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As the most invasive and lethal subtype of breast cancer (BC), triple-negative breast carcinoma (TNBC) is of increasing interest.
However, the androgen receptor (AR) still has an unclear role in TNBC. The current study is aimed at testing the diagnostic and
therapeutic performance of novel biomarkers for AR-positive TNBC. The GSE76124 dataset was analyzed by combining WGCNA
and other bioinformatics methods. Subsequently, function enrichment analysis was applied to identify the relationships between
these differential expression genes (DEGs). Subsequently, the protein-protein interaction network was established, and the hub
genes were identified by Cytoscape software. Eventually, the miRNA-hub gene modulate network was developed and the Drug-
Gene Interaction Database (DGIdb) was applied to verify the potential drugs for AR-positive TNBC. In the current research,
88 DEGs in total were selected from the intersection of the purple module genes identified by WGCNA and limma package.
TFF1, FOXA1, ESR1, AGR2, TFF3, AGR3, GATA3, XBP1, SPDEF, and TOX3 were selected as hub genes by the MCC
method, which were all upregulated. The survival analysis suggested that TFF1 was the only one related to significant lower
survival rate in TNBC. Ultimately, hsa-miR-520g-3p and hsa-miR-520h were found taking part in the regulation of TFF1, and
2 small molecules were identified as the potential targets for AR-positive TNBC treatment. As a result, our study suggested
that hsa-miR-520g-3p, hsa-miR-520h, and TFF1 might have significant potential values for AR-positive TNBC diagnosis and
prognosis prediction. TFF1, hsa-miR-520g-3, and hsa-miR-520h may serve as the novel therapeutic targets, and our findings
offer further insights into the therapy of AR-positive TNBC.

1. Introduction

The incidence of BC is the highest of all female malignancies
worldwide. In 2020, US statistics indicated that BC
accounted for 30% of female malignancies and had a 15%
mortality rate [1]. At present, the prognosis of breast cancer
was improved by several clinical treatment methods, mainly
including chemotherapy, radiation therapy, surgery, immu-
notherapy, and targeted therapy [2]. Although surgery is still
the mainstay of early BC treatment, chemotherapy and
radiotherapy are important in reducing recurrence and
improving prognosis. Recently, more and more drugs target-
ing HER2 have been developed and identified to improve the
prognosis of HER2-positive BC patents. As for the hormone
receptor- (HR-) positive BC, in addition to the classic aro-

matase inhibitors and estrogen receptor antagonists,
CDK4/6 inhibitors are used extensively in clinical practice
in recent years [3]. Regrettably, the lack of biomarkers for
early detection and identified targets for treatment meant
that patients with TNBC were diagnosed late and benefited
little from targeted or hormonal treatments [4]. Conse-
quently, TNBC patients generally faced high risks of metas-
tasis as well as recurrence and had a worse prognosis, with
reduced overall survival (OS) and disease-free survival
(DFS) [5–7]. Notably, a number of gene mutations have
been previously described over the years as being highly sig-
nificantly associated with an increased risk of BC. In partic-
ular, breast cancer 1 (BRCA1) and BRCA2 are tumor
suppressor genes with high penetrance. They are identified
to take part in the processes of activating the cell-cycle
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Figure 1: Identification of significant gene modules. (a) Clustering dendrograms of genes. Color intensity varies with MES, LAR, BLIS,
BLIA, T, N, M, age, and BMI. (b) Scale-free fit index (left) and the mean connectivity (right) for soft-thresholding powers. When β was
set at 8, the scale-free network was constructed in the GSE76124 database. (c) Clustering dendrograms of genes based on dissimilarity
topological overlap and module colors in GSE76124 database. 24 coexpression modules were established and marked by different colors.
(d) Visualizing the gene network using a heat map plot. The module eigengene dendrogram and heat map verified that the purple
module was positively correlated with AR-positive TNBC. (e) Analysis of module-trait relationships of TNBC based on the dataset
GSE76124. Pearson correlation coefficient matrix was calculated between traits and modules. The correlation coefficient of each module
and the corresponding P value were displayed. A positive correlation between the purple module (containing 227genes) and the AR-
positive TNBC was indicated with a P < 0:05 (correlation coefficient = 0:87, P < 0:01). (f) A scatter plot of GS for AR-positive TNBC and
the MM in the purple module. Intramodular analysis indicated that the genes in the purple module had a high correlation with AR-
positive TNBC, with P = 4:6e − 54 and correlation = 0:81.
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checkpoints and DNA repair to further respond to DNA
damage. Consequently, the application of poly[ADP-ribose]
polymerase (PARP) inhibitors targeted to PARP proteins
associated with DNA repair mechanisms is shown to be effi-
cient in BC with BRCA1/2 gene mutation [8]. Additionally,
the circulating tumor DNA (ctDNA) was reported to be use-
ful in the diagnosis and surveillance of BC. ctDNA is
detected by “liquid biopsies,” which are noninvasive means
by simply obtaining blood instead of tumor tissue biopsies.
To date, a number of ctDNA biomarkers have been identi-
fied and used for the diagnosis and prognosis of BC, includ-
ing tumor protein p53 (TP53), AKT1, and
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit alpha (PIK3CA) etc., but they still lack specificity
for TNBC [9]. The molecular subtyping of TNBC is impor-
tant for the correct classification of cancer lesions and for
predicting patient prognosis. Therefore, an increasing
amount of research is focused on identifying new molecules
critical to TNBC in order to provide improved diagnosis,
prognostic prediction, and treatment strategies for this
malignant tumor.

