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Abstract

Although the majority of bacteria are harmless or even beneficial to their host, others are highly virulent and can cause
serious diseases, and even death. Due to the constantly decreasing cost of high-throughput sequencing there are now
many completely sequenced genomes available from both human pathogenic and innocuous strains. The data can be used
to identify gene families that correlate with pathogenicity and to develop tools to predict the pathogenicity of newly
sequenced strains, investigations that previously were mainly done by means of more expensive and time consuming
experimental approaches. We describe PathogenFinder (http://cge.cbs.dtu.dk/services/PathogenFinder/), a web-server for
the prediction of bacterial pathogenicity by analysing the input proteome, genome, or raw reads provided by the user. The
method relies on groups of proteins, created without regard to their annotated function or known involvement in
pathogenicity. The method has been built to work with all taxonomic groups of bacteria and using the entire training-set,
achieved an accuracy of 88.6% on an independent test-set, by correctly classifying 398 out of 449 completely sequenced
bacteria. The approach here proposed is not biased on sets of genes known to be associated with pathogenicity, thus the
approach could aid the discovery of novel pathogenicity factors. Furthermore the pathogenicity prediction web-server
could be used to isolate the potential pathogenic features of both known and unknown strains.
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Introduction

Every year more than 15 millions deaths are the direct cause of

infectious diseases, many of which are due to bacterial infections.

Each year an estimated 1.3 million people die of tuberculosis and

0.2 millions of pertussis, while diarrhoea accounts for more than

2.5 millions deaths, and is one of the leading causes of death in

worldwide [1]. But not all bacteria are dangerous and many of

them are innocuous or even beneficial to human. The gut of a

healthy adult human contains thousand of different microbial

species, many of which are beneficial to their host, providing

functions for nutrition and development, and regulating the

immune response [2,3]. Nevertheless some bacterial species, like

Escherichia coli, also include extremely deadly strains, causing for

example diarrhoea, urinary tract infections, septicaemia etc. Thus

identifying pathogenic strains and understanding the biological

mechanisms that cause them to become pathogenic is highly

important to perform timely interventions and design control

strategies, including interventions such as restrictions on contam-

inated food products, isolation of patients, correct treatment and

development of targeted vaccines.

Ever since the 1880s the pathogenicity of bacteria have been

assessed using Koch’s postulates, for human pathogens using

animal models. During the last 2 decades many discoveries have

shown that Koch’s postulates are not enough to decide if a given

bacteria is pathogenic or not. The existence of diseases caused by

bacteria that cannot grow in pure culture medium [4,5], the

discovery of polymicrobial diseases [6], the role of metagenomic

microbiota in chronic diseases [7], and last but not least, the

discovery of Horizontal Gene Transfer (HGT) responsible for the

swapping of genetic material between bacteria [8] (regardless the

pathogenicity), are all cases in which the postulates have short-

comings. Already during his work with Vibrio cholerae Robert Koch

himself discovered the shortcomings of animal models for correctly

identifying human-specific pathogens. Thus, the use of animal

models is not always reliable in defining if a given bacteria is

human pathogenic. Moreover, assessing the pathogenicity by

means of animal models or epidemiological studies is both time-

consuming and expensive.

Among the molecular features that a bacterium needs to infect

and survive inside its host [9] are exotoxins, endotoxins, two

components systems [10], adherence factors, secretion systems (I

to IV type) [11], through which bacteria can inject their toxins into

its hosts cells [12]. Plasmids, secretion systems, and antibiotic

resistance genes are commonly present in both commensal and

pathogenic strains, while toxins are usually only present in

pathogenic strains. There are many databases available containing

genes encoding toxins and virulence factors along with other genes

traditionally associated with pathogenicity [13,14].

One of the ways to classify a bacterium as human pathogenic

using bioinformatics was (and still sometimes is) to look for some of

these features in the genome of the isolate under investigation.
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Unluckily this approach is not always reliable, partly because of

HGT, which causes these features to be exchanged among

pathogenic and innocuous strains of the same [15][16] or different

species, an exchange which has been proved by the high amount

of these features found in genomic islands [17]. Aside from the

features directly associated to pathogenicity, there are also

virulence ‘‘lifestyle’’ genes, important for the bacteria to survive

inside the host and evade its immune system response [18][19],

and genes that are, for example, needed to activate other genes,

which are important in the processes of pathogenesis, even though

they do not directly determine virulence. All the issues related to

the prediction of bacterial pathogenicity based on phylogeny has

caused researchers to look for different solutions.

The development of whole genome sequencing may open novel

ways of predicting pathogenicity in bacterial species. In 1995 the

genomes of Mycoplasma genitalium and Haemophilus influenzae

[20,21] were completely sequenced, and scientists started consid-

ering the possibility of studying the pathogenesis of bacteria based

on their genome sequences [22]. This was the start of a revolution

that has been continuing during the last decade with the advent of

Second-Generation or Next-Generation Sequencing (NGS), lead-

ing to a continuous decrease in sequencing costs and a fast

development of sequencing technologies. At present, many

different high-throughput sequencing systems are available [23–

25] and the number of completely sequenced bacteria amount to

almost 2,400 including more than 1,800 that have been submitted

to the International Nucleotide Sequence Database Collaboration

(INSDC) (www.genomesonline.org, May 2013).

