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Abstract: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) is the most studied short-
chain-length polyhydroxyalkanoates (PHA) with high application importance in various fields. The
domination of high-cost propionate and valerate over other 3-hydroxyvalerate (3HV) precursors
owing to their wide preference among PHA-producing bacteria has hindered the development of
diverse production processes. As alkyl alcohols are mainly produced from inexpensive starting
materials through oxo synthesis, they contribute a cost-effective advantage over propionate and
valerate. Moreover, alkyl alcohols can be biosynthesized from natural substrates and organic wastes.
Despite their great potential, their toxicity to most PHA-producing bacteria has been the major
drawback for their wide implementation as 3HV precursors for decades. Although the standard
PHA-producing bacteria Cupriavidus necator showed promising alcohol tolerance, the 3HV yield was
discouraging. Continuous discovery of alkyl alcohols-utilizing PHA-producing bacteria has enabled
broader choices in 3HV precursor selection for diverse P(3HB-co-3HV) production processes with
higher economic feasibility. Besides continuous effort in searching for promising wild-type strains,
genetic engineering to construct promising recombinant strains based on the understanding of the
mechanisms involved in alkyl alcohols toxicity and tolerance is an alternative approach. However,
more studies are required for techno-economic assessment to analyze the economic performance of
alkyl alcohol-based production compared to that of organic acids.

Keywords: 1-pentanol; 1-propanol; 3-hydroxyvalerate precursor; alkyl alcohol tolerance; biosynthe-
sis; oxo synthesis; polyhydroxyalkanoates; poly(3-hydroxybutyrate-co-3-hydroxyvalerate); propionic
acid; valeric acid

1. General Overview

Polyhydroxyalkanoates (PHA) are emerging as the next generation plastics owing
to their plastic-like properties, renewability, biodegradability, and biocompatibility [1].
PHA are accumulated by bacteria under carbon excess but nitrogen-limiting conditions
and stored as a reserved energy source in the form of single or multiple granules in
the cytoplasm [2]. PHA have gained much industrial interest in the last few decades
due to their potential as substitutes for conventional plastics, and various fermentation
strategies have been developed to establish microbial PHA production for commercializa-
tion. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) is the most studied
PHA copolymer with mechanical properties comparable to that of polypropylene. The 3-
hydroxyvalerate (3HV) monomer provides elastomeric property to the copolymer, enabling
broader application compared to the homopolymer poly(3-hydroxybutyrate) (P(3HB)) [3].

Polymers 2022, 14, 670. https://doi.org/10.3390/polym14040670 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14040670
https://doi.org/10.3390/polym14040670
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-1570-3692
https://orcid.org/0000-0002-0809-5142
https://orcid.org/0000-0002-5014-1472
https://doi.org/10.3390/polym14040670
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14040670?type=check_update&version=3


Polymers 2022, 14, 670 2 of 31

The improvement in mechanical properties has paved the way for it to be established for
medical, tissue engineering, aquacultural, agricultural, and commodity applications. The
commercialization of P(3HB) and P(3HB-co-3HV) started in the 1970s by Imperial Chemical
Industries, U.K., and Chemie Linz AG, Austria [4]. Currently, P(3HB) and P(3HB-co-3HV)
are commercialized by TianAn Biopolymer, China, and Sigma-Aldrich, USA.

Commercialization of PHA is hampered by its high production cost, majorly due
to the cost of the carbon feedstock used in microbial fermentation. Over recent decades,
various industrial wastes were explored as alternative carbon sources, and numerous
mitigation strategies were taken to establish microbial production of P(3HB-co-3HV) with
high economic feasibility at a commercial scale. Bioconversion of unrelated carbon sources
into P(3HB-co-3HV) was attempted, but metabolic engineering strategies are generally
required to promote precursor-independent pathways to synthesis P(3HB-co-3HV), with
exceptions for wild types Nocardia or Rhodococcus that can generate propionyl-CoA en-
dogenously from a single carbon source [5–9]. Owing to the relatively simpler practical
requirement, P(3HB-co-3HV) production from related carbon source(s) remains competitive.
Although the employment of wastes contributes to higher economic feasibility, P(3HB-co-
3HV) production from a single carbon source has low practicability due to the composition
inconsistency of raw components for 3HV formation [3].

The most common way to incorporate 3HV monomers is by employing a precursor
carbon source as a co-substrate along with the main carbon source that contributes to the 3-
hydroxybutyrate (3HB) monomer. Precursor carbon sources such as organic acids, alcohols,
or some amino acids were studied thoroughly to clarify the metabolic pathways involved
and to search for promising precursors of greater potential. Organic acids, especially
propionic acid, valeric acid, and their respective salts, are the standard 3HV precursors
owing to their wide acceptance among PHA-producing bacteria. However, organic acids
can only be added in low concentrations due to their high toxicity to the bacteria, and
their high substrate cost causes lower profitability. Although levulinic acid is way more
cost-effective than propionic acid and valeric acid, it seems to be a privilege for Cupriavidus
necator, and the production mechanism is yet to be clarified [10,11]. Although some amino
acids such as threonine, valine, and isoleucine could be employed as 3HV precursors,
metabolic engineering of the amino acid biosynthetic pathways is required to convert amino
acids into propionyl-CoA, which is essential for 3HV formation. The rare occurrence of
alcohols-utilizing ability among PHA-producing bacteria hinders the employment of alkyl
alcohols as 3HV precursors despite their potential as cost-effective substitutes for organic
acids [3]. In addition to the merit in lowering the substrate cost, naturally occurring carbon
sources such as glucose and glycerol or organic wastes can be converted by microorganisms
into alkyl alcohols, thus are promising as cost-effective and sustainable bioresources for
P(3HB-co-3HV) production [12].

C. necator is the standard PHA-producing bacterium well-known with its wide sub-
strate acceptance range, including alcohols and mercury. Nevertheless, its capability to
convert alcohols into PHA is substandard. The 3HV yield from 1-propanol is low despite
its high tolerance toward 1-propanol, and the employment of 1-pentanol results in a re-
markably high reduction in C. necator cell biomass and PHA content [10,13]. Owing to the
economic advantage over organic acids, the employment of alcohols as the 3HV precursors
for P(3HB-co-3HV) production was attempted for various bacteria. Interestingly, P(3HB-
co-3HV)-producing bacteria favoring alcohols as 3HV precursors are emerging since the
last decade. Since the discovery of Paracoccus denitrificans ATCC 17741 with the capability
to convert 1-pentanol into 3HV in 1996, various alkyl alcohol-tolerant PHA-producing
bacteria were discovered continually whereby several of them depicted promising 3HV
yield [14].

This critical review condenses the production of P(3HB-co-3HV) from alkyl alcohols
and the promising potential of alkyl alcohols as cost-effective 3HV precursors to go beyond
the bottleneck in precursors selection that is limited to organic acids. The properties
and applications of P(3HB-co-3HV) are also discussed. The bioconversion pathways of
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1-propanol and 1-pentanol into 3HV with respect to propionic acid and valeric acid are
visualized, and the performance of discovered alkyl alcohol-tolerant PHA-producing
bacteria is highlighted. Oxo synthesis and biosynthesis of 1-propanol and 1-pentanol from
natural substrates as well as organic wastes were described. Furthermore, the mode of
action of alkyl alcohols on bacterial proteins and the bacterial mechanisms involved in
response to alcoholic stress are also discussed. The strategies for wide implementation of
alkyl alcohols for P(3HB-co-3HV) production and the challenges ahead are highlighted as
well to comment on the potential of alkyl alcohols as the next generation 3HV precursors.

2. P(3HB-co-3HV) Properties and Applications

P(3HB) is a relatively stiff and brittle polyester with poor elongation at break [15]. It
is a fragile material, and its mechanical properties deteriorate with time due to secondary
crystallization accompanied by aging at room temperature, which is the major cause of
its brittleness [16]. Although the lack of elasticity causes a drawback in its application as
packaging materials, its high mechanical properties are applicable as bone tissues aid in
supporting body weight. P(3HB) facilitates reconstructive osteogenesis. P(3HB) and its
biocomposite incorporated with 20 wt% hydroxyapatite, which makes up 65–70% of the
bone matrix, show pronounced osteoplastic properties owing to their slow degradation
that corresponds to the growth of new bones. Powdered P(3HB) and P(3HB)/tienam are
excellent antibacterial bone filling materials that contribute to 1-fold lower growth and
complete growth inhibition of Staphylococcus aureus post surgery, respectively [17].

