lymphocyte reaction (MLR) using
responder and stimulator cells from different individuals,
Emerson et al. first characterized the alloreactive TCR
repertoire in healthy adults (79). However, there is no unique
CDR3 length or gene usage in alloreactive T cell populations
compared with other non-alloreactive clones, which means
that there may not be a unique feature of the alloreactive
TCR repertoire. Although there was a small amount of highly
abundant clones in the alloreactive clones, likely memory
clones, the frequencies of most alloreactive clones in
circulation were at naïve levels, which further supports the
high diversity of alloreactive TCR repertoire. Indeed, the TN

repertoire does have a far higher diversity compared to the
memory counterparts (80, 81), as the repertoires of memory T
cells have contracted due to the previous clonal expansion,
while the naïve pool has not been exposed to antigens and are
less affected. Therefore, it is understandable that the repertoire
of unprimed TN cells has better coverage of allogeneic pMHC.
Moreover, another in vitro experiment showed that the
alloreactive TCR repertoires in the same recipient were
disparate when the donor antigens were from two individuals
(19, 82).

Unlike some pathogen antigen-specific TCR repertoire which
has a preferential usage of V and J gene segments and dominant
CDR3 length (83), the lack of uniform feature and the diversity
of the alloreactive CDR3 hinder the characterization of
alloreactive TCR repertoire. Fortunately, TCR sequencing
combined with in vitro MLR that proved to be reliable and
sensitive opens up a new way for annotating alloreactive TCR
sequences and capturing alloresponse (79).
January 2022 | Volume 12 | Article 778559
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HIGH-THROUGHPUT TECHNOLOGY
REVOLUTIONIZED METHODS FOR
MEASURING ALLORESPONSE

To characterize antigen-specific T cells in human tumors,
infectious diseases, and transplantation, various low-
throughput methods have been proposed and developed (84).
Frontiers in Immunology | www.frontiersin.org 4
However, these low-throughput methods screen a limited
number of T or B cells against a few antigens at one time (85).

Monoclonal antibodies against the Vb chain of TCRs to
describe the T-cell repertoires at the protein level, which
enabled qualitative and quantitative determination. However,
limited to the types of antibodies with specific recognition site,
this method offers less coverage and it does not reveal any
B

C

D

A

FIGURE 1 | (A) ab TCR consists of a and b chain, gd TCR is composed of g and d chain. Each subunit has constant regions and variable regions that are site of antigen
recognition. (B) V, D, and J gene segments are progressively rearranged to form the final DNA sequence. This variability is further increased by deletion and insertion of
nucleotides at the junction sites. After transcription, the sequence between the recombined V(D)J regions and the gene encoding the C region will be spliced out. V gene
encodes CDR1 and CDR2, whereas junction of the V(D)J genes encodes CDR3. (C) Pre-selection TCR repertoire is stochastic and diverse. Thymic selection purges most of
clones and shapes the naive TCR repertoire which contains alloreactive clones. Antigen exposure leads to clonal expansion of antigen-specific T-cell clones that may also have
the potential of the cross-recognition with allo-antigen/MHC. (D) Allo-MHC could be recognized by host-TCR through imitating the unique features of host-pMHC complex.
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information on CDR3 diversity (86, 87). The distribution of CDR3
sequence length in the entire T-cell repertoire was first exhibited
through CDR3 spectratyping (88). And Sanger sequencing was
applied tomeasure the TCR repertoire at the gene level and describe
it in more detail (89, 90). But it was not enough to determine the
diversity of the entire TCR repertoire, because only a few high
sequences could be captured to construct the library (91).

NGS technology has made significant progress in the field of
TCR analysis (92, 93), which introduced high-throughput, and
ultra-sensitive techniques to provide detailed information of the
TCR arrangement including V, D and J segments and the full
sequence of CDR3 (94, 95). This high-resolution method is
capable of capturing clones at extremely low frequencies. It
enables to deeply profile the TCR repertoire and fully reveals
the clonotype composition of T cells (96). NGS technology are
able to not only monitor the TCR repertoire of a single individual
on serial samples over time, but also achieve a quantitative
comparison of the repertoires between two or more individuals
(97). NGS improves sensitivity, reduces sequencing costs, and
allows for monitoring of the immune response in large queues
and at continuous timepoints.