A few methods have been proposed which make use of Support

Vector Machines (SVM), BLAST or other bioinformatics tools to

search for pathogenic features [26,27] or predict bacterial

pathogenicity [28] by searching in pre-computed databases of

genes associated with pathogens. One shared aspect among these

methods is the fact that they restrict their search to well known

pathogenic features, missing out on the information that may be

contained in the many genes with unknown function. Further-

more, the methods ignore genes that could be shared and specific

among non-pathogenic organisms. When bacteria become path-

ogenic through HGT their lifestyle change and some of the genes

may be inactivated or even lost to adapt to the new lifestyle

[29,30]. These genes are still present in non-pathogenic bacteria

and hence could be used, together with the genes associated to

pathogenicity, to separate dangerous bacteria from harmless ones.

As an alternative to the above mentioned prediction methods,

we here developed a novel approach, building on a previous study

[31]. In this study we selected groups of genes which are frequently

found either in human pathogenic bacteria or in the innocuous

ones, and show that this is more effective than using global

similarity. Since we did not make any pre-assumption on the genes

contained in our training-sets, we are able to identify new proteins

associated to pathogenicity and also features shared among non-

pathogenic bacteria. Moreover, our hypothesis-free approach gave

us the chance to build, together with a phylogenetic-independent

model using all the organisms we have, more specific models

Table 1. Training, test data and model parameters.

Training Set Test Set Model Parameters

Model Name Pathogenic Non-pathogenic Total Pathogenic Non-pathogenic Total MinORG LT HT Zthr

TM-Alphaproteobacteria 29 60 89 11 28 39 2 0.15 0.6 10.43

TM-Betaproteobacteria 26 26 52 10 22 32 2 0.3 0.9 0.55

TM-Epsilonproteobacteria 17 5 22 16 2 18 2 0.4 1.0 29.31

TM-Gammaproteobacteria 122 97 219 33 50 83 2 0.2 0.85 25.37

TM-Actinobacteria 27 44 71 24 36 60 2 0.0 1.0 23.22

TM-Bacteroidetes 7 12 19 5 24 29 2 0.35 0.6 1.68

TM-Firmicutes 98 87 185 34 83 117 3 0.0 1.0 22.85

TM-Tenericutes 6 8 14 5 9 14 2 0.0 1.0 21.59

COMPL 40 174 214 17 40 57 2 0.0 1.0 21.78

WDM 372 513 885 155 294 449 2 0.0 1.0 3.0

Training, test data and model parameters. The last 3 columns show the MinORG, LT and HT parameters used to create the pathogenicity families and build the model
for each of the 10 models. Zthr is a threshold value, calculated for each model at the cross validation phase, which is used, given the final prediction score, to decide if
the input organisms will be predicted as pathogenic or non-pathogenic. The parameters for each model are chosen after 5-fold cross-validation tests.
doi:10.1371/journal.pone.0077302.t001

Table 2. MCC on cross validation and independent test-set.

Organism subset 5-fold CV TM or COMPL WDM

All Bacteria 0.847 0.7363 0.758

a-proteobacteria 0.949 0.886 0.873

b-proteobacteria 0.923 0.855 0.79

E-proteobacteria 0.741 0.686 1.0

c-proteobacteria 0.825 0.666 0.661

Actinobacteria 0.681 0.816 0.826

Bacteroidetes 0.889 0.535 0.383

Firmicutes 0.915 0.756 0.785

Tenericutes 0.866 20.344 0.0

Remaining Organisms1 0.940 0.793 0.8772

Column 2, the MCC obtained in the 5-fold cross validation (CV) by each of the
10 models. Column 3, the MCC of the individual TM models and the COMPL
model (last line) when tested on independent test data from the corresponding
phyla/classis. Column 4, the MCC of the WDM model when tested on
independent test data from specific phyla/classis.
1Organisms of phylum/class for which no TM model is available were tested
using COMPL model. COMPL was trained on all organisms from classes or phyla
for which only either pathogenic or non-pathogenic strains were available.
2MCC for WDM on the same test-set used for COMPL.
3Overall MCC for all the TM models and the COMPL model.
doi:10.1371/journal.pone.0077302.t002
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grouping organisms at different taxonomic ranks to improve the

predictions in species like E. coli, in which the high amount of

shared genes among pathogenic and commensal strains makes it

particularly difficult to predict. In this study the original approach

[31] was, furthermore, extended from c-proteobacteria to all

species and extended to not only give a prediction, but also identify

which genes predicted to be most significantly associated with (or

important for) pathogenicity or non-pathogenicity. Thus, the

method will not only provide a prediction of pathogenicity, but

may also be useful for identifying novel putative pathogenicity

genes, supporting further functional genomic studies.

