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The significant research effort in the domain of epilepsy has been directed toward the development of an automated seizure detection system.
In their usage of the electrophysiological recordings, most of the proposals thus far have followed the conventional practise of employing
all frequency bands following signal decomposition as input features for a classifier. Although seemingly powerful, this approach may
prove counterproductive since some frequency bins may not carry relevant information about seizure episodes and may, instead, add noise
to the classification process thus degrading performance. A key thesis of the work described here is that the selection of frequency subsets
may enhance seizure classification rates. Additionally, the authors explore whether a conservative selection of frequency bins can reduce
the amount of training data needed for achieving good classification performance. They have found compelling evidence that using
spectral components with <25 Hz frequency in scalp electroencephalograms can yield state-of-the-art classification accuracy while
reducing training data requirements to just a tenth of those employed by current approaches.
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Fs
 sampling rate

D1
 detail coefficients of the first decomposition level

D2
 detail coefficients of the second decomposition level

D3
 detail coefficients of the third decomposition level

D4
 detail coefficients of the fourth decomposition level

D5
 detail coefficients of the fifth decomposition level

D6
 detail coefficients of the sixth decomposition level

A6
 approximation coefficients of the sixth

decomposition level

ENE
 energy features

SDF
 standard deviation features

TP
 true positive rate

TN
 true negative rate

FP
 false positive rate

FN
 false negative rate

CA
 classification accuracy rate

SN
 sensitivity rate

SP
 specificity rate

SD
 standard deviation across folds

ns
 p-value not significant (i.e. >0.05)

*
 p-value is significant and ranges between 0.01

and 0.05

**
 p-value is significant and ranges between 0.001

and 0.01

***
 p-value is significant and lies < 0.001
1. Introduction: Epilepsy is one of the most common neurological
disorders which affects more than 65 million individuals worldwide
[1]. The hallmark of epilepsy is the enduring propensity of the
brain to generate epileptic seizures. According to the International
League Against Epilepsy, the epileptic seizures (commonly
referred to as ‘fits’) are transiently occurring recurrent episodes
of abnormally excessive and/or synchronous neuronal firings [2].
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Its diagnosis is mostly performed using electroencephalography
[3]. Neurophysiologist performs the general practise of analysing
the recorded electroencephalogram (EEG) to trace the presence
of epileptiform patterns and mark its onsets across the time series
through visual inspection [1, 4]. However, this process of manual
detection is very time-consuming and inefficient especially in the
case of long-term EEG recordings [4–6]. Moreover, due to the
overlapping symptomatology of epilepsy with other neurological
disorders and contamination of EEG signals (especially the
extracranial or scalp recordings) with artefacts make the visual
scrutinisation procedure very challenging even for an experienced
neurophysiologist [4–6]. The repercussions of delayed or
misdiagnosis could lead to permanent neurobiological, cognitive,
social and psychological impairments [1, 4]. Hence, their need to
automate the process of detecting epileptiform patterns in a much
more efficient and robust manner have inspired the development
of various intelligent models [4–20]. Early attempts [7] have
used traditional mimetic techniques that relied on the distinctive
attributes of amplitude, slope, height, duration and sharpness
values provided by an expert neurophysiologist. Since then, most
of the state-of-the-art has adopted a dual scheme, i.e. feature
extraction and its classification for the development of automated
epileptic seizure detection models [8, 9]. Analysing the frequency
bands for epileptic seizure detection has been the foundation
for many proposed schemes [5, 10–20]. Still, there has been a lot
of disparity in the selection of frequency bands in these studies.
While, many researchers have opted to set the decomposition
levels up to five [9, 10] and selected all the frequency bands,
some of the researchers have even chosen to decompose the same
datasets till 11th decomposition levels [12] and selected all the
frequency bands. It has already been established that the preferred
choice of decomposition levels should be six for feature extraction
[18, 19]. However, the problem of selecting the optimum number of
frequency bands for efficient seizure detection is still unclear. Some
cues could be drawn from the previous research [21] that used
bipolar EEG recordings and stated 20–25 Hz as the lower cut-off
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for effectively removing electromyogram artefacts through digital
filtering. Furthermore, moving in this research direction, notwith-
standing findings have been established about using gamma fre-
quencies elicited from intracranial EEG as a marker for epilepsy
[22, 23]. Similar scientific questions require further investigations
for seizure detection using scalp EEG. Current work attempts to
fill this void to achieve accurate seizure detection performance
through a selection of an optimum number of frequency bands.
The datasets used in this Letter are described in the next section,

and its proceeding section illustrates the proposed methodology.
The research outcomes and their corresponding observations are
provided in Section 4. Finally, we have summarised the research
outcomes and future research directions in the conclusion and
future scope section.