Current high-throughput sequencing techniques that use
genomic DNA (gDNA) or RNA as starting materials to construct
a TCR repertoire have advantages and limitations, and the optimal
choice depends on the study of interest (Figure 2A). Approaches
based on gDNA employ multiplex amplification, a set of forward
PCRprimers complementary to all possible V segments and a set of
reverse primers complementary to the J segments (98, 99). gDNA is
stable, and there is only one copy of single gDNA in each cell to
encode TCR. Therefore, gDNA-based methods allow for directly
quantifying the frequencies of alloreactive clones and avoid the
discrepancy in transcription levels introduced by the different
activation states. In addition, initiating with gDNA skips the
process of reverse transcription, that also reduces errors caused in
cDNA synthesis (98). But allelic exclusion would be not considered,
leading to the result that the diversitywill be overestimated. And the
multiplex PCR would add unavoidable amplification bias, that will
interfere with the quantification of TCR sequence in the original
gDNA and lead to the distortion of frequencies. RNA-based
methods lean on 5′ rapid amplification of cDNA ends (RACE),
which requires a fewer rounds of PCR to reduce amplification bias
(98). Unique molecular identifiers (UIDs) strategy can also be
applied to further reduce PCR error to achieve absolutely
quantify (100, 101). Employing RNA as staring materials
potentially enables to obtain the complete V and J gene
sequences and provides information at nucleotide level. But
RNA-based methods tend to reflect the level of gene transcription
more than the absolute original cell count, and it requires high
amount and quality of the starting material.

When extracting gDNA or RNA to derive informative
repertoires from solid tissues or body liquids with T cells, only a
small part of the sequence reads come from T cells and could
correspond to TCR, so even a very high sequencing depth will
cause a loss of information. Furthermore, the comparison of TCRs
in different T cell subpopulations would reveal important insights
into the T cell subset function, that are occluded in bulk TCR
analysis. FACS sorting combined with deep TCR sequencing
Frontiers in Immunology | www.frontiersin.org 5
could enrich T cells from tissue samples or directly obtain
certain T cell subgroups to facilitate more comprehensive and
detailed TCR analysis (102–104). According to specific surface
markers or dye, FACS sorting can also be applied to isolate
alloreactive T cell subsets with cytotoxic function and particular
cytokine production patterns (Figure 2B) (82, 105, 106).

The recent development of single-cell sequencing allows the
transcriptomes of more than tens of thousands of cells to be
processed simultaneously (107, 108). The combination of TCR
sequencing and gene expression provides new insights into role
of alloreactive T cells in alloresponse (109, 110). The total
transcriptome information of a single cell can be collected and
further be matched with the TCR sequence by the identical
barcode sequence. In this way, each alloreactive T-cell clone can
be traced through TCR and the function and development can be
analyzed by gene-expression within cell (111, 112) (Figure 2C).
Approaches based on single-cell could also obtain pairing
information of the a chain and b chain to increase the ability
to discover heterogeneity (102, 113, 114).

Now these approaches are widely used for characterizing the
TCRs pairing and clonality and have been employed to the
analysis of T-cell repertoire in various physiological or
pathological states (115), including the monitoring of
alloresponse by profiling total TCR repertoire dynamics and
antigen-specific T cell repertoire. TCR sequencing at bulk and
single-cell level allows for the more in-depth investigation of the
alloreactive T cell repertoire and potential translation to
clinically applicable tools.
IMMUNOLOGICAL CHARACTERISTICS
OF THE OVERALL TCR REPERTOIRE
IN TRANSPLANTATION

Following transplantation, pre-existing alloreactive T cells are
activated and clonal expanded by alloantigen from the graft. The
accumulation of alloreactive T cells were observed in graft
rejection (116, 117), which causes the recipient overall TCR
repertoire skewed by predominant clones arising from
alloresponse, and the deletion or absence of alloreactive T cells
was proved in recipients within long-term graft acceptance (50, 74,
118). Therefore, information about the overall TCR repertoire
would reveal the immune states of recipients after transplantation.