The predictor has been implemented as a free to use web-

service, called PathogenFinder, to which users can upload raw reads,

obtained from different NGS sequencing platforms, as well as

assembled genomes, and obtain a fast estimation of the pathogenic

potential of the bacteria they are studying, as well as the

identification of potentially pathogenic genes. PathogenFinder could

be helpful in situations of possible bacterial outbreaks, in which a

fast analysis of the unknown strain is important to save lives, and

follows the direction modern clinical microbiology [32] and global

epidemiology [33] are taking driven by the revolution brought by

high throughput DNA sequencing technologies.

Results and Discussion

Overview on the Created Models
In this work we developed a method for predicting the

pathogenicity of novel bacteria. We did this by comparing the

proteins of the strain under investigation to a protein family

database (PFDB) composed of groups of proteins (protein families

or PFs) that were either associated with pathogenic or non-

pathogenic organisms. In the creation of the PFDB we used 885

complete bacterial genomes (Table S1), 372 of which were tagged

as human pathogens and 513 as non-pathogens.

All the proteins encoded by the bacterial genomes were initially

clustered, and significant clusters, in which the majority of the

proteins originated from either pathogens or non-pathogens, were

identified. The PFs were accordingly tagged as pathogenic or non-

pathogenic and a weight (Z-score) was calculated for each of them

(see Materials and Methods for further details). Eight models were

built using bacteria belonging to the same phylum or class as

training data (Table 1). These models are named TM-taxname,

where taxname is the phylum or class (e.g., bacteroidetes) of the

organisms in the training data. Two other models created were:

the whole-data model (WDM), which was trained using all the 885

bacteria in our training-set; the complement model (COMPL),

which was trained using the organisms belonging to classes and/or

phyla for which we had either only pathogenic or non-pathogenic

strains and for which it was hence not possible to create specific

models (Table S1).

Given a query organism, based on the number and kind of PFs

that the proteins of the query organism are similar to, a prediction

on whether it is human pathogenic or non-pathogenic is

performed. The predictor has been implemented as a free to use

web-server called PathogenFinder, to which a user can upload either

the raw reads or the complete or draft genome of the organism

they want to assess the pathogenicity of. One of the 10 built

models can be selected for the prediction, and if the user does not

know which class or phylum the organism belongs to, the web-

server will identify it automatically by predicting 16S genes, using

RNAmmer [34], and accordingly select the appropriate model to be

used for the prediction.Both the set of matches used for the

prediction and the raw matches from PathogenFinder are down-

loadable. The latter is particularly useful, since it contains more

information about pathogenicity than the standard server output,

Table 3. Top 10 ranking pathogenic protein families and
annotated functions of their proteins for TM-
Gammaproteobacteria model.

RANK Z-score P N Function

1 9.134 77 8 N-
acetylmannosamine
kinase (TCS)

2 8.500 49 0 Fimbrial proteins

3 8.170 62 6 Sialic Acid Transporter

4 8.158 53 3 Transposition helper
protein

5 8.023 62 7 Acetyltransferase,
type III secretion
proteins

6 8.023 62 7 Macrolide-specific
efflux, membrane
protein

7 8.023 62 7 Type II secretion
proteins

8 7.922 69 10 Unknown function,
possible membrane
proteins

9 7.906 60 7 Unknown function

10 7.855 53 4 Cythochrome b562

P and N columns contain the number of pathogenic and non-pathogenic
organisms in the protein family respectively.
doi:10.1371/journal.pone.0077302.t003

Table 4. Top 10 ranking non-pathogenic protein families and
annotated functions of their proteins for TM-
Gammaproteobacteria model.

RANK Z-score P N Function

1 26.52 3 34 Protein-L-isoaspartate

2 26.44 2 31 ThiJ/PfpI domain
protein

3 26.43 6 40 Anthranilate synthase
component I

4 25.98 6 36 8-amino-7-
oxononanoate
synthase

5 25.92 5 34 Unknown function,
putative transcriptional
regulator

6 25.82 0 21 Adenosylmethionine
decarboxylase

7 25.81 8 39 Unknown function

8 25.80 2 26 Unknown function,
probable condensation
protein

9 25.68 0 20 Nitrite transporter

10 25.62 1 22 Glucose-galactose
transporter

P and N columns contain the number of pathogenic and non-pathogenic
organisms in the protein family respectively.
doi:10.1371/journal.pone.0077302.t004
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and could hence be used for a more detailed analysis of the

pathogenicity features of the organisms under investigation.

Performance on Five-Fold Cross Validation and
Independent Test Data

The TM models were tested using only organisms belonging to

the specific phylum/class, while in the case of the WDM model the

whole independent data-set was used for the test.