Breast carcinoma is classified into four subtypes based
on the expression of genes and receptor proteins [10]. TNBC
accounts for 15-20% of all subtypes of BC and is usually
described as ER-negative, PR-negative, or HER2-negative

[11]. In 2011, Lehmann et al. performed a cluster analysis
on the gene expression profiles of 587 patients with TNBC
from 21 public databases and proposed that TNBC could
be divided into 6 subtypes based on the gene expression
level. They were named basal-like-1 (BL-1), basal-like-2
(BL-2), mesenchymal (M), immunomodulatory (IM), mes-
enchymal stem-like (MSL), and luminal androgen receptor
(LAR) [12]. In 2015, Burstein et al. conducted the genome-
wide analysis of 198 TNBC samples to determine 4 TNBC
subtypes: basal-like immune-suppressed type (BLIS), basal-
like immune-activated (BLIA), mesenchymal (MES), and
LAR. At the same time, they pointed out that the prognosis
of BLIS-type TNBC was poor, while BLIA-type TNBC had a
good prognosis (P < 0:05) [13]. AR was identified as a ste-
roid receptor superfamily member and was expressed in
over 70% of BC as well as approximately 25%-35% of TNBC
[14–19]. Some studies showed that AR-positive patients
were notably related to a low risk of cancer recurrence and
patient mortality. Nevertheless, in other studies, positive
AR expression of TNBC patients was related to poorer clin-
ical performance, and therapeutic AR blockade was worth
considering as a possible endocrine therapy [14, 20–23].
Consequently, the potential therapeutic strategies for AR-
positive TNBC may be provided by identification of novel
biomolecules and signaling pathways.
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Figure 2: Volcano plot of gene expression in GSE76124 database. The upregulated and downregulated genes were represented as red. (a)
LAR vs. BLIA, (b) LAR vs. BLIS, and (c) LAR vs. MES.
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Some oncological academics suggested that diagnostic,
prognostic, and predictive values were generally essential
for good biomarkers. In addition, the application of bioin-
formatics approaches to integrate biomarker data will pro-
vide us with new insights in biological pathways and
regulatory mechanisms with disorders. Hong and colleagues
used systemic and comprehensive bioinformatics to identify
an 8-miRNA signature that can improve the current TNM
staging system and provide a molecular assay to forecast
recurrence in TNBC patients after surgery [10]. Moreover,
the study conducted by Burstein et al. found novel
subtype-specific targets that could be targeted for the effec-
tive treatment of TNBCs through RNA and DNA profiling
analysis for the datasets from the GEO database and Baylor
College of Medicine [13]. Besides, Candido et al. revealed the
roles that IL6, IL6R, and IL6ST played in epigenetic regula-

tions in cancer by use of cancer genomic and epigenomic
datasets from TCGA [24]. The bioinformatics and computa-
tional analysis were applied not only in the oncology field
but also in other diseases. Giambò and colleagues identified
the vital genetic and epigenetic alterations related to pesti-
cide exposure by a series of computational analyses of gene
expression, miRNA expression, and DNA methylation data-
sets from the GEO database [25].

Our study was aimed at identifying novel effective bio-
markers for TNBC especially for AR-positive TNBC. For
this purpose, a series of continuous bioinformatics methods
and computational statistical analysis are applied to miRNA
profiling from public database.