2. Datasets: The datasets available from two different repositories
are used in this Letter to test the classification of non-seizures versus
epileptic seizures. The first datasets are available from a repository
created using data recorded from Sir Ganga Ram Hospital (SGRH),
New Delhi [5, 18–20, 24]. Its datasets were acquired over 18 epi-
lepsy patients under the supervision of an experienced neurophysi-
ologist using Grass Telefactor Twin3 EEG machine. During data
acquisition, the sampling rate was fixed to 400 Hz with a spectral
bandwidth of 0.5–70 Hz and a notch filter of 50 Hz. The acquisition
was performed using 16 gold-plated surface electrodes placed
according to the international 10–20 electrode placement system
[25]. After the acquisition, onset and offset points of epileptic sei-
zures were annotated by a trained neuro-technician and cross-
checked by an experienced neurophysiologist. On the basis of
the annotations, the signals were segmented and saved in two
different subsets belonging to non-seizures and epileptic seizures.
The subsets of epileptic seizures and non-seizures consisted of
293 and 296 EEG segments, respectively. Here, the duration of
each EEG segment was 2.56 s with 1024 samples. To substantiate
the research findings, datasets from another repository is formed
using recordings of ten epilepsy patients collected at the
Neurology and Sleep Centre (NSC), New Delhi [26, 27]. Its data-
sets were recorded using Comet AS40 EEG machine at a sampling
rate of 200 Hz with the same filter settings. The duration of each
EEG segment in this repository was 5.12 s with 1024 samples. It
consisted of 575 epileptic seizure segments and 529 non-seizure
segments. Datasets in both the repositories are available in .MAT
format. A sample of an EEG segment taken from each subset
available in the NSC repository is shown in Fig. 1.

3. Methodology: The analysis steps implemented in this Letter are
as follows, whereas the symbols used in this Letter are listed in the
Nomenclature section:

(1) The EEG signals from the first repository are decomposed till
the sixth decomposition levels using dual-tree complex wavelet
transform (DT-CWT) [28]. The advantage of using this technique
Fig. 1 Sample of EEG segment taken from each subset available in NSC
repository
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is that it is shift invariant in comparison with other commonly
used techniques such as discrete wavelet transform (DWT) [14],
wavelet packet transform [14] etc. This approach resulted
in seven frequency bands (six details and last approximation)
which represented the input signal with a frequency range of
0− Fs/2Hz. Here, the sampling rate Fs was equal to 400 Hz for
SGRH datasets. The details from first to sixth decomposition
levels are represented as D1, D2,…, D6 and the last approximation
as A6. The range of frequencies for each band is represented
by D1 = 100− 200Hz, D2 = 50− 100Hz, D3 = 25− 50Hz,
D4 = 12.50− 25Hz, D5 = 6.25− 12.50Hz, D6 = 3.125−
6.250Hz and A6 = 0− 3.125Hz.
(2) Seven sets of datasets are prepared based on the constituent of
frequency bands from each category (non-seizure and epileptic
seizure). The different constituents of frequency bands kept in
these sets of the combination are: (i) D1–D6 and A6; (ii) D2–D6
and A6; (iii) D3–D6 and A6; (iv) D4–D6 and A6; (v) D5–D6 and
A6; (vi) D6 and A6; and (vii) A6. As an example, the fourth
dataset consists of D4, D5, D6 and A6 frequency bands that in
terms of total frequency components from 0 to 25Hz.
(3) It is widely asserted that the neurons require high-energy levels
to maintain their normal functioning [29]. The episode of epileptic
discharge creates a misbalance in the physiological energy levels.
Therefore, energy (ENE) was considered as one of the features
for classification and is evaluated using (1). Similarly, the rhyth-
micity of the brain also gets disturbed during epileptic seizures
[1]. Therefore, the measurement of statistical changes from
non-seizure condition to epileptic seizure condition also forms an
important characteristic [30]. Hence, Standard Deviation feature
(SDF) is considered as another feature set and is evaluated using (2)