Table 2 shows the performance of the ten models as obtained by

5-fold cross validation (CV) (column 2) and on independent test-

sets of organisms from the same taxonomic group (column 3). As

can be seen for the Tenericutes and Bacteroidetes phyla, the

performances were very poor when compared to the MCC

obtained in the CV tests. This is likely to be caused by the models

being built using a small number of organisms (Table 1). For

instance, the TM-Tenericutes model was trained on only 14

isolates. Furthermore, it was tested on a set of organisms from

species that were not present in the training-set.

To compare the performance of the WDM model to those of

the TM and COMPL models, we examined the MCC of the

WDM on the same test-sets used for the other models (column 4 in

Table 2).

For example, to examine the performance of the WDM in

predicting the pathogenicity of Firmicutes bacteria, we tested it

with the same organisms used to assess the accuracy of the TM-

Firmicutes model.

The MCC obtained by the WDM (0.758) on all bacteria was

higher than the overall accuracy of all the TM models and

COMPL model combined (0.736). Nonetheless, the TM models

performed better for bacteroidetes, a, b, and c-proteobacteria,

even though for the latter the difference from the WDM was not

significant. The remaining TM models and the COMPL model

had lower MCC than the WDM for the same organisms.

Performance on Draft Genomes and Escherichia coli
The models ability in predicting the pathogenicity of an isolate

as based on a draft genome was tested using 259 sets of illumina

raw reads from 6 different species. While in the case of

Campylobacter jejuni, Klebsiella pneumoniae and Staphylococcus aureus (57

isolates in total) all the predictions were correct, the results were

not satisfactory for Enterococci and E. coli. Of 50 Enterococcus

Table 5. Top 10 ranking pathogenic protein families and annotated functions of their proteins for the WDM model.

RANK Z-score P N Function

1 10.18 38 0 Borrelia Plasmid partition proteins

2 9.49 33 0 TCS associated genes, unknown functions

3 9.19 31 0 Lipoate-protein ligase, lipoate metabolism
associated proteins

4 9.19 31 0 Unknown functions, flavin oxidoreductase

5 9.04 30 0 Exfoliative toxin A

6 8.89 29 0 Pili assembly proteins, Motility, Secretion Systems

7 8.89 30 0 Unknown function, shikimate kinase

8 8.89 29 0 Pili assembly proteins, Motility, Secretion Systems

9 8.74 28 0 Multiple antibiotic resistance (MarR) family proteins

10 8.74 28 0 Mutarotase Yjht (sialic acid mutarotation), unknown
functions

P and N columns contain the number of pathogenic and non-pathogenic organisms in the protein family respectively.
doi:10.1371/journal.pone.0077302.t005

Table 6. Top 10 ranking non-pathogenic protein families and annotated functions of their proteins for the WDM model.

RANK Z-score P N Function

1 26.68 0 63 tRNA proteins

2 26.62 0 62 ABC transporter related proteins (for d and a-
proteobacteria)

3 26.18 0 54 Rubrerythrin

4 26.07 0 52 Rubrerythrin

5 26.01 0 51 Iron-sulfur binding domain proteins

6 26.01 0 51 Hydroxymethylglutaryl-CoA synthase

7 25.95 0 50 Unknown function

8 25.89 0 49 Unknown function

9 25.83 0 48 Unknown function

10 25.70 0 46 Sulfite reductase subunit

P and N columns contain the number of pathogenic and non-pathogenic organisms in the protein family respectively.
doi:10.1371/journal.pone.0077302.t006
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faecalis and 49 Enterococcus faecium from healthy Danish pigs, all

isolates were predicted as pathogenic. Our training-set only

contained a single pathogenic E. faecalis and no E. faecium, which

may explain these results.

The WDM as well as the TM-Gammaproteobacteria models

predicted the 10 E. coli strains in the test-set as pathogenic,

although 4 strains were annotated as non-pathogenic. A similar

situation was observed for the 103 E. coli draft genomes.

Accordingly, we decided to create a model only for the

Enterobacteriaceae family, using the organisms in our training-set.

The resulting model correctly predicted 1 of 4 non-pathogenic E.

coli achieving an MCC of 0.41, but all draft genomes were still

predicted as pathogenic. The model also showed improvements in

predicting other Enterobacteriaceae, with an MCC of 0.675, while

WDM and TM-Gammaproteobacteria had an MCC of 0.519 and

0.617, respectively.

To improve the predictions for E. coli further, we decided to

create 2 special models. These models were called ecoli_boost and

enterobac_boost, and they were trained on a set that was enriched

with 14 extra non-pathogenic E. coli strains downloaded from the

National Center for Biotechnology Information (NCBI) (Table

S2). These two models had a noticeably improvement on both CG

test-sets and on the 103 assembled E. coli isolates, on which MCC

was 0.346 (Acc = 67%) and 0.360 (Acc = 68%) for enterobac_boost

and ecoli_boost, respectively. The lists of organisms used to train the

enterobac_boost and ecoli_boost models, together with more details on

the results on E. coli can be seen in Table S2.

Comparison to other Prediction Methods
Presently, the literature describes two main approaches for

predicting the human pathogenicity of bacteria based on whole

genome sequencing data: the first, proposed by Andreatta et al.