WGCNA (weighted gene coexpression network analysis)
was a systematic biological method to identify the modules
of highly associated genes to establish a coexpression
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Figure 3: Venn diagram displaying the number of genes in different groups. (a) Compared with the other three TNBC subtype tissues, 137
common DEGs were upregulated (P < 0:05, log 2FC > 1) in AR-positive TNBC tissues. (b) Compared with the other three TNBC subtype
tissues, 64 common DEGs were downregulated (P < 0:05, log 2FC < −1) in AR-positive TNBC tissues. (c) 88 overlapping genes were selected
from the intersection of the purple module genes identified by WGCNA and common DEGs identified by limma.
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network on the basis of gene expression data [26]. Genes
were expressed and functionally similar in the same coex-
pression module.

The total expression of genes in the coexpression was
reflected by the first principal component, named module
vector [27]. The WGCNA was employed to define the hub
genes of the cluster, which could play as the potential bio-
markers of disease or targets for therapy. Moreover, the
molecular mechanism of BC development was able to be
illustrated through the modulatory networks of the genes
involved [28, 29]. WGCNA had been adopted to find several
potential biomarkers in different fields, including neurode-
generative diseases, cancers, and immune disease [30, 31].

In this study, microarray data of the GSE76124 dataset
was collected from the Gene Expression Omnibus database
(GEO database, https://www.ncbi.nlm.nih.gov/geo/). These
samples were defined as the AR-positive subtype TNBC
group and the other-three-subtype (MES, BLIA, and BLIS)
TNBC group [13]. WGCNA was used to establish coexpres-
sion networks for both groups, identify modules associated
with AR positivity, and obtain the key genes in the modules.
Subsequently, the limma package was applied to recognize
the differentially expressed genes (DEGs) between the AR-
positive subtype and the other three subtypes of TNBC tis-
sues. The candidate genes related to AR-positive TNBC were
finally selected by combining DEGs and WGCNA
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Figure 4: Gene functional annotation of the set of 88 shared genes and the PPI network of hub genes. (a) Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of the 88 shared genes. P < 0:05. GO analysis of the 88 shared genes including biological
process (BP), cellular component (CC), and molecular function (MF). (b) Protein-protein interaction network of hub gene based on the
STRING database. The upregulated DEGs were represented as red and the downregulated DEGs were represented as blue. The top 10
genes were selected as candidate hub genes based on MCC algorithm, represented as yellow.
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algorithms. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis and Gene Ontology (GO) analysis
were conducted to elucidate the possible signaling pathways
and biological functions of the DEGs. The protein-protein
interaction (PPI) network was established via the Search
Tool for the Retrieval of Interacting Genes (STRING,
https://string-db.org/, version 11.0) database and visualized
by Cystoscape software. Subsequently, the topological analy-
sis methods were used to screen out the hub genes. The
expression of each hub gene between normal tissue and
TNBC tissue was verified through Gene Expression Profiling
Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/)
(P < 0:05). The online database Kaplan–Meier plotter (KM
plotter, http://kmplot.com/analysis/) was adopted to evalu-
ate the prognostic value of the hub genes. After that, TFF1
was considered as a crucial gene of AR-positive TNBC. Fur-
thermore, the target miRNAs of TFF1 were screened out by
means of the intersection of the Encyclopedia of RNA Inter-
actomes (ENCORI, http://starbase.sysu.edu.cn/) and Tar-
getScan (http://www.targetscan.org/vert_72/; version 7.2),
and the correlation between TFF1 and RNA expression
was verified. After that, the regulatory miRNAs of TFF1
were identified, has-miR-520g-3p and hsa-miR-520h, which
were considered to be associated with the regulatory mecha-
nism of AR-positive TNBC development. Eventually, the
miRNA-hub gene network was further established. The

Drug-Gene Interaction Database (DGIdb) was utilized to
verify and find the candidate drugs for AR-positive TNBC.
Therefore, our work was aimed at illustrating the potential
molecularly mechanisms in promoting the prognosis of
AR-positive TNBC. The results may further provide insights
into the diagnosis and therapies of AR-positive TNBC.

2. Materials and Methods

2.1. Public Datasets and Data Preprocessing. The gene
expression microarray datasets (GSE76124 and
GSE167213) were retrieved from GEO, which were proc-
essed on the GPL570 platform (Affymetrix Human Genome
U133 Plus 2.0 Array). Inclusion criteria were as follows: (a)
mRNA expression data were available; (b) more than 100
TNBC samples were available with complete clinical infor-
mation; (c) the AR state for each sample was exact. The
dataset GSE76124 contained 198 TNBC samples and pro-
vided information about TNM classification and molecular
subtypes of TNBC. 37 LAR (AR positive) samples, 47 MES
(mesenchymal) samples, 60 BLS (basal-like-1/2) samples,
and 54 BLIA (basal-like immune-activated) samples were
included in GSE76124. The clinical and molecular features
of the 198 TNBC samples are shown in supplemental
table 1 [13]. The FITPLM function in the AFFYPLM
package was employed to conduct the regression
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calculation to further assess the dataset. Subsequently, the
quality of the dataset was evaluated by drawing a weight
map, relative logarithmic expression map, residual symbol
map, and RNA degradation map. Besides, the KNN
method was adopted to add the missing values [32].
Probes with gene annotation and matched only one genetic
symbol were included in the current study. Eventually,
23,519 genes in 198 samples from the GEO database were
screened out for the coexpression network establishment
after ranking the variance of the descending alignments.

