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Abstract: Eutrophication of water catchments and the greenhouse effect are major challenges in
developing the global economy in the near future. Secondary effluents, containing high amounts
of nitrogen and phosphorus, need further treatment before being discharged into receiving water
bodies. At the same time, new environmentally friendly energy sources need to be developed.
Integrating microalgal cultivation for the production of biodiesel feedstock with the treatment of
secondary effluent is one way of addressing both issues. This article provides a comprehensive
review of the latest progress in microalgal cultivation in secondary effluent to remove pollutants and
accumulate lipids. Researchers have discovered that microalgae remove nitrogen and phosphorus
effectively from secondary effluent, accumulating biomass and lipids in the process. Immobilization
of appropriate microalgae, and establishing a consortium of microalgae and/or bacteria, were both
found to be feasible ways to enhance pollutant removal and lipid production. Demonstrations of
pilot-scale microalgal cultures in secondary effluent have also taken place. However there is still
much work to be done in improving pollutants removal, biomass production, and lipid accumulation
in secondary effluent. This includes screening microalgae, constructing the consortium, making
use of flue gas and nitrogen, developing technologies related to microalgal harvesting, and using
lipid-extracted algal residues (LEA).

Keywords: microalgae; the treatment of secondary effluent; pollutants removal; biomass production;
lipid accumulation

1. Introduction

Wastewater treatment plants (WWTPs) have played a significant role in improving
water environments and the efficient use of water resources. Secondary effluent from the
anaerobic–anoxic–oxic (A2/O) process (the most commonly used wastewater treatment process in
China), or processes derived from this, is considered to be low in organics, nitrogen, and phosphorus [1].
Generally the biological removal of nitrogen via an A2/O process is mainly dependent on nitrifying
bacteria and denitrifying bacteria [2]. However some features of the process, such as slow growth
rate, sensitivity to toxic shocks, pH, and temperature change, are not conducive to the stable removal
of nitrogen from wastewaters [3]. In China in particular, many WWTPs are facing pressures to
improve effluent quality to meet the Chinese National First A-level Sewage Discharge Standard.
This means that secondary effluent should not exceed the threshold of chemical oxygen demand
(COD) 50 mg/L, ammonium 5 mg/L, total nitrogen (TN) 15 mg/L, and total phosphorous (TP)
0.5 mg/L. More importantly, some reports show that the threshold of nitrogen and phosphorus
causing eutrophication in streams is 0.21–1.2 and 0.01–0.1 mg/L, respectively [4]. Tertiary treatment is,
therefore, necessary to reduce the risk of eutrophication. Currently tertiary treatment technologies
are developing rapidly, focusing on coagulation–sedimentation, adsorption, ion exchange, membrane
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technology, biological filtering, ozonation, and biological nutrient removal (BNR) process, etc. [5–10].
Specifically facilities have been upgrading their BNR process to meet the new standards for nitrogen
and phosphorous discharges. At present, the most effective BNR processes are the Modified Bardenpho
and the University of Cape Town (UCT) treatment process, which exhibit excellent nitrogen and
phosphorus removal efficiency, as reviewed by Arita et al. [11]. Nevertheless these techniques
have many disadvantages; for example, the instability of the treatment effect, high investment, high
treatment cost, and difficulty in being popularized in large scale. Thus efficient, stable, low cost tertiary
wastewater treatment systems are essential in reducing nitrogen and phosphorus concentrations in
secondary effluent.

Fossil fuels are, currently, the main source of energy for human production activities. Excessive
consumption of them accelerates the emission and accumulation of CO2, which results in the
greenhouse effect and aggravates global climate change [12]. The combustion of fossil fuels also
contributes to gaseous pollutants, such as SO2, NOx, CO, ozone, and volatile organic compounds
and may have adverse effects on human health and the environment [13]. Biodiesel appears to be an
attractive partial alternative to fossil fuels and a way to reduce carbon emissions and reduce the risk of
environment pollution from nitrogen oxides and sulfur oxides. At present, biodiesel derived from oil
crops, animal fats and waste oil plays an effective part in addressing the problems caused by the use
of fossil fuels [14–17]. These bioresources do, however, have some disadvantages. For example, the
production of oil crops requires huge tracts of arable land and fresh water [15], and the production of
animal fats may not be sufficient to replace fossil fuels [17]. It is essential that we seek new bioresources
for biodiesel production that need only limited or no additional arable land; that need minimal clean
water or can use wastewater; and that, simultaneously, have high biomass and lipid productivity.

Microalgae consist of a wide range of autotrophic organisms. They have comparable
photosynthetic efficiency to higher plants, rapid growth rate, and notable adaptability. Carbon,
nitrogen, and phosphorus are essential elements for microalgal growth and can be effectively used
via different metabolic pathways [18]. They therefore have potential advantages for the removal of
pollutants from wastewater.