The incorporation of the C5 3HV monomer into P(3HB) results in P(3HB-co-3HV) with
decreased crystallinity, thus leading to decreased stiffness, decreased brittleness, and en-
hanced biodegradability compared to that of P(3HB) [18]. The properties of P(3HB-co-3HV)
are dependent on the ratio of the two monomers where the 3HB monomer contributes stiff-
ness, and the 3HV monomer contributes flexibility to the copolymer. The composition of
the 3HV monomer determines the defection of the P(3HB) lamellae crystals, leading to the
disruption of its crystallinity and resulting in improved polymer flexibility (Figure 1) [19].
The lower degree of crystallinity and melting point of P(3HB-co-3HV) lead to a higher
degradation rate that is directly proportional to the molar fraction of 3HV of the copolymer
compared to that of P(3HB) [18]. The 3HV fraction contributes to a greater amorphous
region for enzymatic attacks that leads to enhanced and adjustable biodegradability for
applications such as implants for bone support, stents for artery support in angioplasty,
and drug delivery carriers. Although P(3HB-co-3HV) has a 2-fold lower maximum water
permeability than poly(lactic acid) which is another biodegradable aliphatic polyester of
great biotechnological importance, causing lower hydrolytic degradation due to lower
water uptake, the degradation rate of P(3HB-co-3HV)-based biomedical devices are ad-
justable with molar fraction of 3HV [18,20,21]. Hydrophilic poly(ethylene glycol) and
monomethoxy poly(ethylene glycol) can also be incorporated into P(3HB-co-3HV) to form
nanoparticles with a hydrophilic outer layer and a hydrophobic inner layer for improved
chemical functionalization and compatibility with therapeutic drugs besides benefiting
drug release control [22–24]. Incorporation of other desired properties for biomedical
applications can also be achieved (Table 1).
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Figure 1. Microbial PHA granule, P(3HB-co-3HV) structure, and applications.

Table 1. Properties improvement after the incorporation of a secondary (and tertiary) component
into P(3HB-co-3HV) and their potential applications.

Incorporated Components A Changes in the Properties Potential
Applications Ref.

α-P(3HB)
Incorporation method:

Solvent casting
3HV fraction: 10 mol%

P(3HB-co-3HV):α-P(3HB) (100:0→ 50:50)
Melting temperature: 145→ 133 ◦C
Degree of crystallinity: 61%→ 30%

Tensile strength: 27→ 7 MPa
Elongation at break: 1%→ 29%

Young’s modulus: 1500→ 240 MPa
Enzymatic degradation: 85%→ 94%

Packaging
material [25]

AS
Incorporation method:

Solvent casting
3HV fraction: 59 mol%

P(3HB-co-3HV)/P(3HB-co-3HV):AS
Melting temperature: 275.84 ◦C/294.97 ◦C

Degree of crystallinity: 98.96%/98.23%
Free radical scavenging activity (24 h): 1%/14%

Incubation biodegradation (day 6):
smooth surface/small pits

Therapeutic
implant [26]

CNC
Incorporation method:

Solvent casting
3HV fraction: 12 mol%

P(3HB-co-3HV):CNC (100:0→ 94:6)
Melting temperature: 136.8→ 151.1 ◦C

Crystallization temperature: 96.5→ 101.2 ◦C
Degree of crystallinity: 49.9%→ 57.5%

Water vapor transmission rate: 308→ 115 g m−2 day−1

Oxygen transfer rate: 425→ 113 cm m−2 day−1

Packaging
material [27]

DDGS or Misc
Incorporation method:
Twin screw extrusion
3HV fraction: 5 mol%

P(3HB-co-3HV):DDGS (100:0/85:15/75:25)
Tensile strength: 8.5 MPa/6.0 MPa/4.8 MPa
Young’s modulus: 3.9 GPa/3.9 GPa/3.8 GPa
Flexural strength: 7.0 MPa/5.8 MPa/4.7 MPa
Flexural modulus: 4.8 GPa/4.6 GPa/4.4 GPa

CO2 evolution (day 320): 155 mg/175 mg/200 mg
Marine biodegradation (day 320): 73%/90%/100%

P(3HB-co-3HV):Misc (85:15/75:25)
Tensile strength: 8.8 MPa/8.9 MPa
Young’s modulus: 5.9 GPa/7.7 GPa
Flexural strength: 7.8 MPa/7.4 MPa
Flexural modulus:5.6 GPa/6.6 GPa

CO2 evolution (day 320):175 mg/180 mg
Marine biodegradation (day 320): 84%/88%

Packaging
material [28]
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Table 1. Cont.

Incorporated Components A Changes in the Properties Potential
Applications Ref.

Eugenol
Incorporation method:

Electrospinning
3HV fraction: 3 mol%

P(3HB-co-3HV):Eugenol (100:0→ 85:15)
Temperature of 5% weight loss: 276.6→ 160.8 ◦C

Degradation temperature: 304.7→ 293.3 ◦C
Mass loss at degradation temperature: 61.01%→ 76.36%

Water vapor permeability:
4.05 × 1014→ 0.95 × 1014 Kg m m−2 s−1 Pa−1

Limonene vapor permeability: 3.75→ 0.81 Kg m m−2 s−1 Pa−1

Water vapor permeance: 5.87→ 1.33 Kg m m−2 s−1 Pa−1

Limonene vapor permeance: 5.44→ 1.14 Kg m m−2 s−1 Pa−1

Tensile strength: 1252→ 1897 MPa
Elongation at break: 2.0%→ 2.5%

Young’s modulus: 18.1→ 26.5 MPa
S. aureus growth: 5.16→ 3.45 log(CFU mL−1)

Escherichia coli growth: 5.79→ 3.88 log(CFU mL−1)

Antimicrobial
food

packaging
[29]

HA
Incorporation method:

Melt-pressing
3HV fraction: 8–24 mol%

P(3HB-co-3HV), 0→24 mol% 3HV
Melting temperature: 170→ 129 ◦C
Degree of crystallinity: 69%→ 55%

P(3HB-co-3HV):HA (30:70), 0→ 24 mol% 3HV
Tensile strength: 67→ 23 MPa

Elongation at break: 2.65%→ 3.84%
Young’s modulus: 2.52→ 0.47 GPa

Bone
implant [30]

MAT
Incorporation method:

Solvent casting
3HV fraction: 4 mol%

P(3HB-co-3HV):MAT (100:0→ 95:5)
Melting temperature: 168.58→ 130.91 ◦C

Glass transition temperature: −2.03→−6.61 ◦C
Crystallization temperature: 46.15→ 46.98 ◦C

Degree of crystallinity: 53.7%→ 36.8%

Packaging
material [31]

MCPA
Incorporation method:

Melt-blending and
hot-pressing

3HV fraction: 3 mol%

P(3HB-co-3HV)-MCPA (95:5/90:10/85:15)
Melting temperature 1: 123.2 ◦C/124.1 ◦C /NA

Melting temperature 2: 150.7 ◦C/150.7 ◦C/140.9 ◦C
Enthalpy of fusion 1:1944 J g−1/2482 J g−1/NA

Enthalpy of fusion 2:1745 J g−1/1745 J g−1/1509 J g−1

Glass transition temperature 1: −28.2 ◦C/−28.0 ◦C/−27.4 ◦C
Glass transition temperature 2: 48.6 ◦C/47.9 ◦C/36.9 ◦C
Crystallization temperature: 102.4 ◦C/102.2 ◦C/99.0 ◦C

Chlorine loss: 0.3%/1.3%/1.7%
MCPA loss: 5.1%/7.4%/9.7%

P(3HB-co-3HV) loss before bond scission: 20.6%/29.7%/38.8%
P(3HB-co-3HV) loss after bond scission: 2.8%/2.4%/2.4%

Mulch [32]

mPEG
Incorporation method:

Transesterification
3HV fraction: 12 and 33 mol%

P(3HB-co-3HV):mPEG, 12 mol%/33 mol% 3HV
Number average molecular weight: 8980/4980
Weight average molecular weight: 6200/2650

Polydispersity index: 1.44/1.84
Melting temperature of P(3HB-co-3HV) block: 140.5 ◦C/133.6 ◦C

Melting temperature of mPEG block: 49.1 ◦C/49.3 ◦C
Particle size: 162 nm/125 nm

Encapsulation efficiency: 43%/57%
Cytotoxicity (100→ 500 µg/mL nanoparticles): 94%→ 80%/88%

→ 78%

Drug
delivery
carrier

[24]
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Table 1. Cont.

