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Abstract

Prader-Willi syndrome (PWS) is generally due to sporadic paternal deletions of the chro-

mosome 15q11-q13 region followed by maternal disomy 15. Advanced maternal age is

more commonly seen in those with maternal disomy 15. Environmental factors (e.g., drug

use, occupational chemical exposure, infectious agents, and irradiation) could account for

chromosome changes. Previous evidence of differences in male and female gametogene-

sis could suggest an environmental role in the causation of the paternal 15q11-q13

deletion seen in PWS. Certain occupations such as hydrocarbon-exposing occupations

(e.g., landscaping, farming, and painting) and viral exposure (e.g., human coronavirus 229E

causing upper respiratory infections in adults with an incorporation site in the human

genome at chromosome 15q11) can be seasonal in nature and contribute to chromo-

some damage. To assess, we reviewed birth seasonality data in a large cohort of individ-

uals with PWS recruited nationally (N = 355) but no significant differences were seen by

month between those with the 15q11-q13 deletion compared with maternal disomy 15

when analyzing quarterly seasonal patterns. Although early evidence supported birth

seasonality differences in PWS, a larger number of individuals in our recent study using

advanced genetic testing methods did not find this observation.
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Prader–Willi syndrome is a genetically imprinted disorder due to a

paternal deletion of the chromosome 15q11-q13 region in the major-

ity of cases. PWS is most often sporadic in occurrence and character-

ized by infantile hypotonia, a poor suck reflex with feeding difficulties,

hypogonadism and hypogenitalism, growth and other hormone defi-

ciencies with short stature, hyperphagia with early childhood obesity,

mental deficiency and behavioral problems (Butler, 2016; Butler,

Lee, & Whitman, 2006; Cassidy, Schwartz, Miller, & Driscoll, 2012).

The chromosome 15q11-q13 deletion is seen in about 60% of those

with PWS, maternal disomy (UPD) 15 or both chromosome 15 s

inherited from the mother in 35% while the remaining individuals

have an imprinting defect involving the imprinting center on
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chromosome 15 which regulates the activity of imprinted genes or

from chromosome 15 rearrangements (e.g., translocations, inversions)

(Butler et al., 2019).

Previous studies have suggested an environmental role for causing

the paternal 15q11-q13 deletion seen in PWS (Strakowski & Butler,

1987) and influenced by differences in male and female gametogenesis.

Environmental factors can cause chromosomedamage and abnormalities

while advanced maternal age is more commonly seen in those with

maternal disomy 15 (Butler et al., 2019). In female meiosis, the germ cells

are arrested in the dictyotene stage of meiosis I during fetal life and a

lengthy duration exists until the time of ovulation. This arrested stage

could also be influenced by the environment impacting chromosome

nondisjunction leading tomaternal disomy 15 (e.g., Butler et al., 2009).

Proliferation of germ cells in males is continuous and DNA replication

could be sensitive to environmental effects with an increased risk for chro-

mosomal deletions involving breakage and reunion. Environmental factors

influencing paternal gametogenesis could include drug use, occupational

exposure, infectious agents and irradiation leading to chromosome damage

(Akefeldt, Anvret, Grandell, Nordlinder, & Gillberg, 1995; Cassidy, Gainey, &

Butler, 1989; Strakowski & Butler, 1987). Increased incidence of per-

iconceptional employment in hydrocarbon-exposing occupations in fathers

of children with PWS was reported by Strakowski and Butler (1987)

supported by other studies with paternal exposure to gasoline/petrol

(Akefeldt et al., 1995). Certain occupations may also represent seasonal

changes such as hydrocarbon-exposing occupations (e.g., landscaping, farm-

ing, painting; Bauchinger, Dresp, Schmid, & Hauf, 1982; Haglund,

Lundberg,&Zech, 1980;Kucerová, Polívková,&Bátora, 1979; Strakowski&

Butler, 1987). Furthermore, infectious agents such as influenza viruses are

seasonal including the human coronavirus 229E causing upper respiratory

infections in adults. This virus has an incorporation site in the human

genome at chromosome 15q11 allowing this virus to be absorbed to and

receivedwithin the host cell (Sakaguchi & Shows, 1982) and could influence

DNA replication causing chromosome damage duringmalemeiosis.