Some microalgae have been shown to be capable of doubling their biomass several times per day.
For example, Ochromonas danica, grown in a system containing 40 g/L waste cooking oil with acid
values of 10.7 mg KOH/g, has a short doubling time of 12.1 h [19]. This short harvesting life will allow
multiple and continuous harvesting of biomass throughout the year. Compared to many types of
plants, microalgae are easy to cultivate and can produce a high yield of lipid for biodiesel production.
As indicated by Nascimento et al. [20], microalgae with a lipid content varying from 13% to 49%
have biodiesel productivity ranging from 3.4 to 23.0 m3·ha−1·year−1 in open raceway pond systems.
By contrast, the biodiesel productivity of soybeans is only 0.446 m3·ha−1·year−1 [21]. Also, as reviewed
by Bohutskyi and Bouwer [22], Harun et al. [23], and Sialve et al. [24], the microalgal biomass
remaining after lipid extraction can be used to generate methane. Coupling biodiesel and methane
production provides significant energy advantages, along with the sustainability and economic benefits
from nutrient recycling. Microalgae can also fix CO2 from flue gas to enhance biomass and lipid
production [25,26]. This mitigates the greenhouse effect. Microalgae can produce neutral lipids, which
are particularly suitable as a potential alternative to fossil fuel. Accordingly, compared to existing
bioresources, microalgae are regarded as an excellent alternative for biodiesel production.

2. Advances in Microalgal Cultivation in Secondary Effluent

2.1. The Feasibility of Microalgal Cultivation in Secondary Effluent

Cai et al. [18], Chen et al. [27], and Zeng et al. [28] reviewed many investigations into lipid
accumulation and the biological removal of nitrogen and phosphorus via microalgae in diverse
wastewaters. There are some challenges in cultivating microalgae in wastewater, including unbalanced
N/P ratio, the presence of bacterial contamination and competitors, low biomass density and
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lipid content, and incomplete removal of nutrients [29–31]. Nevertheless these studies effectively
demonstrate that wastewaters can be an excellent medium for biomass production and lipid
accumulation and that nitrogen and phosphorus are also removed from wastewaters.

The physical and chemical characteristics of secondary effluent are completely different from
those of municipal wastewater, anaerobic digestion effluent, industrial wastewater, and agricultural
wastewater. Nearly all pollutants with high biodegradability in wastewaters are degraded in WWTPs,
and the biodegradability of the remaining organic compounds in secondary effluent is poor. It has
been reported that the ratio of BDOC/DOC (BDOC: biodegradable dissolved organic carbon; DOC:
dissolved organic carbon) in secondary effluent is around 0.25 [32]. The lack of a carbon source is,
therefore, a serious challenge for microalgal cultivation with secondary effluent. Li et al. [33] isolated a
freshwater microalga, Scenedesmus sp. (LX1), and cultivated it with secondary effluent to investigate
its ability to remove pollutants and accumulate lipids. The results indicated that Scenedesmus sp. (LX1)
was well adapted to secondary effluent. The microalgal biomass and lipid content was 0.11 g/L and
31%–33%, respectively, after 15 days batch cultivation. At the same time, concentrations of nitrogen
and phosphorus in the secondary effluent were decreased by 98% and 98.5%, respectively. Several
other microalgae, such as Botryococcus braunii and Chlorella ellipsoidea (YJ1), have also been grown in
secondary effluent for biomass production and pollutant removal, although the microalgal biomass
was below 0.5 g/L [34,35]. Importantly the lipid content of C. ellipsoidea (YJ1) was up to 43% [26].
In other studies, microalgal lipid accumulation has been strengthened by nutrient starvation [35].
Consequently, although biomass production may be low, high lipid content can be achieved with low
nutrient concentrations in secondary effluent.

Some filamentous, mat-forming cyanobacteria affiliated to Phormidium have been isolated from
Arctic, subarctic, and Antarctic environments to investigate their potential for tertiary wastewater
treatment in cool climates. These cyanobacteria exhibited superior growth and high phosphate uptake
rates under cold temperatures (10 and 5 ◦C, respectively) and formed aggregates that could readily be
harvested by sedimentation [36,37]. These interesting studies provide avenues for further research and
lay the foundations for microalgal cultivation and tertiary wastewater treatment in regions of high
altitudes and latitudes with cold climates.