Incorporated Components A Changes in the Properties Potential
Applications Ref.

NH2-g-collagen or
PHEMA-g-collagen

Incorporation method:
Solvent
casting

followed by
solute leaching technique

3HV fraction: 12 mol%

Porous P(3HB-co-3HV)
Decomposition temperature at 10% weight loss: 263.15 ◦C

Collagen concentration: NA
Ag/BSA load: 0.037 µg cm−2

Surface roughness: 0.1983 µm
P(3HB-co-3HV)–g-PHEMA-g-collagen

Decomposition temperature at 10% weight loss: 264.60 ◦C
Collagen concentration: 29.93 µg cm−2

Ag/BSA load: 0.29 µg cm−2

Surface roughness: NA
P(3HB-co-3HV)-g-NH2-g-collagen

Decomposition temperature at 10% weight loss: 256.15 ◦C
Collagen concentration: 55.16 µg cm−2

Ag/BSA load: 0.26 µg cm−2

Surface roughness: 0.2643 µm

Bone
implant [33]

NR
Incorporation method:
Twin screw extrusion
3HV fraction: 3 mol%

P(3HB-co-3HV):NR (100:0/85:15)
Melting temperature: 172.05 ◦C/171.95 ◦C

P(3HB-co-3HV) glass transition temperature: 5.65 ◦C/6.05 ◦C
NR glass transition temperature: NA/−64.5 ◦C

Crystallization temperature: 120.85 ◦C/119.45 ◦C
Degree of crystallinity: 74.7%/61.6%

Tensile strength: 43 MPa/26 MPa
Elongation at break: 8%/16%

Notched impact strength: 15 J m−1/14 J m−1

Secant modulus: 12 GPa/0.9 GPa

Packaging
material [34]

PBAT
Incorporation method:
Conventional injection

molding or microcellular
injection molding
3HV fraction: NA

Solid P(3HB-co-3HV):PBAT (98.5:1.5→ 30:70)
Melting temperature: 166.2→ 170.4 ◦C

Cold crystallization temperature: NA→ 44.7 ◦C
Degree of crystallinity: 78%→ 29%

Specific toughness: 5.3 x 10−4 → 7.1 x 10−2 MPa kg−1 m−3

Elongation at break: 2.7%→ 555.7%
Specific tensile strength:

3.2 × 10−2 → 1.5 x 10−2 MPa kg−1 m−3

Specific Young’s modulus: 2.2→ 0.5 MPa kg−1 m−3

Microcellular P(3HB-co-3HV):PBAT (98.5:1.5→ 30:70)
Melting temperature: 167.1→ 169.6 ◦C

Cold crystallization temperature: NA→ 45.7 ◦C
Degree of crystallinity: 80%→ 25%

Specific toughness: 3.8 x 10−4 → 5.8 x 10−2 MPa kg−1 m−3

Elongation at break: 2.2%→ 493.9%
Specific tensile strength:

2.7 × 10−2 → 1.3 x 10−2 MPa kg−1 m−3

Specific Young’s modulus: 2.1→ 0.5 MPa kg−1 m−3

Packaging
material [35]

PBS
Incorporation method:

Solvent casting
3HV fraction: 14 mol%

P(3HB-co-3HV):PBS (100:0→ 40:60)
Crystallization time at 60 ◦C: 8→ 14.5 min

Overall crystallization constant:
3.13 × 10−2 → 2.22 × 10−3 min−n

Avrami index: 2.57→ 2.67

Packaging
material [36]

PBS-DCP
Incorporation method:
Compression molding
3HV fraction: 13 mol%

P(3HB-co-3HV):PBS (100:0→ 70:30)
Tensile strength: 22→ 23 MPa

Elongation at break: 4.5%→ 6.5%
80 wt%P(3HB-co-3HV)–20 wt%PBS:DCP (100:0→ 99:1)

Tensile strength: 25→ 27 MPa
Elongation at break: 8%→ 350%

Notched Izod impact toughness: 2.8→ 5.5 kJ m−2

Flexural strength: 39→ 30 MPa
Flexural modulus: 1.2→ 0.6 GPa

Packaging
material [37]
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Table 1. Cont.

Incorporated Components A Changes in the Properties Potential
Applications Ref.

PCL
Incorporation method:

Solvent casting
3HV fraction: 7 mol%

P(3HB-co-3HV)/PCL
Number average molecular weight: 127,000/56,400
Weight average molecular weight: 470,000/163,300

Melting temperature: 151.2 ◦C/64.0 ◦C
Glass transition temperature: 5.2 ◦C/−61.0 ◦C
Crystallization temperature: 97.0 ◦C/22.2 ◦C

P(3HB-co-3HV):PCL (100:0→ 50:50)
Isothermal crystallization temperature: 120→ 120 ◦C

Overall crystallization constant: 2.20 × 10−7 → 1.00 × 10−8 s−n

Avrami index: 2.80→ 2.66

Packaging
material [38]

PDLLA-PEG
Incorporation method:
Compression molding
3HV fraction: 1 mol%

P(3HB-co-3HV):PDLLA (100:0→ 30:70)
Melting temperature: 157.8→ 169.8 ◦C
Degree of crystallinity: 53.6→ 9.9 ◦C

Tensile strength: 19.7→ 49.7 MPa
Elongation at break: 0.17%→ 2.07%
Flexural strength: 39.1→ 75.0 MPa
Flexural modulus:3646→ 3507 MPa

Burial biodegradation (day 30): 0%→ 1%
30 wt%P(3HB-co-3HV)–70 wt%PDLLA:PEG (90:10→ 80:20)

Melting temperature: 171.2→ 170.8 ◦C
Degree of crystallinity: 10.5→ 13.0 ◦C

Tensile strength: 29.7→ 24.1 MPa
Elongation at break: 28.7%→ 237.0%
Flexural strength: 36.1→ 5.48 MPa
Flexural modulus: 1127→ 220 MPa

Burial biodegradation (day 30): 3%→ 11%

Biomedical,
agricultural

and
packaging
material

[39]

PEG
Incorporation method:

Solvent casting
3HV fraction: 4 mol%

P(3HB-co-3HV):PEG (100:0→ 20:80)
Melting temperature: 163.2→ 145.0 ◦C
Enthalpy of fusion: 89.62→ 1.63 J g−1

Drug
delivery
carrier

[22]

PEG
Incorporation method:

Solvent casting
3HV fraction: NA

P(3HB-co-3HV)
Melting temperature: 90 ◦C

Initial thermal degradation temperature: 220 ◦C
Final thermal degradation temperature: 255 ◦C

Tensile strength: 10.3 MPa
Elongation at break: 13.3%

Cytotoxicity: 20%
P(3HB-co-3HV):PEG (4:1)

Cytotoxicity: 0%–10%

Skin
grafting [40]

PLA-CNT
Incorporation method:
High-speed spinning
3HV fraction: 2 mol%

P(3HB-co-3HV)/PLA
Melting temperature: 172 ◦C/170 ◦C

Glass transition temperature: 5 ◦C/64 ◦C
Enthalpy of fusion: 92.8 J g−1/44.2 J g−1

Crystallization temperature: 122 ◦C/112 ◦C
Decomposition temperature: 303 ◦C/382 ◦C

Izod impact strength: 1.99 kJ m−2/2.14 kJ m−2

Flexural strength: 47.70 MPa/58.07 MPa
Flexural modulus: 3.48 GPa/2.94 GPa

80 wt%P(3HB-co-3HV)–20 wt%PLA:CNT (100:0→ 99:1)
Melting temperature: 169→ 168 ◦C

Glass transition temperature: −2→−2 ◦C
Enthalpy of fusion: 44.11→ 48.10 J g−1

Crystallization temperature: 112→ 122 ◦C
Decomposition temperature: 379→ 380 ◦C
Izod impact strength: 4.10→ 2.46 kJ m−2

Flexural strength: 51.60→ 61.01 MPa
Flexural modulus: 3.10→ 3.25 GPa

Electrical conductivity: 8.67 × 10−14 → 2.79 × 10−2 S m−1

Reflectivity (frequency): 0 dB (NA)→−15 dB (11 GHz)

Electrical
and

electromagnetic
[41]
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Table 1. Cont.

Incorporated Components A Changes in the Properties Potential
Applications Ref.