[31], is able to predict the pathogenicity of a-proteobacteria, and it

was from this study we borrowed the concept of PFs; the second

method, developed by Iraola et al. [28], uses SVM [35], and can

predict the pathogenicity of all types of bacteria. In this method

the authors selected 120 genes associated to pathogenicity from

600 complete genomes using SVM, and built a prediction model

based on the selected genes.

Figure 1. Pratio and Z-score histograms for TM-Betaproteobacteria model. The model was built setting MinOrg = 2, HT = 0.9 and LT = 0.3. (A)
and (B) respectively show the Pratio and Z-score histograms for the clusters i such that ORGi$MinOrg. By this step the original 69,744 clusters are
reduced to 26,706. In (A) the bars at the extremes are the count for clusters containing either only genes from pathogenic organisms (right bar) and
non-pathogenic ones (left bar), while the small pick in the middle are clusters containing the same number of pathogenic and non-pathogenic
organisms, and hence will not be used since they provide no discriminative information about pathogenicity. (C) and (D) show the same histograms
for the PFs obtained removing all the significant clusters with Pratio value between LT and HT. We can see how the amount of non-pathogenic PFs is
higher than the pathogenic ones (C). HT and LT can be used to modify the amount of both pathogenic and non-pathogenic PFs, which can be useful
in model in which the training-set has an unbalanced amount of pathogenic and non-pathogenic organisms. In (D) the negative Z-scores are
associated with non-pathogenic families while the others are for pathogenic PFs.
doi:10.1371/journal.pone.0077302.g001
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To compare our method to the one proposed by Andreatta

et al., we built a model using the same set of a-proteobacteria

organisms (155) and the same parameters (MinOrg, HT, LT) used

by Andreatta et al. The key differences between our method and

the one by Andreatta et al. are: 1) we used CD-HIT instead of

BLAST in both the protein clustering and prediction phases; 2) we

used Equation 3 to filter the significant matches of the query

sequences, while Andreatta et al. filtered based on a BLAST e-

value threshold; 3) We compute the final predictions using the Z-

scores, while Andreatta et al. counted the number of pathogenic

and non-pathogenic families matched. The obtained model was

tested on the same independent set used by Andreatta et al. This

set included 24 organisms (14 pathogenic), and our model was able

to correctly classify 23 organisms (95.8%). This is equivalent to an

MCC of 0.92, while Andreatta’s MCC was 0.837. The one

organism that our method was not able to correctly classify, is

Salmonella enterica Serovar Gallinarum str. 287/91 [Gen-

Bank:30689], which is pathogenic for poultry, but not known to

be for humans. The pathogenicity of this organism is restricted to

chicken although it shares a high quantity of genomic features

associated to pathogenicity with its human pathogenic ancestor

Salmonella Enteriditis [36]. It is likely that these features mislead the

prediction model, since also the method by Andreatta et al.

wrongly classified this S. enterica strain.

To compare our method to the predictor proposed by Iraola

et al., we used the test-set they used for their blind test evaluation.

The test-set, originally composed of 233 organisms, contained 5

strains, which were excluded from the comparison, since they were

also present in our training-set. Overall, for the comparison, we

had a test-set composed of 228 organisms, 192 of which are tagged

as human pathogens and the remaining 36 as non-pathogens.

PathogenFinder achieved an overall MCC of 0.67 for the

taxonomy models and 0.65 for the WDM model. Both results

are higher than the MCC of 0.6 obtained by the method proposed

by Iraola et al. Table S3 contains a detailed description of the

comparison, including the organisms used and the corresponding

predictions from both methods.

PFDB Analysis and Biological Interpretation
For each created model, an analysis of its PFDB was performed

and its PFs ranked based on their Z-scores. The scores above 0 are

associated with pathogenic PFs, while those below 0 are associated

with non-pathogenic PFs. No protein function analysis was done

prior to the models creation, making the approach unbiased on the

genomic content of the organisms, regardless of their pathogenic-

ity. In this paragraph we describe the analysis of the PFs of the

TM-Gammaprobacteria and WDM.

The analysis of the PFDB of TM-Gammaproteobacteria model

showed that the high ranked pathogenic families (Table 3)

contained proteins well known to be associated to pathogenicity.

The family at rank 1 and 3 contained N-acetylmannosamine

kinase, which is a key enzyme in sialic acid synthesis and sialic acid

transport proteins. Sialic acid is important for virulence and is

believed to help the microbes to disguise themselves as host cells in

order to elude the host’s immune system response [37]. Fimbrial

proteins (rank 2) are important for bacterial adherence [38]. At

rank 10 we found cytochrome b562 proteins that help bacteria to

survive and grow in conditions of poor oxygen [39]. Other high-

ranked families contained proteins associated with secretion

systems (II and III) and antibiotic resistance.