The changes of the diversity in the overall TCR repertoire
of recipients with different clinical outcomes have been
researched to reflect the T cells dynamics after solid organ
transplantation (119, 120). In kidney transplantation clinical
trial studies, the TCR repertoires of rejected patients were
skewed related to the level of transplant lesions classified by
Banff classification, while the TCR repertoires of operational
tolerance patients exhibited less skewed and maintained
diversity (121, 122). However, these studies only characterized
the most abundant clones owing to the application of low-
throughput techniques, while ignoring most of the subdominant
and low-frequency ones. Methods based on the high-throughput
bulk TCR sequencing provide higher sequencing coverage results
January 2022 | Volume 12 | Article 778559
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to depict the entire T-cell repertoire, including TCR repertoire
structure, turnover, clonality, and diversity at time points before
and after transplantation.

By using the high-throughput bulk TCR sequencing method,
research revealed combined kidney and bone marrow
transplantation (CKBMT) recipients have a higher repertoire
turnover rate than non-rejective traditional transplant recipients,
which is consistent with the more effective donor-reactive T cells
depletion treatment under CKBMT conditions (123). The diversity
of CD4 T cells in CKBMT rejected recipients exhibited decreased
tendencies after transplantation, while the diversity in tolerant
recipients returned to the pre-transplantation levels. There was no
difference in the diversity of CD8 T-cell repertoires was observed
between groups.

In a kidney transplantation study, Alachkar et al. observed
the TCR repertoire of transplant patients was relatively
Frontiers in Immunology | www.frontiersin.org 6
restricted compared with the healthy donor, which may be
related to their pathology. A rapid turnover of the TCR
repertoire in circulation during T cell-mediated rejection
(TCMR) was reported (124), which was absent in non-TCMR
patients. Additionally, the TCR repertoire of peripheral blood
was highly related to that of graft during rejection suggests that
noninvasive blood-derived TCR analysis has the potential to
detect renal transplant rejection.

In liver transplantation (LTx), the diversity of TCR sequences
was significantly decreased when acute allograft rejection occurred
compared to the patients with stable allograft liver function and
healthy controls, which was similar to renal transplantation (125).
TCR repertoire of patients undergoing rejection appeared to have
short N-additions, which may imply the recombination diversity of
CDR3 during rejection. For most recipients, the diversity of TCR
repertoires changed after transplantation. The overall clonality in
B

C

A

FIGURE 2 | (A) DNA or RNA are extracted from body liquid, normal and pathologic tissues, and amplified for high-throughput sequencing technologies. (B) TCR
sequencing combined with FACS facilitate the alloreactive TCR analysis at the bulk level. (C) Single-cell RNA seq combined with TCR sequencing tails the
transcriptomic description and clonal dynamic of alloreactive T-cells clones.
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CD8 T cells was also higher than that in CD4 T cells post-LTx,
which was consistent with pre-LTx (105).

During GVHD, TCR deep sequencing analysis shows highly
skewed T-cell repertoires of tissues, which matches the oligoclonal
expansion pattern in previous studies about TCRs (126, 127).
These T cells distribute differently from tissue to tissue in a patient,
and the T cells infiltrated within solid tissues are highly individual-
specific. Some studies indicated that the frequencies of clonotype
from tissue and peripheral blood were not related (128, 129), but
Beck et al. indicated that some clonotypes were shared (130). In
fact, the TCR repertoire of peripheral blood is far more diverse and
mixed than local organs, and the tissue-infiltrating T cells in
circulation with low frequencies and in target tissue with high
frequencies could reflect the clonal expansion in target tissues
during GVHD.

In summary, the dynamics of overall TCR repertoires
were related to the immune state post-transplantation,
which possesses the potential to be a reference for clinical
immunosuppression strategies. Additionally, the overall TCR
repertoire profiling provides information about the immune
status of the recip ient on the wait ing l i s t before
transplantation, which might be an indicator of the risk of
rejection or GVHD after transplantation, but this needs further
investigations. In kidney transplantation, the dominant T cell
clones in the graft during TCMR could be detected in the blood
and biopsy earlier, which indicates that the clonal expansion of
alloreactive T cells may be much earlier than the occurrence of
TCMR, and possesses the potential of being used as a biomarker
for early diagnose of TCMR (124). And the entire TCR
repertoires of patients with different clinic outcomes differ in
terms of diversity index, physical and chemical properties, and
turnover rate. These changes of TCR repertoires before or during
TCMR indicate the potential of TCR repertoire to predict the
rejection as a biomarker. However, the entire TCR repertoire
analysis only provides information for the T-cell repertoire and
leaves the antigen-specific T-cell clones profiling concealed.
MONITORING THE T CELL-MEDIATED
ANTIGEN-SPECIFIC ALLORESPONSE
BY TCR SEQUENCING IN
TRANSPLANTATION