PLA-nanoclay
Incorporation method:
Twin screw extrusion

3HV fraction: NA

P(3HB-co-3HV):PLA (15:85→ 30:70)
Melting temperature: 154.75→ 156.40 ◦C

Cold crystallization temperature: 133.45→ 121.89 ◦C
Degree of crystallinity: 1.98%→ 4.33%

Tensile strength: 52.5→ 47.5 MPa
Elongation at break: 9.0%→ 6.0%

Young’s modulus: 1700→ 1750 MPa
P(3HB-co-3HV)-PLA:nanoclay (15:85→ 30:70)

Melting temperature: 156.52→ 157.43 ◦C
Cold crystallization temperature: 129.09→ 111.04 ◦C

Degree of crystallinity: 13.05%→ 18.40%
Tensile strength: 49.2→ 48.0 MPa
Elongation at break: 8.5%→ 4.0%

Young’s modulus: 2060→ 2060 MPa

Packaging
material [42]

PPC
Incorporation method:

Solvent casting
3HV fraction: 5 mol%

P(3HB-co-3HV):PPC (100:0→ 20:80)
Melting temperature: 163→ 162 ◦C

Thermal decomposition temperature: 199→ 190 ◦C
Maximum mass loss rate temperature: 286→ 267 ◦C
Burial biodegradation: 100% (day 12)→ 85% (day 30)

Packaging
material [43]

starch, cellulose or alginate
Incorporation method:

Solvent casting
3HV fraction: 6 mol%

P(3HB-co-3HV)-starch (100:0→ 30:70)
Tensile strength: 25→ 1 MPa
Elongation at break: 8%→ 4%

Young’s modulus: 181→ 4 MPa
Density: 0.974→ 1.243 g cm−3

Solubility: 0%→ 6.0%
Water absorption capacity: 0%→ 21.0%

Burial biodegradation (day 30): 10%→ 100%
Immersion biodegradation (day 30): 23%→ 100%

P(3HB-co-3HV)-cellulose (100:0→ 30:70)
Tensile strength: 25→ 1 MPa
Elongation at break: 8%→ 3%

Young’s modulus: 181→ 7 MPa
Density: 0.974→ 1.212 g cm−3

Solubility: 0%→ 1.7%
Water absorption capacity: 0%→ 4.7%

Burial biodegradation (day 30): 10%→ 70%
Immersion biodegradation (day 30): 23%→ 100%

P(3HB-co-3HV)-arginate (100:0→ 30:70)
Tensile strength: 25→ 1 MPa
Elongation at break: 8%→ 2%

Young’s modulus: 181→ 3 MPa
Density: 0.974→ 1.053 g cm−3

Solubility: 0%→ 19.0%
Water absorption capacity: 0%→ 33.0%

Burial biodegradation (day 30): 10%→ 80%
Immersion biodegradation (day 30): 21%→ 100%

Mulch [44]
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Table 1. Cont.

Incorporated Components A Changes in the Properties Potential
Applications Ref.

ZnO
Incorporation method:

Melt-mixed compression
molding, electrospinning or

coating
3HV fraction: 3 and 18 mol%

P(3HB-co-3 mol%3HV)/ P(3HB-co-18 mol%3HV)
Melting temperature: 168.7 ◦C/170.9 ◦C

Decomposition temperature: 290.8 ◦C/283.1 ◦C
Crystallization temperature: 114.7 ◦C/101.0 ◦C

Degree of crystallinity: 66%/63%
Tensile strength: 33.9 MPa/18.5 MPa

Elongation at break: 1.5%/1.3%
Young’s modulus: 2.6 GPa/2.2 GPa

L*, a*, b*: 82.3, 1.4, 17.7/32.7, 6.7, 10.2
PHBVs-D/PHBVs-P/PHBVs-C B

Melting temperature: 166.9 ◦C/166.5 ◦C/169.0 ◦C
Decomposition temperature: 271.3 ◦C/270.3 ◦C/270.8 ◦C
Crystallization temperature: 112.1 ◦C/111.6 ◦C/118.0 ◦C

Degree of crystallinity: 50%/51%/35%
Tensile strength: 12.5 MPa/34.8 MPa/22.6 MPa

Elongation at break: 6.5%/2.3%/6.2%
Young’s modulus: 1.5 GPa/2.1 GPa/1.4 GPa

L*, a*, b*: 56.9, 9.0, 25.3/58.4, 8.5, 25.1/72.5, 3.8, 24.7

Active food
packaging

and
food

contact
surface

applications

[45]

ZnO
Incorporation method:

Laser 3D molding
3HV fraction: NA

P(3HB-co-3HV)-ZnO (100:0→95:5)
Melting temperature: 171→ 158 ◦C

Decomposition temperature: 261.2→ 288.7 ◦C
Strain:14.0%→ 9.5%
Stress: 3.5→ 4.5 MPa

Compression strength: 4→ 5 MPa
Compression modulus: 60→ 80 MPa

Bacterial inhibition rate (day 5): 2.5%→ 79.0%
Zn2+ release in deionized water (day 7): 0.19→ 0.34 mg L−1

Bone
repair [46]

A Synthetic atactic poly(3-hydroxybutyrate) (α-P(3HB)), bovine serum albumin capped silver (Ag/BSA), ascorbic
acid (AS), cellulose nanocrystals (CNC), carbon nanotubes (CNT), dicumyl peroxide (DCP), distillers’ dried
grains with solubles (DDGS), hydroxyapatite (HA), organophilic attapulgite (MAT), Miscanthus (Misc), 2-
methyl-4-chlorophenoxyacetic acid (MCPA), monomethoxy poly(ethylene glycol) (mPEG), natural rubber (NR),
poly(ε-caprolactone) (PCL), poly(d,l-lactide) (PDLLA), poly(butylene succinate) (PBS), poly(butylene adipate-co-
terephthalate) (PBAT), poly(ethylene glycol) (PEG), poly(2-hydroxyl ethyl methacrylate) (PHEMA), poly(lactic
acid) (PLA), poly(propylene carbonate) (PPC), not available (NA). B Melt-mixed compress molded P(3HB-
co-3 mol%3HV):P(3HB-co-18 mol%3HV):ZnO (70:24:6) (PHBVs-D), electrospun P(3HB-co-18 mol%3HV):ZnO
(50:50) (PHBVs-P), P(3HB-co-18 mol%3HV):ZnO (50:50) coating on compressed molded P(3HB-co-3 mol%3HV)
(PHBVs-C).

P(3HB-co-3HV) is a potential substitute for petroleum-based plastic packaging material
as it possesses high water and aroma (limonene and linalool) barrier properties while having
comparable thermal and mechanical properties to that of polypropylene (PP) and low-
density polyethylene (LDPE) [15]. As PP and LDPE are applied extensively for packaging
and consumables, which are highly disposable, the substitution with P(3HB-co-3HV) can
contribute to reduced stable solid waste creation of petroleum-based plastics [47,48]. Unlike
the augmented cytotoxicity by higher 3HV molar fraction, lower 3HV molar fraction
causes high stereoregularity, slow crystallization rate, formation of large size spherulites,
and secondary crystallization that are discouraging for packaging purposes [24,47,48].
Poly(butylene succinate), poly(butylene adipate-co-terephthalate), natural rubber, or other
polymers with plasticizer or toughness properties can be incorporated to overcome the
limitations and extend its application as packaging materials (Table 1).

Moreover, PHA-based mulch films are potential substitutes for conventional plastic
mulch films. Mulching increases crops productivity, increases horticulture products, pre-
vents water evaporation from the soil, prevents soil erosion, reduces water consumption,
and controls weeds [49]. PHA-based mulch films overcome the environmental problems
caused by the post-consumption of plastic mulch films made from LDPE, linear low-density
polyethylene (LLDPE), and high-density polyethylene (HDPE) due to their poor degradabil-
ity [50]. Moreover, the physicochemical properties of P(3HB-co-3HV) enable the controlled
release of herbicides and insecticides. Herbicides and insecticides can be integrated into
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P(3HB-co-3HV)-containing pellets and sown along the plantation to be released upon
degradation from the pellets depending on the level of pest activity [51,52].

On the other hand, endogenous P(3HB-co-3HV) acts as the electron donor for the
denitrification of wastewater in the aquaculture industry. Biomass with PHA-accumulating
ability, generally P(3HB) and poly(3-hydroxyvalerate) (P(3HV)), from activated sludge, is
employed to remove resulting ammonia from fish excretion and dead animal bodies in
circulating water. Unlike the conventional techniques that involve the addition of acetate
and ethanol to promote microbial activity, the biomass is precultured for PHA accumulation.
The endogenous PHA is used for denitrification that accurately couples with slow metabolic
activity in the absence of exogenous carbon source and in the presence of nitrogen [53,54].
The exclusion of volatile fatty acids feeding during the denitrification process prevents the
contamination with the dissolved organic carbon that lowers the effluent water quality, and
the employment of endogenous PHA is more cost-effective compared to feeding extracted
PHA to denitrifying bacteria [55].