An interesting finding, which was also found in [31], was the

presence of families containing proteins with unknown functions

associated with pathogenicity. This finding suggests that those

proteins with unknown function might have important roles in the

bacterial pathogenesis and could form the basis for further

functional studies improving our understanding of bacterial

pathogenicity. Proteins with unknown functions were also

identified as associated with non-pathogenic PFs (Table 4).

The analysis of the PDBF of the WDM enabled us to see if

proteins involved (or not involved) in pathogenesis belong to

organisms of different taxonomy, and at the same time gave us an

insight on how proteins are conserved along the different phyla.

Again, we found that the top ranked families associated to

pathogenicity (Table 5) contained also proteins with unknown

function.

The highest ranked PF contained proteins encoded by plasmids

from different pathogenic Borrelia species (mainly Burgdorferi), which

are involved in pathogenesis [40,41]. The family ranked 3rd

contained proteins associated with lipoate metabolism. The

acquisition and use of lipoate by pathogens affect their virulence

and the pathogenesis of the diseases they cause [42]. Among the

toxins found were: exofiliative toxin A (family-rank 5) in

Staphylococcus aureus strains, causative of Staphylococcal scalded

skin syndrome [43,44]; streptolysin (O and S), mainly found in

Streptococcus pathogenic species [45]; hemolysin (II, III, a and b
types) found in PFs mainly composed of a-proteobacteria [46,47]

and firmicutes organisms [48]; shiga toxin, a common pathoge-

nicity factor in many virulent E. coli strains [49]; dermonecrotic

toxin (DNT), one of the main virulence factors in many Bordetella

species [50](pertusiss in human), but at the same time present in

plant pathogenic organisms like Erwinia amylovora [51] and Erwinia

pyrifoliae [52]. The fact that we could find PFs containing DNT

tagged as pathogens and others tagged as non-pathogenic (like the

one containing DNT for E. amylovora and E. pyrifoliae) is an example

of the ability of our clustering method to associate a given protein

(a toxin in this case) to human pathogenicity as well as non-

pathogenicity depending on the organism in which it is found.

Another example through which we could see the discriminative

power of our PFs, was in associating pathogenicity to the different

secretion system types proteins (SST1–SST6). For SST3 we

identified 284 protein families, 147 of which were tagged as

pathogenic. The pathogenic PFs were composed of human

pathogenic a-proteobacteria strains, while the non pathogenic

PFs contained plant pathogenic organisms from proteobacteria

genera like Xanthomonas, Agrobacter and Erwinia, which use SST3

(and other secretion systems) to infect the hosts cells of plants

[53,54].

The protein families with high rank associated with non-

pathogenicity (Table 6) were usually composed of proteins present

in bacteria living in hot springs, lake surfaces or deep in the sea,

and the functions are associated to their ability to survive under

those extreme environmental conditions. Among those proteins

are Rubrerythrin, found in anaerobic sulphate-reducing bacteria

like Geobacter and Desulfivibrio [55]. When the PFs were not

composed of proteins from environmental bacteria, they contained

mainly probiotics or plant pathogens. It is important to note that

Figure 2. PFDB, training and test-set for each model. Each bar-plot shows the percentage of pathogenic (orange) and non-pathogenic (light-
blue) organisms in the training and test-set, and the percentage of pathogenic and non-pathogenic protein families in the PFDB of the model
identified by the title of the bar-plot (eg. WMD). Below each horizontal bar-plot the number of protein families composing the PFDB of the model the
bar-plot refers to, along with its size in megabytes and the number of sequences, is shown.
doi:10.1371/journal.pone.0077302.g002
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since the WDM model was created with HT and LT parameters

with values of 1.0 and 0 respectively, we only have PFs composed

of proteins from either only pathogenic organisms or only non-

pathogenic organisms.

Conclusions
There is an increasing need for fast identification of unknown

bacteria with particular focus on the assessment of their potential

pathogenicity. In this work we presented PathogenFinder, a web-

server that by analysing the user-uploaded proteome can identify

genomic features associated with both pathogenicity and non-

pathogenicity. Given an input proteome the method quickly

predicts its potential pathogenicity, making it a useful tool to be

used together with other web-services developed for bacterial

outbreak surveillance. Moreover, the possibility for the user to

download the complete set of predicted pathogenicity features for

the input organism makes PathogenFinder convenient for the analysis

of pathogenic and harmless strains for microbiologists, epidemi-

ologist and in general institutions studying bacterial pathogenesis.

One of the novel aspects in our approach is in the construction

of the prediction models, which was carried out without any prior

analysis of the proteins in our training-set, by just tagging our

organisms as pathogenic or non-pathogenic and identifying

protein families that were frequently found in pathogenic or

non-pathogenic organisms.

It is important to notice that even though an isolate may have

been obtained from a non-pathogenic environmental or animal or

human related source it is not necessarily non-pathogenic. Such

strain might in fact be highly pathogenic opportunistic pathogens.

This naturally makes the creation of the optimal reference

database difficult, but with increased number of isolates with

well-defined meta data this is should still be doable.