Through tracking unique TCRs in tissues and body fluids, the
expansion or reduction of antigen-specific T-cell clones can be
quantified (131, 132). In the context of transplantation, tracking
and monitoring graft versus host (GVH) and host versus graft
(HVG) alloreactive T cells before and after transplantation in the
peripheral blood, bone marrow (BM), and graft allows for a
comprehensive view of the T-cell mediated alloresponse. And
immunodominant clonotypes in target tissue have also aroused
interest as surrogate markers for the T-cell mediated immune
response in transplantation (130). Nevertheless, antigen
specificity of alloreactive T-cell clones in transplantation varies
from patient to patient and even from tissue to tissue, which
Frontiers in Immunology | www.frontiersin.org 7
brings great difficulty to determining the individualized
alloresponse for each subject (126, 133).

MLR using donor and recipient cells could be applied to
identify the alloreactive clones of each patient after
transplantation. In renal transplantation, Dziubianau et al.
used donor T cell-depleted peripheral blood mononuclear cell
(PBMC) as stimulators in a short-term MLR with T cells in the
allograft and urine post-transplantation for assessing recipient
alloantigen-specific T cells in these samples (96). They reported
the identification of donor-reactive clones within allografts and
urine was associated with ACR. However, the frequency of these
donor-reactive T-cell clones in these original samples and if it is
related to ACR degree were not reported in this study.

To evaluate the deletion or accumulation of alloreactive T cells
post-transplantation, an antigen-specific TCR repertoire can be
constructed by carboxyfluorescein diacetate succinimidyl ester
(CFSE) MLR combined with TCR-seq to quantify the frequency
of alloreactive T cells. Instead of selecting alloantigen-specific T-cell
clones directly in post-transplant samples as the former study, this
approach obtains the alloreactive library of TCRs with pre-
transplant samples MLR and monitors alloresponse prospectively.
Covalently binding to amines in cells, the CFSE dye in one cell will
divide in half when the cell divides into two, so the fluorescence
intensity of the daughter cell is half of the original parent cell. Based
on the flow cytometric analysis of MLR cultures, the cells that
proliferate in response to allostimulation can be sorted.

Bettens and colleagues obtained the alloreactive TCR
repertoire through a similar one-way MLR strategy and took
bystander expansion during MLR into consideration (82). They
set multiple pairs of responder and stimulator cells from healthy
donors with various HLA combinations to perform MLR
cultures to evaluate the T cell alloresponse in human. After 13
days of MLR, the responder cells were stimulated overnight by
‘PHA blasts’, which was the autologous PBMC without
irradiation and activated with PHA, and then those responder
T cells exhibited activated phenotype in the second step of MLR
with these autologous cells were subtracted from the allogeneic T
cell pool as the bystander component. After this two-step MLR,
the CD8+CD137+ subpopulation was purified and sequenced as
alloreactive activated cytotoxic CD8+ responder T cells
(Figure 3A). In this study, either one responder cell stimulated
with two individual HLA identical healthy donor stimulator cells,
or two individual responder cells from two donors stimulated
with one stimulator cell, resulted in disparate alloreactive T-cell
clones. This study highlighted the necessity of personalized
alloreactive T-cell library construction.