3. Bioconversion of Alkyl Alcohols and Organic Acids into P(3HB-co-3HV)

The conversion of organic acid into 3HV starts with β-oxidation, where propionic acid
(C3) is converted into propionyl-CoA, whereas valeric acid (C5) is converted into propionyl-
CoA and acetyl-CoA, respectively [56]. The 3HV monomer is formed from the resulting
propionyl-CoA couples with acetyl-CoA and is polymerized to P(3HB-co-3HV) copolymer
with the 3HB monomer. The 3HB monomer is formed from the resulting acetyl-CoA
provided majorly by the main carbon source such as oils or sugars (Figure 2) [14,57–60].
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Figure 2. Schematic bioconversion pathway of organic acids and alkyl alcohols into 3HV [14,57–60].

The employment of alkyl alcohols as 3HV precursors is limited to odd carbon num-
ber primary alcohols. Primary alcohols are oxidized to aldehydes that can be further
oxidized more easily to their respective carboxylic acids. The oxidation processes can
occur chemically with the presence of oxidizing agents or biologically with the presence
of alcohol dehydrogenase and aldehyde dehydrogenase [61]. Oxidation of secondary al-
cohols liberates ketones with no further oxidation due to the oxidatively stable nature of
ketones [62,63]. Odd carbon number primary alcohols such as 1-propanol or 1-pentanol are
oxidized to 1-propanal and 1-pentanal that further oxidized to propanoic acid and valeric
acid, respectively. The resulting propionic acid or valeric acid enters β-oxidation to liberate
propionyl-CoA for 3HV formation (Figure 2) [14,57–60].

Although levulinic acid is a cost-effective 3HV precursor, the catabolic pathway in-
volved is undetermined. Generally, levulinic acid catabolism releases intermediates that
are converted via β-oxidation to release acetyl-CoA and propionyl-CoA for P(3HB-co-3HV)
biosynthesis [64]. Bacteria capable of using levulinic acid as the 3HV precursor are rare
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and are mainly C. necator, with the exception of Burkholderis sp. IS-01 and Hydrogenophaga
pseudoflava DSM 1034 [10,11,65–68]. C. necator KHB-8862 and H. pseudoflava DSM 1034 are
two promising strains reported with a high 3HV yield of 0.50 and 1.00 g/g, respectively.
However, other studies reported low PHA content and 3HV yield (Table 2).

Table 2. P(3HB-co-3HV) production by bacteria from various 3HV precursors.

Microorganisms and
Carbon Sources

Biomass
(g/L)

PHA Content 3HV Composition 3HV Yield
(g/g) Ref.

(wt%) (g/L) (mol%) (g/L)

Organic acids

Bacillus aryabhattai PHB10
Glucose (20.0 g/L)

Propionic acid (0.7 g/L)
3.9 72 2.8 - - - [28]

Bacillus thuringiensis R-510
Glucose (23.5 g/L)

Propionic acid (1.0 g/L)
2.9 21 0.6 41 0.2 0.25 [69]

C. necator DSM 545
Waste glycerol (20.0 g/L)
Propionic acid (4.0 g/L)

4.5 57 2.6 25 0.7 0.16 [70]

C. necator DSM 545
Butyric acid (246.0 g/L)

Propionic acid (186.0 g/L)
65.9 88 58 36 20.8 0.11 [71]

C. necator NRRL B 14690
Fructose (40.0 g/L)

Propionic acid (4.0 g/L)
8.2 73 6.0 23 1.4 0.35 [72]

C. necator NCIMB 11599
Glucose (maintained at 10.0–20.0 g/L)
Propionic acid (0.52 mol/mol glucose)

112.3 57 64.0 14 15.7 - [73]

Erwinia sp. USMI-20
Palm oil (4.6 g/L)

Propionic acid (1.9 g/L)
4.2 40 1.7 34 0.6 0.30 [60]

Activated sludge mixed culture
Acetic acid, lactic acid, propionic acid - - - 31–66 - - [74]

Bacillus cereus RCL 02
Glucose (25.0 g/L)

Valeric acid (1.9 g/L)
8.1 72 5.8 15 0.9 0.46 [75]

C. malaysiensis USMAA9-39
Oleic acid (6.5 g/L)

Valeric acid (0.9 g/L)
5.2 43 2.2 17 0.4 0.42 [76]

C. necator DSM 545
Waste glycerol (20.0 g/L)

Valeric acid (4.0 g/L)
5.3 64 3.4 31 1.1 0.26 [70]

C. necator NRRL B 14690
Fructose (40.0 g/L)

Valeric acid (4.0 g/L)
7.2 40 2.9 62 1.8 0.45 [72]

Erwinia sp. USMI-20
Palm oil (4.6 g/L)

Valeric acid (2.0 g/L)
4.8 34 1.6 47 0.3 0.14 [60]

Methylobacterium organophilum NCIB 11278
Methanol (4.0 g/L)

Valeric aid (0.5 g/L)
2.5 50 1.3 10 0.1 0.25 [77]

Burkholderis sp. IS-01
Gluconate (20.0 g/L)

Levulinic acid (12.5 g/L)
5.9 62 3.7 87 3.2 0.25 [67]

C. necator KHB-8862
Fructose syrup (20.0 g/L)

Levulinic acid
(1.0 g/L, initial and 3 times feeding)

8.6 84 7.2 28 2.0 0.50 [66]
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Table 2. Cont.

Microorganisms and
Carbon Sources

Biomass
(g/L)

PHA Content 3HV Composition 3HV Yield
(g/g) Ref.

(wt%) (g/L) (mol%) (g/L)
C. necator H16

Fructose (20.0 g/L)
Levulinic acid (3.5 g/L)

7.3 48 3.5 16 0.6 0.16 [11]

Hydrogenophaga pseudoflava DSM 1034
Whey permeate (47 mL/L)

Levulinic acid (1.0 g/L)
4.5 49 2.2 45 1.0 1.00 [68]

Conjugate bases of organic acids

Caldimonas taiwanensis
Sugars (1.5%)

Valerate (0.5 g/L)
1.6–4.1 42–67 0.8–2.1 10–13 0.1–0.2 0.16–0.49 [78]

Methylocystis dominated mixed culture
Methane gas

(repeating 48 h fed-batch cycle)
Valerate (0.4 g/L)

1.5 30 0.5 39 0.2 0.45 [79]

Sodium salts of organic acids

Azohydromonas lata
Rice wastewater (21 g/L)
Sodium acetate (10 g/L)

5.0 32 1.6 6 0.1 0.01 [80]

Corynebacterium glutamicum ATCC13869
transformant A

Sodium propionate (1.0 g/L)
- 31 - 28 - - [81]

C. necator H16
Sodium acetate (0–20 g/L)

Sodium propionate (0–20 g/L)
0.3–0.7 12–56 Trace 0–45 Trace - [82]

C. necator PHB−4 C

Palm kernel oil (5.0 g/L)
Sodium propionate (5.0 g/L)

3.0 30 0.9 12 0.1 0.02 [83]

Herbaspirillum seropedicae Z69Prp D

Glucose (7.0 g/L)
Sodium propionate (0.5 g/L)

2.4 37 0.9 14 0.1 0.25 [84]

C. necator H16
Plant oils (5.0 g/L)

Sodium valerate (5.0 g/L)
4.1–6.1 64–89 2.1–5.4 3–14 0.1–0.9 0.03–0.17 [85]

C. necator PHB−4 C

Palm kernel oil (5.0 g/L)
Sodium valerate (1.0 g/L)

4.2 52 2.2 6 0.1 0.13 [83]

Methylocystis parvus OBB3
Methane gas (75 mL)

Sodium valerate (1.0 g/L)
- - 0.3 - 0.2 0.20 [86]

Alkyl alcohols

C. necator H16
Waste rapeseed oil (20.0 g/L)

1-propanol (8.0 g/L)
14.7 80 11.7 9 1.1 0.14 [13]

Erwinia sp. USMI-20
Palm oil (4.6 g/L)

1-propanol (2.3 g/L)
5.4 50 2.7 6 0.2 0.07 [60]

C. malaysiensis USMAA2-4
Oleic acid (6.5 g/L)

1-pentanol (0.9 g/L)
5.1 40 2.1 8 0.2 0.22 [87]

C. malaysiensis USMAA2-4ABH16
B

Palm olein (6.5 g/L)
1-pentanol (0.9 g/L)

5.4 69 3.7 7 0.3 0.33 [87]

C. malaysiensis USMAA1020
Oleic acid (6.5 g/L)

1-pentanol (1.3 g/L)
- 76 - 10 - - [88]



Polymers 2022, 14, 670 13 of 31

Table 2. Cont.