ENEi =
∑N
n=1

Dmn

∣∣ ∣∣2. (1)

SDFi =

���������������������������������������
1

N − 1

∑N
n=1

Dmn −
1

N

∑N
n=1

Dmn

( )2
⎡
⎣

⎤
⎦

√√√√√ . (2)

Here, Dmn represents details with m = 1, 2, . . . , 6 (number of
decomposition levels) for samples n = 1, 2, . . . , N (length of
the frequency band), i = 1, 2, . . . , 7. The values of ENE7 and
SDF7 were extracted by replacing Dm with the values of sixth
approximation A6 in (1) and (2), respectively.
(4) The feature sets extracted for each combination of datasets
are separately fed into a general regression neural network
(GRNN) [31]. This neural network has a feedforward architecture
and makes a decision based on probability density function.
Therefore, it is relatively fast and suitable for training with even
small datasets in comparison with backpropagation networks.
The smoothing parameter of the GRNN is set to 0.7.
(5) Cross-validation procedure over ten folds is applied with the
train-to-test ratio fixed at 1:9 (i.e. 10% of data used for training
and 90% of data used for testing). This step has assured that the
robustness of the model is validated against low training.
(6) The performance of the model is assessed by evaluating
classification accuracy (CA), sensitivity (SN) and specificity (SP)
rates. Additionally, Matthew’s correlation coefficient (MCC)
which is a balanced statistical measure of an intelligent system
corresponding to both SN and SP is also evaluated during each
fold. MCC is a unitless measurement given by the equation below:

MCC = TP× TN( ) − FP× FN( )�����������������������������������������������
TP+ FP( ) TP+ FN( ) TN+ FP( ) TN+ FN( )√ (3)

where TP is the true positive rate, TN is the true negative rate, FP is
the false positive rate and FN is the false negative rate. MCC has
recently gained more popularity over other similar measures such
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Fig. 2 Comparison of (a) CA, (b) SN, (c) SP and (d) MCC across different combinations of frequency bands for classification of non-seizures versus epileptic
seizures from SGRH datasets using SDF features
a Comparison of CA
b Comparison of SN
c Comparison of SP
d Comparison of MCC

Fig. 3 Comparison of (a) CA, (b) SN, (c) SP and (d) MCC across different combinations of frequency bands for classification of non-seizures versus epileptic
seizures from NSC datasets using SDF features
a Comparison of CA
b Comparison of SN
c Comparison of SP
d Comparison of MCC
as the area under the curve etc. [32] due to its direct extension to
measure more classes and relationship with stability based on its
range. The statistical stability of the system could be inferred
by the MCC value, which ranges between −1 and 1. The value
of MCC close to 1 indicates that all the predicted outcomes are
correct; 0 indicates that the predicted outcomes are random
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guesses; and −1 indicates that all the predicted outcomes are
incorrect.
(7) Hypothesis testing is performed by applying Student’s t-test
between the performance parameters evaluated using each feature
set of the consecutive combinations of frequency bands. For
example, testing the significance level between the performance
Healthcare Technology Letters, 2019, Vol. 6, Iss. 5, pp. 126–131
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measures of all the bands (i.e. D1–D6+ A6) versus the same per-
formance measure when the only the D1 frequency band is
ignored (i.e. D2–D6+ A6). The same procedure is extended to all
remaining bands as shown in Fig. 2a.
(8) The above steps from 1 to 7 are repeated for the NSC datasets
separately. Since the NSC data were collected at a sampling rate
of 200 Hz, and hence the range of frequencies for each band
in this dataset are D1 = 50− 100Hz, D2 = 25− 50Hz, D3 =
12.50− 25Hz, D4 = 6.25− 12.50Hz, D5 = 3.125− 6.250Hz
and D6 = 1.5625− 3.125Hz, A6 = 0− 1.5625Hz.