2.2. Microalgal Lipid Production in Secondary Effluent

Although low nutrient concentrations in secondary effluent are beneficial to microalgal lipid
accumulation, microalgal biomass production is inhibited (as seen in the studies described in
Section 2.1), and this shortcoming needs to be addressed. Some studies have found that relatively high
biomass was obtained when microalgae were cultivated in secondary effluent. For example, biomass
production of S. obliquus and B. braunii, cultivated in secondary effluent, was up to 1.684 and 1.88 g/L,
respectively [38,39]. The possible reason for this was supplementation with CO2 as an inorganic carbon
source, promoting microalgal growth. Park et al. [40] found that three strains, Chlamydomonas debaryana
AMB1, C. sorokiniana RBD8 and Micractinium sp. RB1b, showed large increases in biomass productivity
when cultivated mixotrophically in secondary municipal wastewater supplemented with glycerol.
This indicates that the exogenous supplement of an organic carbon source helped to strengthen
the biomass production of microalgae. The adaption to secondary effluent was species-dependent.
Compared to the high biomass production of Muriellopsis sp. and S. subpicatus in secondary effluent,
C. vulgaris, C. fusca, Chlorella sp., and Pseudokirchneriella subcapitata had low biomass production in the
same conditions [41]. Similar results were also found in other investigations [39]. Selection of the most
appropriate microalgae is clearly critical to producing high biomass in secondary effluent.

2.3. Microalgal Immobilization

Immobilization technology is a good choice for harvesting or separating microalgal biomass
from reactors. However the main focus of microalgal immobilization for secondary effluent
treatment has been to enhance removal of pollutants. At present, the most widely used material
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for microalgal immobilization is alginate. A major advantage of alginate beads containing immobilized
microalgae is that immobilized microalgae do not suffer extreme physical and/or chemical changes
in the process of immobilization. In addition, the excellent permeability, low or null toxicity, and
high transparency of alginate matrix provide a suitable environment for immobilized microalgae.
As reported, Chlorella sp. and Scenedesmus sp., immobilized by alginate matrix, showed high removal
efficiency of nitrogen and phosphorus (more than 90%), when some other factors (cell density
and starvation) were simultaneously optimized [42–44]. Chitosan- and carrageenan- immobilized
microalgae (Phormidium, S. bicellularis, S. quadricauda) were also efficient in removing nitrogen and
phosphorus from secondary effluent [45–47]. Although the removal of pollutants is mainly dependent
on microalgal assimilation, immobilized matrixes also promote the removal of pollutants. As discussed
by Tam and Wong [48], the presence of calcium ions in alginate matrix, together with elevated
wastewater pH, favored the precipitation of phosphate as calcium phosphate. Similarly the calcium
dissolved as a result of abrasion of the chitosan particles in wastewater seemed to be conducive
in reducing orthophosphate levels in the effluent [46]. Of course, the possible linkages or ionic
exchanges between the orthophosphate and chitosan amide groups may provide exchange or fixation
sites for orthophosphate [46]. Covarrubias et al. [49] found that the populations of C. sorokiniana
and Azospirillum brasilense in non-sterile secondary effluent were significantly lower than in sterile
wastewater when they were cultivated as free suspensions, and the population of wastewater bacteria
and natural microfauna increased. However immobilization of C. sorokiniana and A. brasilense in
polymer Ca-alginate beads significantly enhanced their populations in non-sterile secondary effluent.
Alginate beads clearly provided a beneficial physical barrier against native microorganisms in
secondary effluent.

Attaching to surfaces or matrices in the natural environment is normal for many
microorganisms [50], and microalgae can attach to different kinds of materials. C. vulgaris and
Scenedesmus sp. have been found to attach to carriers made from bundles of polypropylene fibers, and
the microalgal biofilm photobioreactor thus created significantly reduced more than 90% of ammonium
and total phosphorus in secondary effluent [51,52]. Concrete slabs have also been used as carriers for
microalgal growth when pollutants from secondary effluent were removed effectively [53]. A rotating
algal biofilm reactor (RABR) for wastewater treatment with in situ biomass harvest has been reported
in some studies [54,55]. The RABR consists of a cylinder provided with a growth surface partially
submerged in wastewater. The cylinder is rotated to alternately expose the growth surface to the
wastewater and to air. Of course, effective growth substrata are crucial to microalgal attachment and
biofilm formation in RABR [54,55]. Additionally the Algal turf scrubber (ATS), using a natural mixed
assemblage of attached periphyton, microalgae, and bacteria, has been developed [56,57]. The ATS is a
long inclined flow-way that supports a biofilm of microalgae and bacteria. When wastewater washes
over the flow-way in a series of pulses, pollutants are removed effectively. To date, ATSs have been
used to provide tertiary treatment of municipal wastewaters and have performed very well [58,59].

Although all the above examples demonstrate that immobilized microalgae were beneficial in
improving pollutants removal, partial biological degradation of alginate beads was observed during
tertiary wastewater treatment [60]. Immobilization also had some negative effects on microalgal growth
rate and biomass productivity [61]. Other unfavorable factors, such as low light penetration and high
cost, have limited the commercial application of microalgal immobilization in tertiary wastewater
treatment [62].