Microorganisms and
Carbon Sources

Biomass
(g/L)

PHA Content 3HV Composition 3HV Yield
(g/g) Ref.

(wt%) (g/L) (mol%) (g/L)

Erwinia sp. USMI-20
Palm oil (4.6 g/L)

1-pentanol (1.4 g/L)
4.8 62 3.0 20 0.6 0.43 [60]

Massilia haematophila UMTKB-2
Glucose (16.0 g/L)
1-pentanol (1 g/L)

- - 5.0 7 0.4 0.40 [89]

Methylobacterium extorquens G10
Methanol (fractional supply by 5–20 mL)
1-pentanol (fractional supply by 2%–20%

v/v methanol)

25–40 30–45 7.5–18.0 14–50 2.5–4.5 - [90]

Methylocystis sp. WRRC1
Methane gas (75 mL)
1-pentanol (1.0 g/L)

- - 0.3 - 0.2 0.17 [86]

Methyloligella halotolerans C2
Methanol (5–20 mL fractional supply)

1-pentanol (fractional supply by 5–15% v/v
methanol)

- 49–98 - 2–51 - - [91]

P. denitrificans ATCC 17741
1-pentanol (maintained at 1.6 g/L) 6.8 18 1.2 100 1.2 - [14]

Mixed precursors

C. necator DSM 545
Levulinic acid (1.0 g/L)

Sodium propionate (2.5 g/L)
1.0 33 0.3 73 0.2 0.24 [65]

C. necator DSM 545
Levulinic acid (1.0 g/L)

Sodium propionate (1.0 g/L)
0.5 19 0.1 78 Trace - [10]

H. pseudoflava DSM 1034
Whey permeate (47.0 mL/L)

Levulinic acid
(0.5 g/L, initial and 3 times feeding)

Sodium valerate
(1.0 g/L, initial and 3 times feeding)

6.6 67 4.4 55 2.4 0.43 [68]

Only the most promising condition was included for studies involving multiple cultivation conditions. Trace
(concentration < 0.1 g/L). A C. glutamicum ATCC13869 transformant harboring C. necator phaCABRe genes.
B C. malaysiensis USMAA2-4 transformant harboring C. necator H16 lipAB genes. C C. necator mutant with P(3HB)-
negative phenotype [92]. D H. seropedicae Z69 with the 2-methylcitrate synthase (PrpC) gene eliminated.

4. Techno-Economic and Sustainability Assessment

The annual operating costs in PHA production generally include the direct fixed
capital-dependent items, labor-dependent items, administration, and overhead expenses,
raw materials, utilities, and downstream processing such as waste management. According
to the techno-economic analysis conducted by Choi and Lee (1999) for various pure carbon
sources, the substrate cost accounted for 48%–60% of the total costs (Figure 3) [93]. After
excluding the trace elements, which are essentials, pure carbon sources that possess high
nutritional value such as glucose, glycerol, starch, methane, oils, and volatile fatty acids
are commercial products, and their employment leads to higher substrate cost compared
to that of industrial or domestic wastes. Due to higher economic advantage and increas-
ing emphasis on sustainability, the employment of wastes as carbon sources is widely
attempted. Theoretically, substituting pure substrates with wastes contributes to a huge
reduction in raw material expenses. However, pretreatments are needed for certain wastes
to remove impurities and toxins or to adjust pH [94]. Pretreatments impose additional costs
whereby extra chemicals or equipment are necessary with possible individual optimization.
Bhattacharyya and co-workers (2015) reported decreased raw material cost to 39% with the
employment of wheat stillage, but the utilities cost increased to 21% as compared to that
reported by Choi and Lee (1999) (Figure 3) [93,95].
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As opposed to main carbon sources, where numerous studies have been conducted
on various wastes, employing wastes as 3HV precursors is not practical due to the compo-
sition inconsistency [95]. Due to the necessity of propionyl-CoA for 3HV formation, sole
reliance on wastes results in the narrow choice to those with propionate or valerate related
components; thus, in most cases, a 3HV precursor is still required to achieve sufficient 3HV
fraction for the copolymer to be practically useful [64,95]. This leads to increased raw mate-
rial cost as propionic acid and valeric acid, which are widely preferred by PHA-producing
bacteria, are high-cost precursors (Table 2). The potential of 1-propanol and 1-pentanol as
alternatives for propionic acid and valeric acid is well-known but lack practicality due to
its high toxicity to the majority of bacteria. Since 1996, several PHA-producing bacteria
from different genera have been reported to use 1-propanol or/and 1-pentanol as 3HV
precursors (Table 2). The emergence of these bacteria bypasses the bottleneck of precursor
dominance by organic acids and enables further innovation in fermentation strategies
to develop economically feasible and sustainable production processes. Furthermore, 1-
propanol and 1-pentanol are manufactured through well-established oxo synthesis and can
be biosynthesized by bacteria from sustainable carbon sources such as glucose, glycerol,
and organic wastes, which are abundant in nature.

5. Oxo Synthesis of Alkyl Alcohols

Oxo synthesis is an established process for the manufacture of alkyl alcohols at an
industrial scale with simple operational requirements and low specificity in raw materials,
including branched-chain, long-chain, and cyclic olefins [96,97]. It is thoroughly investi-
gated for the production of a wide variety of industrial chemicals. The synthesis involves
hydroformylation to convert olefins (also known as alkenes) into aldehydes to be further
converted into alcohols through hydrogenation. Homogeneous catalysts are employed
in hydroformylation, while heterogenous catalysts are employed in hydrogenation for
reaction induction. Generally, these reactions are carried out in separate reactors where
the resulting aldehydes from the primary reactor are transferred into the second reactor
to be hydrogenated. Catalysts and carbon monoxide in the primary reactor are removed
either by decobalting or been recycled back to the primary reactor to prevent entry into the
second reactor as a precautious measure to extend the shelf life of hydrogenation catalysts.
Recycling the catalysts contributes to high economic feasibility as high-cost catalysts such
as rhodium-based catalysts can be reused for subsequent batches. However, an 8–55%
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decrease in catalyst yield after repeated recycling is expected [98]. The resulting alcohols
are purified from the mixture via distillation (Figure 4) [97].
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5.1. 1-Propanol

Oxo synthesis of 1-propanol begins with the rhodium-catalyzed hydroformylation of
ethylene (also known as ethene) to propanal with the aid of rhodium–triphenylphosphine
catalysts. The resulting 1-propanal is distilled from the catalyst-containing solution, and
carbon monoxide is removed. Hydrogenation can be carried out in either the heteroge-
nous vapor phase or the heterogenous liquid phase. Heterogeneous vapor phase hy-
drogenation takes place at 110–150 ◦C and 0.14–1.00 MPa with the aid of copper, zinc,
nickel, and chromium catalysts supported on alumina (CAS:1344-28-1) or kieselguhr
(CAS:91053-39-3) [62]. Heat is removed either by an external heat exchange device or an
internal cooler [100]. This process produces impurities such as dipropyl ether, ethane,
and propyl propionate. Selectivity enhancers such as alkali or transition metals are
added to reduce the formation of esters, while an additional 1%–10% water could sup-
press the formation of ether [62,101]. Propyl propionate is separated from the product
mixture and hydrogenolyzed with the aid of reduced CuO–ZnO catalysts at 75–300 ◦C
and 9.8 kPa–9.8 MPa to produce 1-propanol as the major product [62]. Heterologous liq-
uid phase hydrogenation involved nickel or copper catalysts at a lower temperature of
95–120 ◦C and a higher pressure of 3.5 MPa. Crude 1-propanol is purified via distillation
with the aid of an azeotroping agent such as dipropyl ether or cyclo-hexane to remove
water for highly pure 1-propanol yield (>99%) (Figure 4) [62,102].

5.2. 1-Pentanol

Oxo synthesis of 1-pentanol begins with hydroformylation of 1-butene. Subsequent
hydrogenation yields two C5 products that are 1-pentanol and 2-methyl-1-butanol. For
cobalt-catalyzed hydroformylation, the ratio of the product is 7:3 (1-pentanol:2-methyl-1-
butanol) after subsequent hydrogenation. When rhodium–triphenylphosphane is employed
instead, a higher yield of 1-pentanol is achieved with a 9:1 (1-pentanol:2-methyl-1-butanol)
ratio (Figure 4) [99].