Using a similar strategy, Zuber and his colleagues constructed
both HVG and GVH repertoires and deleted the bystander clones
by excluding 4-fold less proliferative clones in MLR compared with
the original responder cell sample clone frequency. By these HVG
andGVH libraries, they investigated the recipient TRM replacement
in graft after intestinal transplantation (ITx) and confirmed that the
rate of donor TRM turnover in the graft is influenced by two-way
alloreactivity (117). GVH reactive clones that were enriched and
persisted for long time in the graft were correlated with reduced risk
of rejection. In contrast, rejection occurred when HVG reactive
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clones dominated in the graft and accelerated theTRM turnover, and
these clones acquired a kind of steady tissue-resident phenotype.
Moreover, the expanded GVH reactive T cells protecting the
allograft against rejection have been shown by profiling GVH
clones transcriptomes using single-cell RNA sequencing
combined with TCR sequencing to demonstrate a cytotoxic
effector phenotype (116). They attacked recipient hematopoietic
cells and make space in the BM, resulting in the long-term
engraftment of donor-derived hematopoietic stem and progenitor
cells (HSPCs) to the BM and finally inducing central tolerance
which led to the durable chimera (134). By identifying HVG and
GVHclones within the allograft, PBMC and BM, themechanism of
tolerance induction through GVH T cells was well demonstrated.

Based on the same method, Morris et al. detected fingerprints
of the alloreactive T cell in CKBMT using pre-transplant materials
(123). Through deep-sequencing of proliferating recipient CD4
and CD8 T cells after 6 days of MLR with donor lymphocytes as
stimulators, the author obtained a mappable HVG reactive T-cell
repertoire library and track these HVG clones as alloreactive T-cell
clones after transplantation (Figure 3B). The result suggested that
the dominant donor-reactive clones in in vitro MLR culture were
Frontiers in Immunology | www.frontiersin.org 8
most likely to expand post-transplant. By evaluating expansion or
deletion of clones, reduction of circulating HVG reactive T-cell
clones was observed in tolerant patients, while HVG clones were
observed in nontolerant recipients, which suggested that
elimination of HVG reactive T-cell clones appeared to be a
mechanism of allograft acceptance in CKBMT patients. In
contrast, kidney transplant recipients receiving conventional
immunosuppression showed a persistent proliferation of HVG
reactive T-cell clones in circulation following transplant. Similar
results were observed in intestinal transplantation. The number of
donor-reactive TCRs within the circulation of intestinal allograft
recipients after transplantation increased (117). The successful
identification of relevant donor-reactive clones following
transplantation by pre-transplant MLR indicated that this
method is reliable in identifying alloreactive T cells.

Unlike the expansion of circulating HVG reactive T-cell
clones of conventional kidney allograft recipients, even if there
is a lack of demonstrable tolerance, a decrease in circulating
HVG reactive TCRs could be observed in LTx recipients (118).
This may be related to the distinct distribution of T cells between
liver-graft and circulation. This distinct distribution of T cell pool
B

C

A

FIGURE 3 | (A–C) Steps for determining the alloreactive TCR repertoire: Schemes for isolating alloreactive T cells in MLR. (A) CD137 expressing CD8 T cells are defined
as alloreactive cytotoxic T cells. (B) The donor and recipient cells are cocultured as stimulator or responder, and the CFSElow population was defined as alloreactive T cells.
(C) Early activation marker CD154 and GARP expressing CD4 T cells and Tregs after 24 hours of MLR are defined as alloreactive CD4 Teffs and Tregs.
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between liver-graft and bloodwas demonstrated byMederacke et al.
They used a time-saving MLR method by incubating recipient T
cells sample for 24 hours with irradiated donor splenocytes as
stimulators prior to transplantation, and subsequently sorted and
sequenced the CD154 positive cell as alloreactive effector T cells
(Teffs) (105) to construct the HVG TCR library (135, 136)
(Figure 3C). Then they tracked HVG reactive T-cell clones at
multiple time points in blood samples, and reidentified those clones
in the liver biopsies. They found that TCR repertoires in circulation
were distinct from that in liver-graft. But they also found the HVG
clones were more correlated between allo-graft and blood in ACR
patients compared with patients without ACR. They also tracked
HVG Tregs, as glycoprotein A repetitions predominant (GARP)
positive cell in MLR, within the peripheral blood and liver allograft
in four patients with no suspected rejection, and found donor-
reactive Tregs preferred to accumulate in the liver of these patients,
which may be related to their function to suppress immune
responses and prevent rejection (60).