2.4. Construction of a Microalgal Consortium

Microalgae are generally grown as monocultures for harvesting high-value products. However to
take advantage of the synergetic growth of microalgae and bacteria, a consortium of the two has been
developed to treat wastewater with high levels of organic pollutants [63–65]. The consortium is also
robust in the face of environmental fluctuations, resists the invasion of other species, and enhances
the stability of reaction systems [66]. De-Bashan et al. [67] found that a mixed culture of microalgae
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(C. vulgaris or C. sorokiniana) and a bacterium (A. brasilense strain Cd) immobilized into small alginate
beads improved the efficiency of nitrogen and phosphorus removal from secondary effluent, compared
to microalgae alone. The mixed culture removed 100% ammonium, 15% nitrate, and 36% phosphorus,
a result that was superior to microalgae alone (75% ammonium, 6% nitrate, and 19% phosphorus).
To identify the appropriate combination of microalgae to enhance biomass productivity in secondary
effluent, Scenedesmus sp. (LX1), C. ellipsoidea, and Haematococcus pluvislis, were chosen for a study of
the growth characteristic of different microalgal combinations in secondary effluent [68]. The intrinsic
growth rate of the three microalgae in the mixed culture was higher than when they were grown as
monocultures. Biomass productivity in the mixed cultures of Scenedesmus sp. (LX1) and H. pluvialis
increased by 64% and 42%, respectively, compared to monocultures of Scenedesmus sp. (LX1) and
H. pluvialis. These cases suggest that the efficiency of pollutants removal and biomass productivity are
strengthened by constructing the consortium.

2.5. Pilot-Scale Culture of Microalgae in Secondary Effluent

Pilot-scale culture of microalgae in secondary effluent has been developed gradually.
Van Coillie et al. [69] tested the feasibility of a tertiary treatment using Scenedesmus sp. at pilot-scale
level. An outdoor tank with a capacity of 15,000 L was used for batch culture. Results showed
that nutrient removal was 95% for total inorganic nitrogen and 60% for PO4

3− and that the
biomass productivity was 0.39 mg·L−1·h−1. McGinn et al. [70] operated a 300 L proprietary
Brite-Box photobioreactor for microalgal cultivation in secondary effluent. They showed that biomass
productivity averaged 130 mg·L−1·day−1, and nitrogen and phosphorus removal could be up to 90%,
when average hydraulic retention times ranged from 6.55 to 6.65 days and from 6.50 to 6.56 days,
respectively. Arbib et al. [71] operated a 530 L high rate alga pond (HRAP) and a 380 L airlift tubular
photobioreactor (TPBR) to remove nitrogen and phosphorous from WWTP effluent. Maximum areal
productivity was 8.26 and 21.76 g suspension solid (SS)·m−2·day−1 for HRAP and TPBR, respectively;
total nitrogen removal averaged 89.68% and 65.12% for TPBR and HRAP, respectively; and, for
total phosphorus removal, TPBR and HRAP averaged 86.71% and 58.78%, respectively. There was
no significant lipid content difference between the reactors, which was about 20.8%. Based on these
studies, it appears that tertiary wastewater treatment and biomass production by microalgal cultivation
is feasible at a pilot-scale level, and this provides a basis for large-scale cultivation of microalgae in
secondary effluent.

3. Future Research into Microalgal Cultivation in Secondary Effluent

The progress in research examined here clearly indicates that microalgae have some potential
to biomass production, lipid accumulation and pollutant removal in secondary effluent. However
considerable work remains to be done to enhance lipid productivity, wastewater treatment efficiency,
and microalgal harvesting in the future.

3.1. Screening Microalgae and Constructing the Microalgal Poly-Culture and Microalgal–Bacterial
Co-Culture Consortium

Many microalgae, such as Chlorella, Scenedesmus, and Botryococcus, have been screened for biomass
production [72–74]. Nevertheless, compared to those microalgae growing well in municipal wastewater,
the diversity of microalgae growing in secondary effluent is low. The main groups focused on Chlorella
and Scenedesmus (Table 1). In addition, the removal efficiency of nitrogen and phosphorous and lipid
productivity during long-term operation was not good (Table 2). It was found to be essential to screen
more microalgae to determine their suitability for growth in secondary effluent and to evaluate their
lipid accumulation and biomass production potential. Whether oil-rich microalgae growing well in
municipal wastewater could adapt to the new environmental conditions of secondary effluent remains
to be explored.
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Table 1. Biomass production, lipid productivity, and pollutant removal of microalgae in secondary effluent under batch culture.