To investigate whether children with PWS having the 15q11-q13

deletion versus non-deletion status showed differences in birth

months, Butler, Ledbetter, and Mascarello (1985) analyzed birth sea-

sonality data from three separate medical centers in the USA and

examined monthly variation from grouped PWS data according to

their chromosome 15 status. This study was done prior to identifica-

tion of maternal disomy 15 or imprinting defects causing PWS in

those without the chromosome 15q11-q13 deletion (e.g., Nicholls,

Knoll, Butler, Karam, & Lalande, 1989). A significant difference was

found in the 124 patients with PWS studied in 1985 and 46% with

chromosome 15q11-q13 deletions were born in the fall months

(September, October, November) while only 7% were born in the win-

ter (December, January, February). Those with PWS and the non-

deletion status, now recognized as having maternal disomy 15 in the

vast majority of cases without the deletion, were nearly equally dis-

tributed among the four seasons. These birth seasonality findings

showed an over-representation of deliveries in the fall with under-

representation in the winter months supporting a possible environ-

mental influence, seasonal in nature (e.g., December, January,

February) on male meiosis prior to conception during sperm

development and maturation impacting chromosome 15. The winter

month observation data agreed with the time of increased seasonal

infections during this time including upper respiratory influenza expo-

sure in the father periconceptionally.

Two other reports have examined birth seasonality in PWS, one

study from Korea involving 211 patients (Yang et al., 2015) and the

second study from Japan involving 271 subjects (Ayabe et al., 2013).

In the Korean study, more PWS babies were born with the deletion in

January compared to other months and more babies with UPD were

born in the spring. September and October showed the highest num-

ber of births in the deletion group in the Japanese study while

November showed the highest number of births in the UPD group.

There was no statistical significance in seasonal variation in births of

the 211 patients with PWS in the Korean population but a significant

difference was found in monthly variation between PWS with the

deletion and the general population. Ayabe et al. (2013) found a sea-

sonal variation in the number of subjects in the deletion group with

approximately 35% of the Japanese patients born in the autumn

months while only 18% were born in the spring. The number of Japa-

nese births in the UPD group and the general population was nearly

equal in distribution among the four seasons.

The rationale for our study was to again examine birth seasonality

data from a PWS cohort of 355 individuals (197 F; 158 M; average

age ± SD = 13.4 + 12.0 years) which was three times larger than the

PWS birth seasonality dataset reported earlier in the US population in

1985 (Butler et al., 1985). Our larger PWS cohort consisted of

217 individuals with the chromosome 15q11-q13 deletion, 127 indi-

viduals with maternal disomy 15 and an imprinting defect in 11 sub-

jects recruited for a nationwide natural history study (Butler et al.,

2018, 2019). Twenty-two percent of the individuals with PWS rec-

ruited nationally at four different sites (California, Kansas, Tennessee,

and Florida) were less than 21 years of age and predominantly Cauca-

sian (93%). In review of birth seasonality data from 344 individuals

from the PWS cohort (excluding 11 individuals with PWS and imprint-

ing defects), no significant differences were seen by month between

those with the deletion versus maternal disomy 15 or by quarterly

seasonal assessments using chi-square (X2) analysis (Figure 1; Table 1).