2.2. Weighted Gene Coexpression Network Analysis
(WGCNA). As an approach for gene set expression analysis,
WGCNA was adopted to establish a network, in which the

genes and the interrelationships between genes were repre-
sented as the points and lines, respectively. The coexpression
network was established by use of the R package WGCNA
(http://www.r-project.org/) in the R environment [33]. Gen-
erally, matrices of paired Pearson correlation coefficients
were created to assess the similarities between genes in
TNBC patients. Subsequently, the power adjacency function
was applied to realize the conversion of the similarity matrix
and the adjacency matrix. According to the scale-free net-
work, we further built the topology of the coexpression net-
work. And the function of soft connectivity from the
WGCNA package was employed to select the soft-
threshold power β. With a low power (<30) scale-free
Topology Fit Index (TFI) of 0.9 or more, the topology of
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the gene coexpression network was considered scale-free
and there were no batch effects. Thus, the power β = 8 was
chosen [34]. After that, the Topological Overlap Measure
(TOM) was adopted to detect network modules [35]. The
minimum module size was fixed at 30, and the other param-
eters were fixed at their default values. At the same time, the
first principal component of a given module was measured
to calculate the module eigengene to represent each module.
Different modules were indicated by different colors. The
gray module was used to indicate the group of genes that
was not categorized into any modules.

Subsequently, Module-Trait Relationships (MTRs) were
applied to establish the vital relationship among module
eigengenes and TNBC subtypes categorized in the
GSE76124 database. Gene Significance (GS) was calculated
to identify the relevance of traits and genes. Module Mem-
bership (MM) was evaluated to confirm the relevance of
the expression profile and every module eigengene. At last,
the genes with high GS and significant MM were identified
in the TNBC subtype.

2.3. Differentially Expressed Gene Screening. The DEGs
between the AR-positive subtype and the other 3 subtypes
of TNBC tissues were identified by use of the R package
limma. The DEGs were defined as the gene that met the

cut-off criteria of jlog 2fold change ðFCÞj > 1 and P value <
0.05. Afterward, Venn diagrams were adopted to select the
overlapped DEGs. Eventually, the final overlapping DEGs
were selected from the intersection of the WGCNA-
identified module genes (purple module genes) and afore-
mentioned common DEGs for subsequent function analysis.

2.4. Gene Functional Annotation Analysis. The final DEGs
were selected to conduct a functional enrichment analysis.
The online database DAVID (https://david.ncifcrf.gov/)
was employed to perform the GO and KEGG pathway
enrichment analyses. Three categories were included in GO
analysis, cellular component (CC), biological process (BP),
and molecular functions (MF). Various pathway informa-
tion of the genes were contained in KEGG analysis [36].

2.5. Protein-Protein Interaction (PPI) Analysis. The PPI net-
work for final overlapping DEGs was established by the
STRING database with a combined interaction score > 0:4
and visualized via Cytoscape software (version 3.8.2). Next,
the cytoHubba was employed to select the hub genes accord-
ing to the network. The first 10 genes selected with the MCC
method were defined as core genes [37, 38].

2.6. Survival Analysis and Validation of the Hub Genes. The
prognostic value of the identified hub genes in TNBC was
assessed by the online database KM plotter that included
the gene expression profile and corresponding prognostic
information of patients from the TCGA and GEO databases.
In the current study, the parameters were arranged as fol-
lows: (1) the negative expression of ER, PR, and HER-2;
(2) only JetSet best probe set. Besides, the GEPIA platform
was employed to confirm the mRNA expression levels of
the core genes in tumor and normal breast tissues
(jlog 2FCj cut − off > 1 and P value cut-off < 0.01) [39].
Another dataset from the GEO database, GSE167213, was
used as the validation group. The expression of hub genes
was calculated between AR-positive TNBC samples and
other subtypes of TNBC samples.
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Figure 7: Validation of the overlapped miRNAs in the two databases (ENCORI and TargetScan) visualized by Venn diagram. A total of 8
miRNAs regulating TFF1 were predicted by ENCORI and 64 miRNAs were predicted by TargetScan. 5 common miRNAs regulating TFF1
were identified via the Venn diagrams.