4. Results and discussion: The results obtained from the analysis
of SGRH datasets using ENE feature sets show that CA equalled
Table 1 Comparison of the present Letter with few state-of-the-art

Reference Methodology Frequency spectrum
of features, Hz

[11] dataset(s): University of Bonn (scalp and
intracranial EEG)

0–86.805

transform(s): DT-CWT
feature(s): Fourier features

classifier(s): k-nearest neighbour
[33] dataset(s): University of Bonn (scalp and

intracranial EEG)
0.53–85

transform(s): DWT
feature(s): singular values calculated from the
covariance matrix of two-dimensional (2D)

and 3D phase space representations
classifier(s): extreme learning machine

(ELM), support vector machine (SVM), back
propagation neural network,

multiplicative-ELM
[10] dataset(s): Royal Brisbane & Women’s

Hospital (scalp EEG)
0–128

transform(s): 2D DWT
feature(s): flux, flatness, Renyi entropy, mean,

variance, skewness, kurtosis, variation
coefficient, mean and deviation of

instantaneous frequency, complexity,
maximum singular values, non-negative

matrix factorisation
classifier(s): SVM

[15] dataset(s): University of Bonn (scalp and
intracranial EEG), SGRH (scalp EEG)

0–61.9

transform(s): scale invariant feature
transformation

feature(s): histogram of local binary patterns
classifier(s): SVM

[27] dataset(s): University of Bonn (scalp and
intracranial EEG), NSC (scalp EEG)

0.1–60

transform(s): discrete cosine transform
feature(s): Hurst exponents, autoregressive

moving average model parameters
classifier(s): SVM

[34] dataset(s): University of Bonn (scalp and
intracranial EEG)

0–64

transform(s): wavelet packet transform
feature(s): fuzzy distribution entropy

feature selection using Kruskal–Wallis test
classifier(s): k-nearest neighbour

this
Letter

dataset(s): SGRH and NSC (both scalp EEG) 0.5–25
transform(s): DT-CWT
feature(s): ENE, SDF
classifier(s): GRNN
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97.936%± standard deviation (SD) of 0.221% with 95% con-
fidence interval [92.866, 99.733] when all frequency bands,
i.e. (D1–D6+ A6) are considered. There is no significant change
in accuracy even without taking into consideration of frequency
coefficients from D1 to D3 frequency bands. However, the CA
is dropped significantly (p< 0.001) when coefficients from D4 fre-
quency band are not considered. This trend is also observed in SN
and MCC measures. The CA, SN and MCC with (D4–D6) +A6
frequency band are reported to be 97.934 ± 0.217 [92.864,
99.732], 97.129 ± 0.529 [91.679, 99.418] and 0.959 ± 0.004
[0.899, 0.988]%, respectively. The SP of classification also
hold ceiling level performance up to the frequency range
(D4–D6) + A6 and degrade statistically (p< 0.001) below that fre-
quency band. Considering SDF as another feature, the CA as well
as SN and SP follows the similar pattern as shown in Fig. 2.
Amount of
training data,%

Best mean performance reported,%

50 CA = 100

50 CA+ SD = 98.89+ 0.32

SN+ SD = 98.92+ 0.01
SP+ SD = 99.93+ 0.04

99.375 CA = 99.375

>90 CA = 99.45

SN = 99.68

SP = 99.00
>90 CA = 96.92%

>90 CA+ SD = 99.58+ 0.19

SN+ SD = 98.89+ 0.37
SP+ SD = 99.92+ 0.18

10 CA+ SD CI[ ] = 98.118+ 0.218 93.146, 99.789[ ]

SN+ SD CI[ ] = 97.489+ 0.500 92.206, 99.563[ ]
SP+ SD CI[ ] = 98.742+ 0.305 94.136, 99.929[ ]
MCC+ SD CI[ ] = 0.962+ 0.004 0.904, 0.990[ ]
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In Fig. 2a, the CAwith (D4–D6) +A6 frequency band is significant-
ly higher than CA with (D3–D6) +A6 frequency band (p<0.001).
The similar trend is also observed in SN (Fig. 2b), SP (Fig. 2c)
and MCC (Fig. 2d ) measures. The above results demonstrate the
consideration of frequency range < 25 Hz will hold the best accur-
acy without compromising in SN and SP. To re-test these findings,
the data collected from the NSC repository are also analysed.