6. Biosynthesis of 1-Propanol and 1-Pentanol by Wild-Type Bacteria
6.1. The Wood–Werkman Pathway in Propionibacteria

Biosynthesis of 1-propanol by wild-type bacteria is inefficient as 1-propanol is syn-
thesized as a byproduct through propionic acid synthesis processes. Propionibacteria such
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as Propionibacterium acidipropionici and Propionibacterium freudenreichii are able to produce
1-propanol through the Wood–Werkman pathway (also known as the dicarboxylic pathway,
or the methylmalonyl-CoA pathway). The synthesis process requires an anaerobic condition
where the carbon source is converted into pyruvate and enters the Wood–Werkman path-
way to produce propionic acid as the main product [103,104]. The 1-propanol yield reported
was in the range of 0.04–0.14 mol/mol, equivalent to 0.6–1.8 g/L. The 1-propanol produc-
tion was found to be higher when glycerol was employed, compared to glucose [105,106].
The precise processes involved in 1-propanol formation are undetermined but could prob-
ably be by two-step reduction from propionyl-CoA to 1-propanol aided by acylating
propionaldehyde dehydrogenase and propanol dehydrogenase (Figure 5) [107].
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6.2. The Acrylate Pathway in Clostridium

Clostridium propionicumable and Clostridium neopropionicumable are able to use amino
acids (alanine and serine), lactate, and ethanol as growth-promoting substances under
anaerobic conditions [108,109]. C. neopropionicumable synthesizes a small amount of 1-
propanol (0.06 g/L, 0.03 mol/mol) from ethanol with propionate and acetate as the main
products [109]. By employing the bacterial mixture dominated by Alkalibaculum bacchi (34%)
and C. propionicumable (54%), C. propionicumable produced 6.0 g/L 1-propanol and 1.0 g/L
1-butanol, whereas A. bacchi produced 8.0 g/L ethanol from syngas (the carbon source) and
corn-steep liquor (the source of amino acids and minerals) [110]. The resulting 1-propanol
was proposed to be the product from a two-step reduction in propionyl-CoA produced
through the acrylate pathway by using the lactoyl-CoA that is not used for propionic
acid synthesis (Figure 6) [109]. However, further experimentations are needed to provide
essential information for a complete view of the biosynthesis pathway.
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6.3. The Carboxylate Reduction Pathway in Clostridium

Anaerobic digestion by microbial consortia is a promising hydrogen production pro-
cess where the members in the microbial community play different roles to convert raw
materials into hydrogen under anaerobic conditions. As sterilization is commonly ex-
cluded from anaerobic digestion, organic acids produced by acetogens in the consortia
cause decreased pH that disrupts the metabolic activity of hydrogen-producing bacte-
ria [111]. Clostridium ragsdalei (ATCC BAA-622, DSM 15248) is an acetogen capable of
synthesizing alcohols by ferredoxin-mediated carboxylate reduction. With the involvement
of exogenous CO and ferredoxin, n-fatty acids up to six carbons in length can be reduced
to corresponding alcohols (Figure 7). The concentration of produced 1-propanol reported
was 1.7 g/L 1-propanol from propionic acid, with a conversion efficiency of 97%. However,
the concentration of 1-pentanol obtained was merely 0.2 g/L, with a conversion efficiency
of 82% [112].
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7. Biosynthesis of 1-Propanol and 1-Pentanol by Genetic-Engineered E. coli
7.1. Co-Expression of the Citramalate and Threonine Pathway

Numerous genetic engineering attempts were carried out for alkyl alcohols biosyn-
thesis through the individual threonine or citramalate pathway and showed successful
biosynthesis of 1-propanol from the intermediate 2-ketobutyrate in the pathways [113,114].
For greater industrial applicability, co-expression of both pathways was attempted in E. coli
BW25113. The simultaneous operation of the pathways in a single host showed a synergic
effect on 1-propanol production. The co-expression provided a larger 2-ketobutyrate pool
for decarboxylation and reduction to 1-propanol (Figure 8). A high 1-propanol concen-
tration of 8.0 g/L was reported with a 1-propanol yield of 0.15 g/g from glucose, which
was higher than 0.09 and 0.11 g/g for individual threonine and citramalate pathway,
respectively [115].
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7.2. Interactive Elongation Cycle of 2-Ketoacids

Biosynthesis of 1-pentanol was made possible by introducing Lactococcus lactis ketoiso-
valerate decarboxylase (Kivd) modified via saturated mutagenesis of the V461 key residue
of the enzyme with glycine and serine into E. coli BW25113 to promote its selectivity toward
2-ketocaproate, which is the precursor for 1-pentanol. Besides lowered catalytic efficiency
of the modified Kivd toward 2-ketoacids upstream of 2-ketocaproante, the increased supply
of acetyl-CoA by acetate feeding encouraged 2-ketoacid elongation cycle for enhanced
1-pentanol production (Figure 9). The high specificity of this approach was implied by
90% 1-pentanol in the alcohol product mixture, equivalent to 2.2–2.4 g/L upon production
harvest. The synthesis of alcohols with a longer alkyl chain was found to be minimized as
further elongation of the 2-ketoacid was discouraged due to the active use of 2-kerocaproate
for 1-pentanol synthesis [116].
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7.3. Extended Dissimilation of Succinate

The sleeping beauty mutase (SBM) operon in E. coli is a four-gene operon (sbm-ygfD-
ygfG-ygfH) that encodes various enzymes required in a cobalamin-dependent metabolic
pathway for decarboxylation of succinate into propionate [117]. An activated chromosomal
SBM operon encodes methylmalonyl-mutase (by sbm), methylmalonyl-CoA decarboxy-
lase (by ygfG), and propionyl-CoA:succinate CoA transferase (by ygfH) in plasmid-free
propanogenic E. coli BW25113 enabled extended dissimilation of succinate to synthesis
1-propanol (Figure 10). Glycerol favored solventogenesis over glucose due to the necessity
of a solventogenic pathway as an auxiliary channel for redox balance upon glycerol dissim-
ilation under anaerobic conditions. An anaerobic fed-batch strategy established by using
the engineered E. coli strain produced high titers of 7.0 g/L 1-propanol, thus implying its
high industrial applicability [118].
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7.4. Acquired Carboxylate Reduction Pathway

Conversion of organic acids produced by acetogens during anaerobic digestion into
other useful products is suggested to be beneficial as a solution to maintain the stability
of the biogas production process. An E. coli BL21(DE3) strain harboring Clostridium aceto-
butylicum alcohol dehydrogenase (AdhE2) and Megasphaera hexanoica acyl-CoA transferase
(ACT01_02765) was developed for conversion of the C2-C8 organic acids commonly found
in anaerobic digestion into corresponding primary alcohols. The metabolic pathway is rela-
tively simpler as it only involves two steps aided by two enzymes (Figure 11). Following
the conversion rate of 1.1 for C4 acid into 1-butanol, the functional alcohol dehydrogenase
and acyl-CoA transferase resulted in a promising conversion rate of 0.8 for both 1-propanol
and 1-pentanol [119].
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8. Alkyl Alcohol-Tolerant P(3HB-co-3HV)-Producing Bacteria

Alcohols are unsuitable to be employed as 3HV precursors for C. necator (also known as
Ralstonia eutropha, Alcaligenes eutrophus, or Wautersia eutropha), which is the standard PHA-
producing bacteria. Although C. necator H16 is capable of surviving methanol, ethanol, and
propanol, extensive exposure to these alcohols is detrimental to PHA accumulation, thus re-
sulting in lower biomass. The employment of 8.0 g/L 1-propanol, which is convertible into
propionyl-CoA, contributed to merely 3 mol% 3HV with a 3HV yield of 0.14 g/g [13,120]
(Table 2). The individual employment of 1-propanol and 1-pentanol also caused a remark-
ably high reduction in biomass and PHA content of C. necator DSM 545. The employment
of 1-pentanol caused C. necator DSM 545 biomass and PHA content to decrease by 40% and
20%, respectively. Comparatively,1-propanol exerted a lower adverse effect compared to
1-pentanol, whereby its employment decreased C. necator DSM 545 PHA content by 10%
with no negative influence on bacterial biomass [10] (Table 2). To overcome the limitation
in 3HV precursor selection, isolation of alkyl alcohol-tolerant P(3HB-co-3HV)-producing
bacteria is continuously attempted and has led to the discovery of various promising
bacteria with the capability to use alkyl alcohols as 3HV precursors (Figure 12).
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P. denitrificans ATCC 17741 was the first bacteria reported in 1996 for the use of alkyl
alcohol as the 3HV precursor. P. denitrificans ATCC 17741 is a mixotrophic colorless sulfur
bacterium capable of using 1-pentanol as the sole carbon source for growth and P(3HV)
accumulation [14,121]. The study was conducted by maintaining the concentration of
1-pentanol at 1.6 g/L for 24 h. Approximately 6.8 g/L biomass with 1.2 g/L P(3HV)
homopolymer was achieved [14] (Table 2).