We observed how PathogenFinder performs better than other

pathogenicity prediction methods described in the literature,

which usually rely on taxonomy and global sequence similarity

with small sets of genes known to be associated with bacterial

pathogenesis. We had less good results for species of the

tenericutes phylum, and extra work need to be done to obtain

statistically significant results for opportunistic strains (e.g. S.

aureus) for which we could not tag any of our strains as non-

pathogenic. The accuracy in predicting opportunistic bacteria

could be improved by building specific models (e.g. at species level)

as soon as new strains are available and there is a reasonable

amount of both pathogenic and harmless strains. We have also

shown how the prediction accuracy can be enhanced by increasing

the number of organisms in the training-sets and/or making

specific models at different taxonomic ranks, showing the example

of E. coli, which is particularly difficult to predict because of the

high similarity between commensal and pathogenic strains.

With the fast growing number of available bacterial complete

genomes and with the increasing quality of the meta data we

envision the possibility in the near future to build prediction

models targeting only bacteria of a given genus or species, or even

better, to build models to identify pathogenic features involved in

specific diseases.

Materials and Methods

Training and Test Data
All available complete bacterial genomes (NCBI Genome

Project, accessed on 10th Nov. 2010) were considered for the

creation of the training-sets.

The pathogenicity information for the retrieved organisms were

taken from NCBI genome project pages as described in Andreatta

et al. [31], and for 885 of the 1,224 downloaded organisms, we

were able to find pathogenicity information. The final complete

training-set (Table S1) was composed of 513 organisms tagged as

human non-pathogens and 372 tagged as human pathogens. For

the human pathogenic organisms we checked for evidence in the

literature.Opportunistic pathogens (e.g. from species like Staphylo-

coccus aureus [56] or Pseudomonas aeruginosa [57]) were still tagged as

pathogenic even though it has been shown that some of them can

live inside the host without causing any disease, and their

pathogenicity is sometimes related to the host’s health conditions.

From January 2012, NCBI removed pathogenicity information

from its pages, redirecting the users to Genomes Online Database

(GOLD) [58]. On 26th Feb. 2012 we queried GOLD for

pathogenicity information about organisms that had been

published after 5th Nov. 2010 (the date of the latest published

bacteria in the training-set). We were able to extract pathogenicity

information for 449 organisms, and subsequently retrieved the

corresponding complete genomes and plasmids from NCBI based

on the NCBI project ids.

The final test data (Table S1) was composed of 449 organisms,

294 of which were tagged as human non-pathogens and 155 as

human pathogens.

Protein Clustering
The model creation consisted of the following 2 main steps:

I. Protein Clustering

II. PFDB Creation

The initial idea for clustering the proteins was to use BLAST

[59], but due to the size of our dataset (almost 3 million proteins),

it would not have been computationally feasible. Instead, we used

CD-HIT [60], which made it possible to cluster all the proteins in

approximately 24 days using 2 3 Ghz dual-core CPUs in parallel

and a 8 Gb of RAM.

The output from the program were 3 files containing

respectively: 1) a list of cluster ids followed by the FASTA headers

of the sequences composing the clusters; 2) a FASTA file

containing all the clusters representative sequences; 3) a FASTA

file containing all the solitary sequences that could not be included

in any cluster.

Protein Family Database (PFDB) Creation
Our prediction models are based on the concept of protein

families as initially proposed in Adreatta et al. [31]. Protein

families are groups of proteins with a certain degree of similarity.

The PFs were created using a two-steps filtering of the clusters

created using CD-HIT. To perform this filtering we used four

parameters: MinORG, Pratio, LT and HT.

Let ORG be the number of organisms which have proteins in a

given cluster i. We define MinORG as the minimum number of

organisms that must have proteins in the i cluster for it to be

considered significant. As such, MinORG is a lower threshold for

the ORG value.

Equation 1. Ratio of human pathogenic organisms having

proteins inside the cluster i on the total number of organisms

having proteins in i. Newton’s Second Law

Pratio(i)~
HPi

ORGi

ð1Þ

Pratio (Equation 1) is the ratio of the number of pathogen

organisms having proteins in the i cluster (HPi) on the total
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number of organisms in i (ORGi). LT and HT are thresholds for

the Pratio that we used to define if a given significant cluster should

be tagged as pathogenic or non-pathogenic according to equation

2.

Equation 2. Function used to define if a given significant

cluster should be tagged as ‘pathogen family’ or ‘non-pathogen

family’.

f (i)~

{1 if Pratio(i)ƒLT

0 if LTvPratio(i)vHT

1 if Pratio(i)§HT

8><
>:

ð2Þ

Let f (Equation 2) be the function we use to decide if a given

significant cluster should be tagged as pathogenic or non-

pathogenic. If the number of sequences from pathogens and

non-pathogens is too close in a given cluster (if Pratio = 0.5 then

f(i) = 0), the cluster does not have any discriminative value for

pathogenicity and is unusable.