Table 1: Correlation between miRNA-TFF1 pairs identified by
ENCORI database. hsa-miR-187-3p, hsa-miR-520g-3p, hsa-miR-
520h, and hsa-miR-2278 were selected as the candidate miRNAs
of TFF1 (P < 0:05).

No. miRNA Coefficient-R P value

1 Hsa-miR-187-3p -0.167 3:28E − 08
2 Hsa-miR-520g-3p -0.11 2:73E − 04
3 Hsa-miR-520h -0.094 1:85E − 03
4 Hsa-miR-1295a -0.05 1:01E − 01
5 Hsa-miR-2278 -0.06 4:87E − 02
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2.7. Identification of Candidate miRNAs. The targeted miR-
NAs of TFF1 were predicted through online databases Tar-
getScan and ENCORI. The parameters of TargetScan were
default. The parameters of ENCORI were set as follows: (1)
CLIP data: high stringency (≥3); (2) Degradome data: with
or without data; (3) Pan-cancer: one cancer type. Accord-
ingly, the intersection miRNAs of TargetScan and ENCORI
were further selected as the candidate miRNAs of TFF1 [40].

2.8. Survival Analysis and Validation of the Candidate
miRNAs. The relevance of TFF1 and its candidate miRNAs
was confirmed by ENCORI. Meanwhile, the selected miRNA
expression levels were compared among tumor and normal
breast tissues. TFF1 was found to have significant overex-
pression in AR-positive TNBC, which was associated with
the unfavorable prognosis. Hence, the miRNAs moderating
TFF1 were hypothesized to be related to better prognosis
of TNBC. Furthermore, the prognostic correlation of the
selected miRNAs was evaluated by the KM plotter (the par-
aments were set as TCGA, TNBC, and OS).

2.9. The Interaction of Drug-Hub Gene. DGIdb (http://www
.dgidb.org/search_interactions; version 3.0.2) was adopted to
select the drugs on the basis of the core genes served as
potential therapeutic targets. The interaction network of
the hub genes and possible drugs was created by means of
the Cytoscape software [41].

3. Results

3.1. Establishment of the Coexpression Module and
Identification of the Core Module in TNBC. A weighted coex-
pression network was built through R package WGCNA.
The 198 samples of the GSE76124 database were clustered
to filter outliers for follow-up study, and 2 outlier samples
(GSM1974605 and GSM1974616) were removed by setting
the height line at 150; then, the new cluster was proposed
and a characteristic heat map was exhibited based on the
subtypes of TNBC (Figure 1(a)). Subsequently, the power

of β = 8 (scale-free R2 = 0:90) was selected as the soft-
thresholding parameter to make sure of a scale-free network
(Figure 1(b)). From 23,519 genes, 24 modules were distin-
guished and every one was represented with an individual
color in the hierarchical clustering dendrogram (Figure 1(c)).
The module-trait association was evaluated by the relevance
between the module eigengene and the clinical characteristics
including TNBC subtypes. Interestingly, the positive correla-
tion between the purple module (containing 227 genes) and
the AR-positive TNBC was indicated with the P < 0:05
(correlation coefficient = 0:87, P < 0:01) (Figure 1(e)). Subse-
quently, the module eigengene dendrogram and heat
map indicated that the purple module was positively
related to AR-positive TNBC (Figure 1(d)). After that,
the scatterplot of GS vs. MM was drawn based on the coex-
pression purple module (Figure 1(f)). Consequently, the
purple module was selected as the candidate module for
further analysis.

3.2. The Analysis of DEGs. On the basis of the clinical traits,
198 TNBC samples in the GSE76124 dataset were divided
into 4 groups, LAR, MES, BLIA, and BLIS. The group LAR
tissue dataset and the other three-group tissue datasets were
analyzed to identify DEGs. Group LAR vs. Group MES,
Group LAR vs. Group BLIA, and Group LAR vs. Group
BLIS were analyzed, indicating 957 (652 downregulated
and 305 upregulated), 983 (466 downregulated and 517
upregulated), and 859 (455 downregulated and 404 upregu-
lated) DEGs (Figure 2). Afterwards, Venn diagrams were
used to identify the overlapped DEGs. As a result, 201 over-
lapped DEGs were discovered, in which 64 were downregu-
lated (P < 0:05, log 2FC < −1) and 137 were upregulated
(P < 0:05, log 2FC > 1) (Figures 3(a) and 3(b)). Eventually,
88 DEGs were selected from the intersection of the purple
module genes identified by WGCNA and aforementioned
common DEGs (Figure 3(c)).