Microalgae
Species

Free Cell (F) or
Immobilization

(I)

Preliminary
Treatment of
Wastewater

The Volume of
the Cultivation

(L)

Cultivation
Time (h)

CO2 (%)

Biomass Energy Nutrients Removal Efficiency (%)

References
Biomass

Production
(g·L−1)

Biomass
Productivity

(mg·L−1·day−1)

Lipid
Productivity

(mg·L−1·day−1)

Lipid
Content

(%)
COD TN NH4

+ NO3
− TP

a natural
algal bloom F no treatment 2 240 5 1.884 200.4 - 26.82 - 79 - - >98 [38]

Botryococcus
braunii F filtration (0.2 µm)

and autoclaving 3 240 1 0.35 - - - - - - >99 >99 [34]

Botryococcus
braunii F filtration 0.5 1000 - - 288–345.6 - 17.85 - - - - - [75]

Botryococcus
braunii F no treatment 9 336 5 1.88 - - 36.14 - - - 79.63 100 [39]

Chlorella
ellipsoidea YJ1 F filtration (0.45 µm)

and autoclaving 0.3 528 - 0.425 - 12.7 43 - >99 - - >90 [35]

Chlorella
kessleri F no treatment 2 240 5 1.172 132.3 - 20.55 - >90 - - >98 [38]

Chlorella
sorokiniana F autoclaving 1 96 12 0.25 62.5 8 32 - - - 100 0 [76]

Chlorella
sorokiniana F no treatment 0.45 240 - 0.1 - - - - 80 - - 40 [77]

Chlorella sp.
227 F filtration (0.45 µm)

or UV-radiation 0.5 216 - 0.41–0.67 - 6.9–22.9 15–31 13.8–24.8 75–92 - - 84–86 [78]

Chlorella
vulgaris F no treatment 2 120 - 0.76–0.82 73.88–79.82 - - - - - - 92 [79]

Chlorella
vulgaris F filtration (0.2 µm) 0.2 168 15 0.29 - - 30 - >99 - - >99 [80]

Chlorella
vulgaris F no treatment 2 240 5 1.303 116 - 22.02 - >90 - - >98 [38]

Chlorella
vulgaris F filtration 2 168 air a 1.03 171.33 43.52 27.6 - - - 94 - [81]

Desmodesmus
communis F filtration 1 360 2 0.79 23 - 9.3 100 [82]

Neochloris
oleoabundans F filtration (1.2 µm)

and autoclaving 0.4 240 5 2.1 233.3 - - - - >90 78–99 100 [83]

Ourococcus
multisporus F filtration (0.2 µm) 0.2 168 15 0.31 - - 31 - >99 - - >99 [80]

Scenedesmus
obliquus F filtration and

autoclaving 1 192 - - - - 31.4 - - >90 - >90 [84]

Scenedesmus
obliquus F filtration (0.2 µm) 0.2 168 15 0.31 - - 27 - >99 - - >99 [80]

Scenedesmus
obliquus F no treatment 2 240 5 1.684 201.4 - 19.38 - >90 - - >98 [38]
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Table 1. Cont.

Microalgae
Species

Free Cell (F) or
Immobilization

(I)

Preliminary
Treatment of
Wastewater

The Volume of
the Cultivation

(L)

Cultivation
Time (h)

CO2 (%)

Biomass Energy Nutrients Removal Efficiency (%)

References
Biomass

Production
(g·L−1)

Biomass
Productivity

(mg·L−1·day−1)

Lipid
Productivity

(mg·L−1·day−1)

Lipid
Content

(%)
COD TN NH4

+ NO3
− TP

Scenedesmus
sp. AMDD F filtration (0.2 µm) 0.15 288 unknown

concentration 0.13 127.22–132.73 - 11.72–12.08 - - >90 - >90 [40]

Scenedesmus
sp. LX1 F filtration (0.45 µm)

and autoclaving 0.2 360 - 0.11 - 35 31–33 - 98.5 - - 98 [33]

Scenedesmus
sp. LX1 F autoclaving 0.2 336 5 0.77 - - 35 - - - - - [85]

Chlorella sp. I filtration and
autoclaving 0.35 8 air - - - - - - 100 - 100 [44]

Phormidium
sp. I no treatment 0.5 24 - - - - - - - >90 >90 >90 [46]

Scenedesmus
bicellularis I unknown unknown 2 - 1.57–1.86 - - - - - 100 - 88–100 [42]

Scenedesmus
bicellularis I autoclaving 2.5 2 750–1500 b - - - - - - 42.1–100 - 19.1–99.1 [86]

Seenedesmus
quadricauda I roughly screened 1 3 - - - - - - - 85–100 - - [45]

Scenedesmus
sp. I filtration and

autoclaving 0.35 4 air - - - - - - 100 - 100 [43]

Scenedesmus
sp. I no treatment 96 72 - - - - - 0 47.86 96 - >90 [52]

a Except air, the system was supplied by NaHCO3; b ppm.

Table 2. Biomass production, lipid productivity, and pollutant removal of microalgae in secondary effluent under continuous culture.