However, February showed the second to highest number of births in

the deletion subtype group and the lowest number for maternal

disomy 15. The number of births observed in the fall months (N = 22)

were less than one-half the number of births observed in the spring

months (N = 45) while the number of births observed in the deletion

group was similar in all four seasons. Potential environmental factors

could play a role with contributions of age as older mothers are over-

represented in those families with PWS children having maternal

disomy 15 due to non-disjunction (Butler et al., 2019). The maturation

of sperm occurs in fathers ~2 months prior to conception and may be

impacted by seasonal factors (e.g., viruses) or by inhibiting chromo-

some 15 nondisjunction events in female gametogenesis, particularly

in meiosis I (Butler et al., 2009).

Advanced maternal age and chromosome nondisjunction are

reported in other numerical chromosome disorders such as Down syn-

drome (Jongbloet, 1971; Lam & Miron, 1987). Monthly variation in
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the incidence of birth of patients with Down, Turner, and Klinefelter

syndromes has also been reported with a significant increase in the

frequency of conceptions for Down syndrome during the first

4 months of the year (Jongbloet, 1971; Videbech & Nielsen, 1984).

Seasonal variation in hormone production by hypothalamus-pituitary-

ovarian axis has been suggested to lead to seasonality in conception

rates of Down syndrome and errors in nondisjunction (Stolwijk,

Jongbloet, Zielhuis, & Gabreëls, 1997) and could impact PWS, as well.

The underlying mechanism for the higher prevelance of Down syn-

drome with advanced maternal age is not clear. A common hypothesis

includes aging of the ovum or hormonal imbalance causing suboptimal

microvasculature to develop around the maturing follicles with oxygen

deficiency leading to smaller sized spindles followed by displacement

and nondisjunction of chromosomes (Gaulden, 1992; Jongbloet,

1975; Polani, Briggs, Ford, Clarke, & Berg, 1960; Stolwijk et al., 1997).

Seasonal variation in human reproduction including ovulation, sperm

production, and births has also been observed and will require more

study to identify ongoing environmental factors (Lam & Miron, 1987;

Levine, 1994; Roenneberg & Aschoff, 1990).

In summary, birth seasonality differences in PWS were reported in

the US population over three decades ago prior to current genetic test-

ing and PWS methylation status but not identified in a larger number of

individuals with genetically confirmed PWS that we collected nationally

in the US using advanced testing for accurate determination of the

15q11-q13 deletion and maternal disomy 15 status. Our recent study

did not support an earlier observation in 1985 of those with PWS and

the 15q11-q13 deletion born more frequently in the fall months but sea-

sonality was seen in a different PWS cohort from Japan. Further investi-

gations are needed as to whether environmental factors could contribute

to chromosome 15 defects and/or chromosomal nondisjunction events

in PWS. Similar investigations which are beyond the scope of this report

could be undertaken and encouraged in Angelman syndrome, a second

genomic imprinting disorder involving the same chromosome 15q11-q13

deletion but of maternal origin, paternal disomy 15, chromosome

15 imprinting defects, or UBE3A gene mutations (Dagli, Buiting, & Wil-

liams, 2012). A comparison of an Angelman syndrome dataset may be

fruitful to further address birth seasonality in imprinted disorders includ-

ing a lower number of births in the month of February seen in PWS with

maternal disomy 15 but not reaching a level of significance.
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F IGURE 1 Birth month data from 344 individuals with Prader–Willi syndrome with 15q11-q13 deletion (N = 217) or non-deletion maternal
disomy 15 (UPD; N = 127) status. The percentage and the number of births per month represented by the number at the top of each bar for the
deletion and maternal disomy 15 subject groups. Fewer babies with PWS and maternal disomy 15 were born in the month of February compared
with the deletion group but not overall significantly different (X2 ~11.0; p = .443)

TABLE 1 Birth seasonality data for
individuals with Prader–Willi syndrome

Subject group Fall Winter Spring Summer χ2 (p)

Deletion (N = 217) 50 (23.0%) 51 (23.5%) 58 (26.7%) 58 (26.7%) 3.61 (0.307)

UPD (N = 127) 22 (17.3%) 26 (20.5%) 45 (35.4%) 34 (26.8%)
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