Given a protein cluster i, it was considered a protein family if

the following 3 conditions were satisfied:

I. ORGi$MinORG

II. f (i)=0

III. Pratio§HT or PratioƒLT

The significance of a protein family depends on its ORG value

and its Pratio. A statistical measure called Z-score (Z) was used to

take into account the above two values of a family and assess its

significance. The estimation of the Z values was performed on the

set C composed of all the clusters i satisfying condition I. Let m and

s be the average and standard deviation respectively of the Pratio of

the clusters in C. Z is a measure representing by how many

standard deviations s the mean x of a sample (a cluster in our case)

differs from the mean m of the population. Given a cluster i in C,

its mean correspond to its Pratio and we calculate the Z value for i as

follows:

Zi~
Pratio(i){m

SEi

Where SE is the standard error of the mean for i, and it is:

SEi~
s

ORGi

To each protein family, a Z value was assigned, and these are

used in the calculation of the final prediction score as well as a

ranking value in the analysis of the protein families. Figure 1 shows

the distributions of the Pratio values and Z-scores for both

significant clusters and protein families for the TM-Betaproteo-

bacteria model, while Figure 2 shows for each of the models built

the proportion of pathogenic and non-pathogenic families in the

PFDB, together with the training-set and test-set for the 10 models

built. All the sequences in the PFDB are used to perform the

predictions.

Models Optimisation
The prediction models were verified by 5-fold cross validation.

For each of the models, many trials and tests were performed

before choosing the MinOrg, LT and HT parameters for the final

models. At each CV a parameter called Zthr, was further

optimised. Zthr is the threshold used to decide whether an input

organism should be predicted as pathogenic or not, by comparing

it to the summation of Z values obtained for the matching

sequences in the input proteome. The parameters (MinOrg, HT,

LT)(Table 1) of the models with the highest MCC in the CV tests

were used to create the final models, and the corresponding Zthr

values will be used as thresholds for the predictions.

Pathogenicity Prediction
The prediction method takes as input a FASTA file containing

the proteins of the organism for which we want to assess the

potential pathogenicity. In case the input is a complete or draft

genome, initial gene prediction is performed using PRODIGAL

[61]. PRODIGAL outputs a set of proteins representing the

predicted genes. This is then used as input to our method. Using

CD-HIT-2D [60], the input file is compared to the PFDB, and the

output will contain all the input sequences that matched sequences

in the PFDB, and that are used to compute the final prediction.

The following 4 steps describe the process that leads to the

prediction:

I. Compare the input proteins to the PFDB

II. Filter hits based on the identity threshold (Equation 3)

III. Calculate final score summing the Z values associated to

the matched PFs

IV. Compare the final score to the model’s Zthr threshold and

give the final prediction.

From the comparison in step I, we obtain a list of clusters, the

representatives of which are sequences belonging to the PFDB,

while the non-representative sequences come from the input.

Because it is possible that more than one of the input proteins fall

inside the same cluster, the sequence with the highest identity

percentage with the representative is chosen. [!ht].

Equation 3. Calculates the identity threshold to select

significant matches that will be used in the final prediction. The

calculation is based on statistics on the identity values obtained for

all matching query sequences.

idenThr(hits)~

mzszmax

2
if mzsƒmax

max otherwise

8<
: ð3Þ

The list of matches is then filtered based on an identity

threshold that is dynamically computed at each prediction using

the function idenThr (Equation 3). Let hits be a set containing all

the percentage identity values for all our matches. Let m and s be

respectively the average and standard deviation of the percentage

identity values in hits. Let max be the maximum percentage identity

obtained for the hits in PFDB. Remembering that, based on the

settings of CD-HIT-2D, the minimum identity is 60%. Equation 3

calculates the identity threshold as the middle point between the

maximum, and the average increased by one standard deviation,

of the identities in hits. Selecting all the matches with an identity

higher than idenThr(hits), we will obtain a list of hits with a very

high identity relatively to the distribution of identities of our hits.

The matches below that threshold will not be used in the final

prediction. The process will sometimes greatly reduce the number

of matches, but this is in favour of matches with higher identity,

making the final prediction more reliable, if compared to the
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results obtained using a fixed threshold, as we proved by using the

paired student’s t-test (results not shown).

In the end we compute the summation of the Z-scores

associated with the families matching the input sequences (III). If

the sum of the Z-scores is above Zthr the input is considered

pathogenic, otherwise it is considered non pathogenic (IV).

Supporting Information

Table S1 Training and Test organisms. xlsx file containing

the list of organisms in the training and test-set and a table

showing the phyla of the organisms in the training-set used to build

the COMPL model.

(XLSX)

Table S2 Extra Escherichia Coli Strains. xlsx file contain-

ing the training-sets used for building ecoli_boost and enterobac_boost

models, including the list of extra E. coli strains and a summary of

the results in the prediction of E. coli and enterobacteriaceae

organisms.

(XLSX)

Table S3 Comparison with other methods. xlsx file

containing a detailed description of the comparison of Pathogen-

Finder and the method described in [28].

(XLSX)
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