Microalgae Species
Free cell (F) or
Immobilization

(I)

Cultivation
Time (d)

Hydraulic
Retention
Time (d)

Biomass Energy Nutrients Removal Efficiency (%)

References
Biomass

Production
(g·L−1)

Biomass
Productivity

(mg·L−1·day−1)

Lipid
Productivity

(mg·L−1·day−1)

Lipid Content
(%) COD TN NH4

+ NO3
− TP

Chlorella vulgaris F 240 0.04–2 0.69–1.289 a 47.5–131.7 - - - 54–95.3 - - 84.4–94.9 [87]
Scenedesmus sp. AMDD F 24 1.48 0.312–0.356 234–267 11.91–15.19 5.14–5.70 - - 100 - 100 [70]

Scenedesmus obliquus F 112 5 - 21.76 b - 20.8 - 89.68 - - 86.71 [71]
Scenedesmus obliquus F 104 10 - 8.26 b - 20.8 - 58.78 - - 58.78 [71]

Scenedesmus sp. F - 5.2 0.5 20 b - - - - - - - [88]
Scenedesmus sp. I 91 2 0.1–0.3 - - - 21–48.36 36 24–55 - 40–80 [52]

a mg·COD/L; b g·m−2·day−1.
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The screening of native microalgae has been reported to be a suitable technique for integrated
wastewater treatment and biomass accumulation [89]. Bohutskyi et al. [77] reported that the microalgae
performing best in unsterilized wastewater were found to be clustered on the same branch of the
phylogenetic tree. Combining microalgal screening and molecular phylogeny will be important in
identifying the phenotypic traits and genes responsible for superior growth in wastewater. Following
the fast development of omic technologies (e.g., genomics, transcriptomics, and proteomics), a large
number of genomic, proteomic, and transcriptional data have become available for elucidating gene
properties relevant to oil accumulation [90–92]. These will be valuable in the genetic engineering of
microalgae for lipid production. Nevertheless there have been no reports of combining microalgal
screening and omic technologies for microalgal growth and pollutant removal. Revealing the genetic
traits of microalgal growth and nutrients removal via omic technologies and applying genetic
engineering to improve productivity and nutrients removal abilities will be the focus of future research.

Even though the appropriately screened microalgae have shown excellent growth performance,
their scaled cultivation with real secondary effluents in open systems is subject to strong competition
(from local microalgal and microbial communities, when single microalgal bioprocesses are considered)
and predation [93]. Single microalgal cultivation is also particularly sensitive to sudden changes in
environmental conditions (such as light, temperature and nutrient availability) [93]. As reviewed by
Fouilland [93], microalgal communities with high species richness and specific metabolic capacities
were not only able to capture a high proportion of available resources for growth but also had their
resilience enhanced. Microalgal–bacterial co-cultures also helped to ensure successful, intensive, stable
microalgal production [93]. At present, preliminary attempts to establish a consortium for biomass
production and pollutant removal in secondary effluent are being carried out, as seen in Section 2.4.
Both microalgal poly-cultures and microalgal–bacterial co-cultures exhibited better performance than
microalgal mono-cultures. However this research was in the early stages of tertiary wastewater
treatment; importantly the consortium only contained two microalgae or an artificial combination of
microalgae and bacteria. Constructing the consortium by natural selection, or by using an artificial
assemblage of robust microalgal poly-cultures and microalgal–bacterial co-cultures with higher species
richness and specific metabolic capacities, is of important practical value for tertiary wastewater
treatment and lipid production.

3.2. Carbon Supplementation by CO2 Sequestration in Secondary Effluent

For microalgal cultivation, aeration provided by CO2 is not only beneficial to carbon accumulation
via photosynthesis, but also contributes to mixing the culture, preventing settlement, and maintaining
homogeneous conditions. Currently supplying pure CO2 or flue gas for microalgal cultivation prevails,
and biomass and lipid content have thereby been increased in many microalgae [94]. Considering
the serious lack of a carbon sources in secondary effluent, it has been necessary to investigate the
relationship between CO2 supplements and biomass and lipid accumulation. Compared to microalgal
cultivation without CO2 supplement, the biomass production and lipid content were enhanced in
most cases when the concentration of pure CO2 supplied in secondary effluent ranged from 1% to
5% (Table 1). Flue gas produced by human activities is huge and can be regarded as a rich source of
CO2. Apart from CO2, flue gas contains N2, NOx, SOx, CxHy, CO, particulate matter, halogen acids,
and heavy metals, which are toxic and likely to inhibit the microalgal growth if added to secondary
effluent [95]. CO2 concentrations in flue gas were also found to be up to 6%–15%, which can inhibit the
growth of some microalgae [96]. This phenomenon was also found when microalgae were cultivated
in secondary effluent with 15% CO2 (Table 1). It is, therefore, critical to optimize the use of CO2 from
flue gas for biomass production and lipid accumulation of microalgae in secondary effluent.

3.3. Improving the Use of Nitrogen in Secondary Effluent

Ammonium has been the preferred form of nitrogen because a redox reaction is not involved in
its assimilation by microalgae [18]. Nitrate is used by microalgae only when the ammonium is low
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or depleted in the wastewater [18]. For WWTPs, the difference in processes or operation parameters
resulted in differences in the abundance and richness of nitrifying and denitrifying bacteria [97,98].
These led to different nitrifying and denitrifying activities and then influenced the concentration of
ammonium and nitrate in secondary effluent. Seasonal variation was also found likely to influence
nitrifying and denitrifying activity via the temperature fluctuation [99]. Thus, to some extent, the ratio
of ammonium/nitrate in secondary effluent was not constant and showed dynamic changes (Table 3).
Enhancing the efficiency with which different forms of nitrogen (especially nitrate) are removed, in the
light of possible nitrogen fluctuations in secondary effluent, will be a major concern.