3.3. GO and KEGG Pathway Enrichment Analyses. GO
enrichment analysis was applied to the 88 selected DEGs
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Figure 8: Associated miRNA expression and overall survival time using the K-M plotter online platform. hsa-miR-520g-3p, hsa-miR-520h,
and hsa-miR-2278 were statistically associated with the poor prognosis of TNBC (P < 0:05), while hsa-miR-187-3p was excluded without
statistical significance (P > 0:05).
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to find the potential biological functions. As shown in
Figure 4(a) (P value < 0.05), biological processes involved
in DEGs are positive regulation of apoptotic cell clearance,
cellular response to tumor necrosis factor, regulation of
complement activation, detection of molecule of bacterial
origin, regulation of intracellular transport, and lung goblet
cell differentiation. Cellular components of DEGs are inte-
gral component of plasma membrane, extracellular exo-
some, axon, dendrite, apical plasma membrane, and other
organism cells. Molecular functions involved in DEGs are
carbohydrate binding, epidermal growth factor receptor
binding, endopeptidase inhibitor activity, estrogen response
element binding, complement binding, and dystroglycan
binding. KEGG pathway enrichment analysis was applied
to the 88 DEGs, indicating that DEGs was mostly enriched
in the metabolic pathways.

3.4. Establishment of PPI Network and Identification of Hub
Genes. The PPI network for the 88 overlapping DEGs was
established by STRING and displayed in Cytoscape, contain-
ing 81 nodes and 63 edges. Subsequently, the topological
analysis methods were employed to pick out hub genes,
and the top 10 genes were identified by the MCC method.
As a result, TFF1, FOXA1, ESR1, AGR2, TFF3, AGR3,
GATA3, XBP1, SPDEF, and TOX3 were selected, and they
were all upregulated (Figure 4(b)).

3.5. Expression and Survival Analysis for Hub Genes. GEPIA
was employed to detect the expression of 10 hub genes (the
paraments were set as jlog 2FCj cut − off value = 1 and P
value cut-off value = 0.01). The outcomes manifested that
the 10 core gene expression levels were statistically higher
in tumor tissues than in normal breast tissues (Figure 5).
Besides, the survival analysis for the aforementioned 10
hub genes were performed via KM plotter, indicating that
only TFF1 was related to significantly poorer survival out-
come (P < 0:05) in TNBC (Figure 6). Therefore, TFF1 was

marked as the key hub gene. In the validation group, the
GSE167213 dataset, the expression of TFF1 was calculated
between AR-positive and other subtypes of TNBC samples.
As shown in Supplemental Figure 1, the expression level of
TFF1 in AR-positive TNBC was significantly higher than
that in other subtypes.

3.6. Recognition of Candidate miRNAs. TargetScan and
ENCORI were applied to screen the targeted miRNAs of
TFF1. 64 miRNAs regulating TFF1 were forecasted by Tar-
getScan, and 8 were forecasted by ENCORI. Finally, the 5
overlapped miRNAs regulating TFF1 were selected through
Venn diagrams (Figure 7). As revealed in Table 1, hsa-
miR-187-3p, hsa-miR-520g-3p, hsa-miR-520h, and hsa-
miR-2278 were selected as the candidate miRNAs of TFF1
(P < 0:05). Based on the P value > 0.05, hsa-miR-1295a
was excluded.

3.7. Candidate miRNA Survival Analysis and Expression
Analysis. The KM plotter was applied to the 4 candidate
miRNAs for survival analysis. hsa-miR-520g-3p, hsa-miR-
520h, and hsa-miR-2278 were statistically related to poor
prognostic outcomes of TNBC (P < 0:05). Although hsa-
miR-187-3p was correlated with the poor prognosis, it was
excluded without statistical significance (Figure 8). Eventu-
ally, ENCORI pan-cancer analysis was conducted to indicate
the differences of hsa-miR-520g-3p, hsa-miR-520h, and hsa-
miR-2278 expression between tumor and normal breast tis-
sues. Figures 9(a)–9(c) illustrate that hsa-miR-520g-3p and
hsa-miR-520h were significantly downregulated in breast
cancer samples. There was no noticeable difference in the
expression of has-miR-2278 in breast cancer and normal
samples.