In the field of transplantation, the strategies to accurately predict
and recognize the rejection or tolerance are still lacking. Alloreactive
T cells are considered to take responsibility for the occurrence of
rejection and the failure to induce tolerance. Using an HVG or
GVH TCR repertoire to identify alloreactive T cell clones provides
new insights into T cell mediated allo-response and illustrates the
mechanism of rejection or tolerance in transplantation, and it holds
potentials for clinical usage in the future. Donor-reactive clones
accumulating in the body fluid might be a biomarker for predicting
rejection or GVHD in certain types of transplantation, so tracking
these clones could instruct the personalized immunosuppression in
clinic. The alloreactive TCR repertoire is prospectively and non-
invasive in the prediction and diagnosis of rejection, and has less
inter-observer bias compared to histological sectioning and
staining. The combination of TCR sequencing with FACS soring
or single-cell sequence can enhance posttransplant immune
monitoring and immunophenotyping of alloreactive T cells in a
clinical setting (Figures 2B, C). Additionally, some infections after
solid organ transplantation could cause similar tissue damage like
that in rejection and bring diagnostic challenges, so tracking the
arising of donor-reactive clones referring to an alloreactive TCR
repertoire can contribute to the diagnosis of posttransplant
complications. Moreover, deletion of alloreactive TCRs in the
blood was proved to be related to tolerance induction in certain
types of transplantation, which could serve as a biomarker for the
immunosuppression withdraw. The alloreactive TCR repertoire
may open a new way of evaluating the establishment of immune
tolerance or distinguishing tolerant patients from non-
tolerant patients.

But there are challenges in translating it into clinic. The
construction of alloreactive TCR repertoire is limited by the
pre-transplant material and intensity of MLR. Pre-transplant
MLR for alloreactive repertoire requires both donor and
recipient cells before transplantation, an insufficient number of
pre-transplant cells or too weak MLR may result in too few
identified donor responsive clones. But it still possesses a
potential of clinical application, since 10-20ml of blood can
provide millions of T cells as stimulators or responders, and
Frontiers in Immunology | www.frontiersin.org 9
tens of thousands of alloreactive clones can be obtained using
donor and recipient pretransplant peripheral blood samples as
starting materials. For the analysis of samples with low cell
number, alloreactive T cells from MLR could be expanded in
vitro by an unbiased polyclonal expansion method to get enough
cells for TCR sequencing to construct the alloreactive TCR
library. And NGS is able to analyze alloreactive clones at
extremely low frequencies. Additionally, several factors should
be taken into consideration in alloreactive TCR library
construction. Differences in allogeneic MLR coculture duration
can result in different size and diversity of the alloreactive T-cell
repertoire, since the alloresponse mediated by direct recognition
pathway or indirect recognition pathway often occur at different
periods after transplantation in vivo, and the overlap of TCR
repertoires in these two pathways mediating the alloresponse is
largely unknown in this field. And identifying alloreactive T cells
by early activation markers shortens the time of MLR and can
obtain enough donor-reactive T-cell clones compared with
CFSE-based MLR (105, 118), but the expanded bystander T-
cell clones should be removed from the alloreactive TCR library
(82, 106). Also, the tracking result is limited by the post-
transplant sample size, some patients under pathological
conditions after transplantation, such as lymphopenia caused
by GVHD or certain virus infection, may result in reduced T cell
number in samples, which would cause failure in antigen-specific
T cell clone tracking. Lastly, the different distribution of T-cell
clones between tissues and circulation should be considered to
avoid a skewed TCR repertoire in the starting T-cell repertoire, to
better serve the research purpose by targeting as much as possible
antigen-specific T-cell clones in constructed alloantigen-specific
TCR repertoire.
THE POTENTIAL OF USING
COMPUTATIONAL TOOLS TO
CHARACTERIZE THE TCR REPERTOIRE

Although the biochemical and molecular basis of TCR
recognition of allogeneic peptide/MHC is becoming clearer, the
ignorance about specificities of alloreactive T cells still limits the
biological insights into alloreasponse. Existing computational
tools for alloreactive TCR repertoire annotation allow both
matching against databases of known antigen specificities and
clustering of TCR sequences through algorithms (109). With
these public tools, annotating TCR repertoire data in
alloresponse and integrating alloantigen-specific clones can be
more efficient.