Table 3. Characteristics of secondary effluent from different sources.

The Number of
Secondary

Effluent

COD
(mg/L)

TOC
(mg/L)

BOD
(mg/L)

TN
(mg/L)

NH4
+-N

(mg/L)
NO3

−-N
(mg/L)

TP
(mg/L) NO3

−-N/NH4
+-N References

1 - 7.4 - 6.3 <0.01 4.48 0.39 >448 [34]
2 - 5.5 - 8.9 0.17 7.67 0.04 45.11 [34]
3 45–60 - - 12.5–23.8 3.8–7.6 - 0.82–1.67 - [52]
4 24 - - 15.5 2.5 - 0.5 - [33]
5 - - - - 0.24 4.94 <0.01 20.58 [82]
6 56 - - 22.13 4.10 15.12 - 3.69 [100]
7 - - - 20.0 7.6 10.3 1.95 1.36 [101]
8 24 - - 7.0 0.50 - 0.46 - [35]
9 22.1 - - 15.5 2.5 - 0.05 - [35]

10 24.5 - - 16.7 3.7 - 0.08 - [35]
11 49.7 - - 11.9 15.0 0.9 11.5 0.06 [75]
12 - - 10–19 - 21.62–28.85 - 2.22–3.51 - [70]
13 - 8.1 - 8.7 9.4 8.5 1.71 0.90 [80]
14 100 - - - 21 1.6 5.6 0.08 [38]

TOC: Total organic carbon; BOD: Biochemical oxygen demand.

3.4. Growth of Microalgae in Unsterilized Secondary Effluent

It has been difficult to sterilize or filter large amounts of secondary effluent to eliminate the
potential effects of native organisms on microalgae in large-scale microalgal cultivation. Secondary
effluent commonly contains some microorganisms, viruses, and predatory zooplankton, although
their diversity and abundance are lower than in untreated wastewater. Microalgal growth is, therefore,
likely to be affected when microalgae are cultivated in unsterilized secondary effluent. Lee et al. [102]
found that Chlorogonium sp. outgrew other species in non-sterile secondary effluent. Zhang et al. [103]
showed that Scenedesmus sp. ZTY1 exhibited good adaptability to secondary effluent. Although the
growth rates of Chlorella sp. under conditions of non-sterilization were lower than under sterilization,
non-sterile circumstances were beneficial for accumulating lipids and removing nutrients from
secondary effluent [104]. In contrast, Bohutskyi et al. [77] found that most of the miroalgal species they
tested were unable to grow efficiently in unsterilized secondary wastewater effluents. Yu et al. [105]
showed that the growth of C. ellipsoidea was inhibited in unsterilized, domestic, secondary effluent.
The potential mechanism was that soluble algal products accumulated in microalgal culture were
used as a carbon source by bacteria and promoted bacterial growth. The overgrowth of bacteria then
significantly inhibited the activity of microalgae. Based on the above results, there are some challenges
for microalgal cultivation in unsterilized secondary effluent.

There has been considerable effort to promote the growth and lipid accumulation of microalgae
in unsterilized secondary effluent. Supplementation with centrate from an anaerobic digester was
found to be helpful in promoting biomass production in secondary effluent [106,107]. Appropriate
doses of microalgal inoculum and correct light intensity also increased final biomass density and
productivity in secondary wastewater [108]. The isolation of specific microalgae with excellent
resistance to biotic pollution will be an important future goal. A successful example of screening
microalgae with good biomass and lipid production in unsterilized wastewater has been reported [109].
Apart from improving the lipid content of microalgae via genetic engineering [110], it may be possible
to enhance microalgal resistance to biotic pollution by genetic manipulation. Ultraviolet pretreatment
of wastewater was found to increase microalgal growth rate and significantly reduce native bacterial
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densities [111]. However there has been almost no use of the above control technologies to enhance
the growth of microalgae in unsterilized secondary effluent. Considerable work remains to be done.