The results based on the analysis of NSC datasets using ENE
features showed CA=9.388 ± 0.084 [95.224, 99.997]% with
(D3–D6) + A6 frequency band. The evaluated SN, SP and MCC
measures using ENE features within the same frequency range
are 98.959 ± 0.156 [94.488, 99.967], 99.855 ± 0.094 [96.091, 100]
and 0.988 ± 0.002 [0.942, 0.999]%, respectively. The values of per-
formance parameters using (D1–D6) +A6 versus (D2–D6) +A6 fre-
quency bands and (D2–D6) +A6 versus (D3–D6) +A6 frequency
bands are not significant, whereas the performance parameters are
statistically significant (p<0.001) in both (D3–D6) +A6 versus
(D4–D6) +A6 frequency bands and the next adjacent combinations
of frequency bands. The results in Fig. 3 show the performance
of the model across different combinations of frequency bands con-
sidered using SDF features. Apart from its SN rate (Fig. 3b) which
measured 97.376 ± 0.497 [92.039, 99.520]% with (D3–D6) +A6
frequency band and showed significant difference (p = 0.046)
against (D2–D6) +A6 frequency band, all other performance para-
meters (Figs. 3a, c and d ) showed very significant (p< 0.001)
difference with frequency bands selected within the range of
0− 25Hz. Thus, the results evaluated using SGRH and NSC data-
sets are in agreement with each other. Also, in line with past find-
ings, the results from the present Letter attest that ENE [20] and
SDF [18, 28] are noteworthy features for seizure detection.
However, SDF feature sets based classifications (Figs. 2 and 3)
are found to be more consistent for both the datasets in our
present Letter.

The existing state-of-the-art approaches have reported overall
accuracy and statistical performance >97% [11–20]. Therefore,
the improvement in classification performance has already
reached a saturation point. The contribution from this work with
respect to accuracy (98.118 ± 0.218 [93.146, 99.789]%) and statis-
tical performance is still at par with the existing state-of-the-art
methods proposed in past (Table 1). However, the listed models
have achieved given performance by including frequency spectrum
beyond 25 Hz, and the majority of them also used > 50% of data for
training their model. Using such a high percentage of datasets for
training the model suffers from two main disadvantages. First, it
is superficially based on the assumption that the total amount
of annotated data available is huge which usually is not the case.
Second, using such a high percentage of training data from a
small sample size of data available could overtrain the classifier.
Owing to these shortcomings, it becomes highly eminent to test
the robustness of the model against low training. In this Letter,
only 10% of the data is used for training the classifier. It is also
emphasised that many of the past studies [4, 5, 8, 9, 11, 12, 15]
have either used intracranial recordings or scalp recordings
[6, 13] with all frequency bins available. However, we achieved
similar ceiling level performance with limited frequency bins that
will reduce the computational cost without compromising the
quality of diagnosis.

5. Conclusion and future scope: The experimental data we
have presented here demonstrate the importance of frequency
components ranging from 0.5 to 25 Hz for the detection of
epileptic discharge from scalp recordings. The conventional
practise of using a broader range of frequencies is driven in part
by the nature of neural signals available intra-cranially. Given
that the cranium acts as a strong low-pass filter for electrical field
oscillations, it is necessary to adapt analytical techniques to the
reduced spectral range available at the scalp. As our results
indicate, even with this reduction, a high level of classification
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performance can be achieved. As a corollary, it needs to be noted
that the usage of higher-frequency components in scalp-based
recordings can only be expected to worsen classification
performance since the high-frequency signals correspond to noise
rather than intrinsic neural activity.

The encouraging results we have reported here have allowed us to
develop a proof-of-concept epilepsy diagnosis software system for
analysing continuous EEG in clinical settings [35]. This is an early
demonstration of the clinical relevance of the approach we have
presented.

One limitation of this Letter is that unlike the wavelet packet
transform, the DT-CWT technique does not provide a very
narrow range of frequency bands. Nevertheless, DT-CWT is
preferred over its counterparts due to its statistically demonstrable
advantage for seizure detection [20]. Further investigations can
explore other shift-invariant techniques with a narrower range
of frequency bands. Moreover, researchers have long studied the
implications of functional connectivity networks and epileptogenic
regions [36–38, 39]. Building on the foundation provided by
this Letter thus far would lead to better automated detection of
epileptiform patterns and thus data confined to epileptiform stages
would, in turn, usher better localisation of seizure foci and study
its spatiotemporal connections. Future work could also investigate
the detection of pre-ictal, ictal, post-ictal and inter-ictal stages.
Since each of these stages corresponds to a specific causal factor
related to the progression of seizures [40], their investigation
would have significant clinical implications.
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