The international Immunogenetics Information System
(IMGT) includes a database that providing reference sequences
for individual gene of T-cell receptors, and annotations of known
gene segments (137). It allows user to submit nucleotide sequences
to identify the V, D and J genes and alleles and characterize
clonotypes. To share data and annotate TCR repertoires with
predicted antigen specificities, a series of databases across studies
were established (138, 139) (Table 1). In McPAS-TCR, TCR
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sequences associated with various antigens weremanually arranged
according to published literature (139). And VDJdb collects
published T-cell specificity assays and lists TCR sequences with
experimentally verified epitope specificities as well as their MHC
restrictions (138). Some databases such as VDJServer and
iReceptor, places extra emphasis on sharing data on adaptive
immune receptor repertoire (AIRR), and provides online AIRR-
seq data of interest for conjoint analysis and data mining (78, 142).
The AIRR Community was formed to solve problems in AIRR
sequencing studies (143). To meet the need for queries across
repositories, standard procedures for AIRR-seq data acquisition,
storage, submission, annotation, and sharing are established and a
common file format is proposed, which will create a unified
environment of data analysis for individual researchers.

The TCRs of T cells may share antigen specificity and
recognize the same peptide-MHC ligands even if their amino
acid or nucleotide sequence are different (144). TCR clustering
tools cluster TCRs of similar specificity by algorithms related to
the combination of different factor (Table 2). Dash et al.
developed TCRdist based on the structural information on
pMHC binding (145). This analytical tool can quantify the
similarity of TCRs according to distance on the space and
assign unknown TCRs to epitope-specific receptors repertoires.
A distance score is computed by comparing all CDRs using a
similarity-weighted Hamming distance. Although TCRdist is
considered to be an effective high-clustering metric, the
requirement for pairwise Smith–Waterman (SW) alignment on
both the CDR3 sequences and the variable gene alleles limits the
size of the TCR repertoire that can be clustered. GLIPH
(grouping of lymphocyte interactions by paratope hotspots)
Frontiers in Immunology | www.frontiersin.org 10
can retrieve and group similar TCRs of common specificity
within an individual or across a group of donors through
scoring based on multiple factors, including the motif, CDR3
length, shared HLA among contributors (148). This clustering
algorithm can be used for the detection of antigen-specific TCRs
and predicting the specificity of a new TCR, with no need of
knowing the epitope. Those algorithms classify TCRs by
calculating similarity, which is inefficient and strenuous to deal
with large cohorts of TCR-seq samples. As an improved version,
GLIPH2 greatly accelerates the analysis of TCR sequences with
high clustering efficiency and accuracy (146). Apart from a series
of scores for clustering, the fisher-exact test is introduced to filter
given motifs for significance. In GLIPH2, a TCR sequence can be
assigned to more than one cluster. iSMART allows comparison
between CDR3s of different length and imposes a gap penalty. It
also has high average purity for large clusters and fast speed for
calculation. CDR3s will be first ordered the by length, and then
compared in pairs (25). Geometric Isometrybased TCR
AligNment Algorithm (GIANA) focuses on fast handling
large-scale TCR datasets and increases efficiency while
maintaining the same level of accuracy (147). These TCR
clustering tools can divide large numbers of TCR sequences
into groups with shared specificity and identify antigen-specific
TCR groups according to the known TCR sequences in the
groups (149).

A large set of TCR-antigen specificity data is required for
understanding the structure and features of alloresponse due to
the huge diversity of TCR sequences and pMHC. But the cells
driving alloresponse may be small in number, and the alloreactive
TCR repertoires in each small cohort may be drowned out in
TABLE 1 | Summary of TCR databases.

Function Species Available information Source

IMGT (140) A system that bridge biological and computational
spheres in bioinformatics

Human, rat, goat, monkey,
dog, rabbit, pig, cat, sheep
and frog

Locus, genes, alleles, proteins, probes,
structures, clinical entities

http://www.imgt.
org/IMGTrepertoire/

McPAS-
TCR (139)

A manually curated catalogue of pathology-associated
TCRs

Humans and mice Epitope, disease condition, T cell type,
tissue, source organism, MHC restriction,
assay type

http://friedmanlab.
weizmann.ac.il/
McPAS-TCR/

VDJdb
(138, 141)

A database of TCRs with known antigen specificity Humans, mice and
monkeys

Epitope, antigen, MHC, HLA type, assay
types and sequencing methods

https://vdjdb.cdr3.
net/

VDJserver
(142)