3.5. Development of Microalgal Harvesting Technologies

Harvesting of the microalgal biomass has been a major bottleneck for biodiesel production, largely
because of the small size of some cells (typically in the range of 3–30 µm); the relatively low cell
density, especially in the raceways (<0.5 kg/m3 of dry biomass); and the large volume of water being
harvested [112]. The recovery of microalgae generally requires one or more solid–liquid separation
steps. Currently microalgal harvesting technologies include chemical flocculation, centrifugation,
gravity sedimentation, filtration and screening, flotation, electrophoresis, and immobilization [113,114].
The immobilization technique, in particular, has been used effectively to separate microalgal cells from
secondary effluent. However the huge consumption of chemicals and energy were major challenges.
These drawbacks limited the use of these technologies for large-scale microalgal harvesting as they
accounted for 20%–40% of the total costs of lipid production [112]. Some chemicals also showed a
certain degree of biomass toxicity [115], and the high density of the immobilization matrix was likely
to reduce the light penetrating through the reactor, thus affecting metabolic activity [62]. Theoretically
self-settlement induced by exogenous selection pressures was beneficial to biomass–water separation.
A typical case was the development of aerobic granular sludge by regulating some parameters
such as settling time and the mixed liquor volume exchange ratio [116,117]. Valigore et al. [118]
regulated hydraulic retention times and solids retention times of laboratory sequencing batch reactors
to cultivate settleable microbial (microalgal–bacterial) biomass grown on primary treated wastewater
as a biodiesel feedstock. They showed that biomass settleability was typically 70%–95%, and the
microbes, aggregated into compact flocs as cultures, aged up to 4 months. Related investigations,
however, were only just beginning. In the future, it will be interesting to consider strengthening
microalgal–water separation in secondary effluent, screening microalgae of high settleability via
exogenous selection pressures.

3.6. Use of Lipid-Extracted Algal Residues

A scaled biodiesel production process will generate enormous amounts of lipid-extracted algal
residues (LEA), containing major parts of the energy and all nutrients captured by microalgae. Rational
use of LEA will help to reduce costs and develop a sustainable microalgal cultivation and biodiesel
production process. Anaerobic digestion (AD) is a good choice, as this can convert LEA into a biogas,
mainly consisting of CH4 and CO2, with traces of other gases such as H2S [119]. Passing the biogas
into the microalgae culture will not only benefit microalgal growth and nutrient removal, but also
the purification of the biogas [120,121]. The biogas may be burned to produce electricity and to
generate an onsite source for CO2 to supplement microalgae [122,123]. AD effluent, which contains
many nutrients, can also be partially used as a chemical fertilizer during microalgal growth [106,107].
As elucidated by Bohutskyi et al. [107], the methane production from LEA increased the energy yield
from microalgal biomass by more than 30%. Additionally the supplementation of AD effluent during
microalgae culture can reduce fertilizer costs by 45%. Coupling biodiesel production and LEA use
provides significant energy advantages as well as sustainability and economic benefits from nutrient
recycling. However some factors will have a significant impact on the methane yield and productivity,
notably (1) the difficulty in biodegrading microalgal cell walls; (2) the high protein content of the
microalgal biomass, which results in high ammonium release; and (3) the high sodium concentration in
microalgal cells, which may alter the anaerobic process. It will, therefore, be important to optimize LEA
anaerobic digestion to ensure the absence of solvent residues inhibiting methanogens and to enhance
LEA biodegradability for maximum methane yield, since some LEA fraction may be recalcitrant,
as reviewed by some literatures [24,119].
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4. Conclusions

Sustainability is a key principle in microalgal-based wastewater treatment and biodiesel
production. It is important to consider how to minimize the environmental impact and strengthen
the economic and social benefits of the process. This review underlines the viability of using
secondary effluent as a potential medium for simultaneous microalgal growth and pollutant removal.
As elucidated in the review, pollutant from secondary effluent can be effectively removed, and the lipid,
as a renewable energy resource, is also accumulated by microalgae via fixing CO2. Immobilization of
microalgae has significant advantages in promoting pollutants removal and also provides a beneficial
physical barrier against native microorganisms in secondary effluent. A consortium of microalgae
and/or bacteria results in greater biomass and lipid productivity and more effective removal of
pollutants than is found in a mono-culture. Obviously it is feasible to integrate microalgal cultivation,
as biodiesel production feedstock, with tertiary wastewater treatment. It is beneficial to reduce the
risk of the eutrophication and carbon emissions. In addition, compared to oil crops for biodiesel
production, it doesn’t involve the conversion of agricultural land for biodiesel production or affect
food security. Therefore it exhibits huge environmental and social benefits. However the high economic
cost and the low efficiency (mainly in microalgal growth, lipid accumulation, and pollutant removal)
have become the bottleneck of microalgal cultivation in secondary effluent. As potential solutions to
these problems, considerable effort will be needed in the future to screen microalgae, construct the
consortium, improve the use of flue gas and nitrogen, develop technologies for harvesting microalgae,
and use LEA. Coupling biodiesel production and LEA use especially provides significant energy
advantages, along with sustainability and economic benefits from nutrient recycling. In general,
all these investigations represent potential approaches to integrating tertiary wastewater treatment
and microalgal lipid accumulation for biodiesel production.
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SS Suspension solid
TN Total nitrogen
TOC Total organic carbon
TP Total phosphorous
TPBR Tubular photobioreactor
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