3.8. The Interaction of Drug-Gene Network. Two potential
drugs for AR-positive TNBC patients were suggested by
drug-gene interactions. In the current study, based on the

TFF1

hsa-miR-520g-3p hsa-miR-520h

AFIMOXIFENERALOXIFENE

(d)

Figure 9: The expression levels of candidate miRNAs and the interaction network between the hub gene, targeted miRNAs, and drugs. (a)
The expression levels of hsa-miR-520g-3p. (b) The expression levels of hsa-miR-520h. (c) The expression levels of hsa-miR-2278. There was
no significant difference between the expressions of hsa-miR-2278 in breast cancer tissues and normal tissues. (d) The interaction of drug
gene and miRNA-hub gene networks.
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significant outcomes of survival analysis, FTT1 was selected
as the hub gene, meanwhile AFIMOXIFENE (4-4-hydroxy-
tamoxifen) and raloxifene were identified as the potential
targeted drugs. However, only raloxifene was approved by
the FDA. The drug-gene network was visualized by Cytos-
cape (Figure 9(d)).

4. Discussion

As a malignant disease whose pathogenesis is not fully
understood, breast cancer is highly heterogeneous in terms
of patient prognosis and tumor genetics. TNBC is more
aggressive than other subtypes of BC, and patients suffering
from TNBC showed a higher mortality rate [11, 42]. The
heterogeneous nature of TNBC makes the treatment of
tumors more challenging. It is essential to understand the
regulatory mechanisms behind the development of TNBC
so as to enhance the therapeutic response of tumors. In some
studies, a subgroup of TNBC had been established with AR
expression, finding that AR was expressed in 15% to 35%
of all TNBC, indicating that AR is able to be a possible target
of TNBC treatment. Observations from these studies also
revealed the vital role of AR in promoting the migration
and invasion of TNBC cells. Actually, AR is able to perform
multiple roles in BC progression and serve as an effective
target for the management of AR-positive TNBC patients
in the clinical setting [12, 21, 43–46].

As a new tool that is based on complex algorithms,
WGCNA for network modelling enables the identification
of multiple biological associations of biological networks
with their phenotypes. Recently, WGCNA was employed
in several studies of refractory diseases to further clarify
the regulatory mechanisms, including Alzheimer’s disease
[47], familial combined hyperlipidemia [48], and BC [29].
In the current study, WGCNA methods and DEG analysis
were applied to detect the differences between AR-positive
TNBC and non-AR-positive TNBC samples, respectively.

The results of the WGCNA analysis identified critical
modules of clinical significance and were screened for purple
modules by conservation assessment. Subsequently, the
overlapped genes of DEGs and the purple module were
selected for further study.

After that, GO and KEGG analyses were applied to study
the chiefly relevant biological pathway of the intersection
genes, and a PPI network was created. GO analysis suggested
that the intersection genes principally participated in such
pathways, including positive regulation of apoptotic cell
clearance, cellular response to tumor necrosis factor, regula-
tion of complement activation, detection of molecule of bac-
terial origin, integral component of plasma membrane,
extracellular exosome, carbohydrate binding, epidermal
growth factor receptor binding, endopeptidase inhibitor
activity, and estrogen response element binding. Several bio-
logical pathways have been confirmed in previous studies
[49–51]. KEGG analysis suggested that metabolic pathways
were markedly enriched. Interestingly, the study of TNBC
conducted by Jia et al. also proposed vital enrichment path-
ways of cellular senescence [52].

Finally, TFF1, FOXA1, ESR1, AGR2, TFF3, AGR3,
GATA3, XBP1, SPDEF, and TOX3 were selected as hub
genes; these were all upregulated. The survival analysis for
the aforementioned 10 genes was performed via KM plotter,
indicating that only TFF1 was related to statistically poorer
survival in TNBC. ENCORI and TargetScan were adopted
to identify the candidate miRNA of TFF1. According to sur-
vival and expression analyses, hsa-miR-520g-3p and hsa-
miR-520h were selected as the candidate miRNAs of TFF1
(P < 0:05).

Mammalian trefoil factors consisted of 3 stable secretory
proteins, TFF1, TFF2 and TFF3, which were coexpressed
together with mucins through the epithelial cells of the gas-
trointestinal tract [53]. TFF1 belongs to the trefoil factor
family, that is, a classic secreted peptide released from gastric
surface mucous cells. 60 amino acid residues made up
human TFF1, including 7 cysteine residues [54]. However,
TFF1, TFF2, and TFF3 were initially recognized as
estrogen-responsive gene products in BC cells [55]. The
study conducted by Yi et al. demonstrated that TFF1 expres-
sion was much lower in TNBC and positively correlated with
breast cancer survival. Moreover, they found that serum
concentrations of TFF1 were lower in TNBC sufferers com-
pared to non-TNBC sufferers, which correlated with the
clinical features of BC sufferers, for instance, ER, PR, and
HER2 status [56], whereas another study of BC reported that
TFF1 was positively related to Circ-TFF1, and both of them
were upregulated. In vitro, knockdown of Circ-TFF1
blocked BC cell growth, invasion, migration, and EMT while
in vivo limiting tumor proliferation [57]. In addition, TFF1
was also considered as a biomarker of metastatic colon car-
cinoma [58]. Moreover, some studies indicated that TFF1
played an important role in the interacting of H. pylori
and epithelial cells and related to gastric cancer [54, 59].
Although several studies manifested that TFF1 was related
to different kinds of carcinoma, few studies on TFF1 in
AR-positive TNBC have been reported.