A Cloud-Based Analysis Portal and Data Commons for
Immune Repertoire Sequences and Rearrangements

Human and mice Gene usage, diversity, length, amino acid
utilization, and physicochemical properties
of CDR3 patterns

https://vdjserver.
org/

iReceptor
(78)

A platform for querying, analyzing and downloading
antibody/B-cell and T-cell receptor repertoire from
multiple independent repositories

Human and mus musculus Study types, organisms, diagnoses,
tissues, PCR targets and target substrates

http://ireceptor.
irmacs.sfu.ca/
January 2022 | Volume
TABLE 2 | Summary of methods for linking TCR-antigen specificity.

Method Function Approach Source

TCRdist
(145)

Matching TCR repertoire against a database of
TCR sequences

Sequence similarity distance https://tcrdist3.readthedocs.io/en/latest/index.html

GLIPH2
(146)

Clustering TCRs that are predicted to bind the
same pMHC

K-mer enrichment-based detection of TCR motifs http://50.255.35.37:8080/

iSMART
(25)

Grouping similar TCRs into antigen-specific
clusters

Pairwise local alignment on T cell receptor CDR3
sequences

https://github.com/s175573/DeepCAT/blob/
master/iSMARTm.py

GIANA
(147)

TCR clustering and multi-disease repertoire
classification

Nearest neighbor search in the high-dimensional
Euclidean space

https://github.com/s175573/GIANA
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sequencing reads. Integrated online databases facilitate the
accumulation and complex analysis of alloreactive TCR
repertoire. Alloreactive TCR records can be submitted and
arranged across species and tissue from multiple assays, including
the CDR3 sequence, antigen, epitope, MHC and clinical
presentation data, to help the identification and characterization
of alloreactive TCRs and the epitopes they recognize. Algorithms
help to further investigate specificities of alloreactive TCRs by
calculating similarity. A deeper understanding of the alloreactive
TCR repertoire will aid in the development of future
immunomodulatory therapies in solid organ transplantation. And
future studies in identifying allogeneic pMHC epitopes using these
tools will enable the characterization of alloreactive TCR
repertoires, which will provide further insights into the
fundamental basis of alloresponse in biophysics and structure.
CONCLUSIONS

The development of NGS technology has brought improvements
in TCR high-throughput and applications by making TCR
repertoire analysis a basic tool for T-cell study in healthy
physiological conditions and various pathological conditions.
TCR sequencing of thousands to millions of cells shows the
complexity and diversity not only of the whole TCR repertorie
but also specific subset of T-cell clones in body liquids and
various tissues. Linking the TCR repertoire with gene expression
profiles led to further information, enabling to trace of specific T
cells developmental fate and biofunction. The development of
web databases and computational methods greatly expanded the
available TCR information.

In the setting of transplantation, the dynamics of the overall
TCR repertoires after transplantation are closely related to the
immune status after transplantation. The diversity of repertoires
and the rate of turnover is related to rejection or tolerance. The
combination of MLR and TCR repertoire to track donor or
recipient antigen specific T cells has been demonstrated as
reproducible and sensitive. This method opens up a new path to
monitor the T cell-mediated alloresponse after transplantation.
Using the responders and stimulators in one-way MLR from the
Frontiers in Immunology | www.frontiersin.org 11
donor and recipient cells materials before transplantation, a
fingerprint of the HVG or GVH reactive T-cell clones during the
alloresponse can be defined and tracked after transplantation. By
tracking these clones, the clonal deletion or expansion of HVG and
GVH reactive T cells reveals antigen-specific T-cell clonotypes are
closely related to the immune status of the patients after
transplantation and have a correlation with transplant outcome.
Under certain circumstances, the clinical translation of TCR
repertories analysis in the peripheral blood would provide
valuable information for treatment decisions. Hence, TCR
repertoire analysis can noninvasively assist the diagnosis and
treatment of transplant patients. In general, longitudinal
monitoring of changes in the alloreactive clone size and overall
TCR repertoire after transplantation can be used as a biomarker to
predict tolerance or rejection in certain types of transplantation,
eventually allowing individualization of immunosuppression in the
clinic. And the characterization of alloreactive TCR repertoires and
epitopes in the future will provide mechanistic insights
into alloresponse.
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