Afimoxifene (4-hydroxytamoxifen) and raloxifene were
selected as the potential drugs, but only raloxifene was
approved by FDA. Meanwhile, the mechanisms of these 2
drugs were still unknown in AR-positive TNBC. Afimoxi-
fene (4-hydroxytamoxifen, tradename TamoGel) was a
novel estrogen inhibitor being investigated for various
estrogen-dependent conditions, such as gynecomastia and
cyclic breast pain. A previous study about estrogen response
element (ERE) indicated that across a wide range of 4-
hydroxytamoxifen (OHT) concentrations, OHT-hERα was
closely related to the pS2 ERE and weakly to the PI-9 ERU
[60]. Raloxifene was an oral selective estrogen receptor mod-
ulator (SERM) with estrogenic effects on the bones and anti-
estrogenic effects on the uterus and mammary gland. The
observations of some studies demonstrated that the risk of
invasive BC was decreased among postmenopausal women
with osteoporosis during treatment of raloxifene [61]. Mean-
while, raloxifene was reported to be associated with vascular
relaxing properties and treatment of postmenopausal
women with schizophrenia [62, 63]. Wu et al. found that
tamoxifen was associated with the induction of autophagy
in TNBC cells, which was related to the endoplasmic
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reticulum stress and AMPK/mTOR [64]. The TNBC mouse
models were used by Taurin and colleagues to evaluate the
therapeutic value of raloxifene, suggesting that raloxifene
(0.85mg/kg) prevented tumor proliferation and led to tumor
regression. Moreover, raloxifene was reported to promote
EGFR translocation into endosomes in vitro, thereby reduc-
ing cell migration, invasiveness, and tumorigenicity [65].
Besides, another study in SERMs indicated that tamoxifen
inhibited cell migration and enhanced chemosensitivity of
mesenchymal TNBC cells by reversing their EMT-like prop-
erty [66]. Nevertheless, to our knowledge, there are few stud-
ies in AR-positive TNBC. Further experiment should be
conducted to explore the mechanisms of the candidate drugs
in AR-positive TNBC.

According to the features of hub genes in terms of
expression, biological function, signaling pathway, and pre-
vious associated studies, we considered that TFF1, hsa-
miR-520g-3p, and hsa-miR-520h were likely to play vital
roles in AR-positive TNBC and could be considered as
potential biomarkers. Nevertheless, several limitations of
our work should be noticed. First of all, the shared sources
of data from the GEO and TCGA databases were only ana-
lyzed through a series of bioinformatics methods and no
in vivo or in vitro experiments were performed. Secondly,
this research only initially revealed the expression levels of
TFF1 and hsa-miR-520g-3p and hsa-miR-520h in AR-
positive TNBC but rarely addressed the signaling pathways
and functional mechanisms. We only revealed the modula-
tion relationship between them without information of
details and regulation mechanisms. Hence, more prospective
research is needed to validate the value of TFF1, hsa-miR-
520g-3p, and hsa-miR-520h in AR-positive TNBC, and their
relationships should be further investigated by wet assays.

5. Conclusion

In summary, our study focused on AR-positive relevant
genes in TNBC. The vital gene modules and candidate genes
related to AR-positive TNBC were identified by WGCNA
and other bioinformatics methods. This study suggested that
hsa-miR-520g-3p, hsa-miR-520h, and TFF1 could have
remarkably potential diagnostic and prognostic values in
AR-positive TNBC. TFF1, hsa-miR-520g-3p, and hsa-miR-
520h are able to be novel therapeutic targets. Our findings
offer further insights into the therapy of AR-positive TNBC.
In the future, deeper molecular mechanism studies of novel
core genes in AR-positive TNBC are required, and associ-
ated experimental models based on core genes should be
established for early detection, risk estimation, prognosis
determination, and targeted treatment of AR-positive
TNBC.
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