Erwinia sp. USMI-20 was reported with its preference for alkyl alcohols instead of
organic acids as 3HV precursors. Erwinia sp. USMI-20 achieved higher biomass with
the co-employment of 1-propanol and 1-pentanol compared to that when palm oil was
employed solely. A higher PHA content of 50 and 62 wt% was also achieved for 1-propanol
and 1-pentanol, respectively, compared to 40 wt% and 34 wt% for propionic acid and valeric
acid. 1-pentanol was more promising compared to 1-propanol as Erwinia sp. USMI-20
accumulated a higher 3HV fraction of 20 mol% from 1-pentanol compared to 6 mol% from
1-propanol. 1-pentanol can be employed as a substitute for valeric for Erwinia sp. USMI-20
owing to the higher 3HV yield of 0.43 g/g for 1-pentanol, which was 2-fold higher than
that for valeric acid [60]. The production was scaled up to 10 L by employing 4.6 g/L palm
oil and 1.4 g/L 1-pentanol, where 1-pentanol was added at 20 h post incubation. The 3HV
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fraction achieved was 20 mol% in 56 wt% PHA content of 5.4 g/L biomass, with 0.43 g/g
3HV yield [122] (Table 2).

Despite the negative influence observed for C. necator, there are several Cupriavidus
sp. that are capable of using alkyl alcohols as 3HV precursors with no adverse effect on
either bacterial biomass or PHA accumulation. C. malaysiensis USMAA2-4, C. malaysiensis
USMAA1020, and C. malaysiensis USMAA9-39 are three PHA-producing bacteria favoring
alkyl alcohols over organic acids for 3HV formation [123]. C. malaysiensis USMAA2-4 and
C. malaysiensis USMAA1020 were able to accumulate 7–10 mol% 3HV from
1-pentanol [87,88,123–125] (Table 1). The 3HV yield of C. malaysiensis USMAA2-4 and
its transformant strain harboring C. necator H16 lipAB genes was 0.22 g/g and 0.33 g/g,
respectively, which were both higher than 0.14 g/g for C. necator H16 [13,87,88]. The sole
employment of 1-pentanol resulted in a higher C. malaysiensis USMAA9-39 PHA content
of 46 wt% compared to 37 wt% for valeric acid. Despite the 1-fold lower C. malaysiensis
USMAA9-39 biomass resulting from the co-employment of 1-pentanol with oleic acid, the
3HV yield of 0.44 g/g from 1-pentanol was comparable to 0.42 g/g from valeric acid and a
high 3HV composition of 24 mol% was achieved [76] (Table 2).

M. extorquens G10 demonstrated the production of P(3HB-co-3HV) from an alkyl
alcohol mixture of C1 and C5 alcohol. A 4 L production of P(3HB-co-3HV) from a methanol-
pentanol mixture by M. extorquens G10 showed a promisingly high PHA concentration of
7.5–18.0 g/L. The carbon mixture was supplemented fractionally based on the dissolved
oxygen peaks observed. With an increased portion of 1-pentanol from 2 to 20 mol%, the
biomass decreased with association to reduction in PHA content from 40.0 to 25.0 g/L and
45 to 30 wt%, respectively. Despite the negative influence on biomass and PHA content,
3HV composition of 14–50 mol% was achieved [90] (Table 2).

M. halotolerans C2 demonstrated P(3HB-co-3HV) production from C1, C2, and C5
alkyl alcohol. P(3HB-co-3HV) production by M. halotolerans C2 through fractional feeding
of methanol-ethanol mixture resulted in increased 3HV composition from 2 to 51 mol%
parallel to increased 1-pentanol supply from 5 to 15 % v/v methanol. A considerably high
PHA content of 73–98 wt% was accumulated by the bacterium [91] (Table 2).

P(3HB-co-3HV) production by Methylocystis sp. WRRC1 from methane and 1-pentanol
demonstrated a 0.17 g/g 3HV yield from 1.0 g/L 1-pentanol. The 6-fold lower consumption
of methane by the bacteria with the co-employment of 1-pentanol compared to that of
sole employment of methane denoted the preference of the bacteria for 1-pentanol over
methane. However, 1-pentanol is non-competitive against valerate where Methylocystis sp.
WRRC1 achieved a 1-fold higher 3HV concentration with the co-employment of sodium
valerate compared to that of 1-pentanol. On the other hand, the co-employment of sodium
valerate did not cause reduced methane consumption and contributed to a higher 3HB
concentration [86] (Table 2).

M. haematophila (also known as Naxibacter haematophila) UMTKB-2, a slow-growing
bacterium, was also reported with the capability to use 1-pentanol for 3HV accumulation
with a preference for 1-pentanol over valeric acid and sodium valerate. The co-employment
of 1-pentanol resulted in 2-fold and 11-fold higher biomass and PHA content compared to
that of valeric acid and sodium valerate, respectively. Upon optimization by using response
surface methodology, M. haematophila UMTKB-2 achieved 7 mol% 3HV with 0.40 g/g 3HV
yield. Unlike the PHA accumulation process of Cupriavidus sp. that ends within 48–72 h,
122 h was needed for optimum P(3HB-co-3HV) accumulation by M. haematophila UMTKB-
2 [89] (Table 2).

9. Mode of Action of 1-Propanol and 1-Pentanol on Proteins

Short-chain alcohols exert a hydrophobic effect by interacting with proteins and lead to
the structural unfolding of the protein [126]. Changes in membrane fluidity ensue due to the
direct insertion of lipophilic agents into the cellular membrane after direct physicochemical
interaction with alcohols. This induces adaptive membrane alteration by changing the fatty
acid composition of the membrane [127]. Impaired inner membrane integrity associated
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with depletion in proton motive force due to the increased proton motive force demand for
chemical, osmotic and mechanical adjustment induces the psp operon to prevent proton
loss. As a result, the cells experience a metabolic shift to anaerobic respiration together
with downregulation of motility for adjustment and maintenance of energy as well as for
proton motive force usage [128]. The extent of water exclusion is greater with increasing
alkyl groups of the alcohol, which is non-polar. By considering the hydrophobic effect of
methanol < ethanol < propanol = butanol, pentanol may exert a similar hydrophobic effect
on protein and result in pentanol-induced protein unfolding [126]. Furthermore, pentanol is
capable of inactivating membrane proteins such as transporters but rarely causes structural
changes to the cell membrane [129].

10. Mechanisms Involved in Alcohols Tolerance

Aliphatic alcohols, aromatic compounds, or other organic solvents are toxic to bacteria
when present in high concentrations. Nevertheless, certain bacteria are able to thrive in
the high concentration of such toxic organic chemicals. Bacterial solvent tolerance is a
multifactorial process that involves gene expression and subsequent physiological changes
to respond to stress conditions. Extrusion of the toxic compounds from the cell to the
external environment and reduced cell membrane permeability to prevent further influx of
toxic compounds are the relevant mechanisms to survive alcohol stress.

10.1. Changes in the Cell Membrane

Alcohol-induced cell leakage of magnesium and nucleotides is the primary damag-
ing action that affects bacterial viability in alcohols [130]. As alcohols interact with the
cell membrane and decrease the degree of membrane organization, proteins that partici-
pate in membrane structure organization and surface stabilization are critical in alcohol
tolerance [131]. Isomerase incorporates fatty acids into the phospholipid headgroups of
the phospholipid bilayer and causes isomerization of cis unsaturated fatty acids to trans
unsaturated fatty acids to form a denser membrane, as demonstrated by Pseudomonas and
Vibiro [132]. Changes in cell membrane composition that attributed to increased cis-11
vaccenic acid (18:1) or cis-9 oleic acid (18:1) with a corresponding decrease in palmitic
acid (16:0) were demonstrated for E. coli, Lactobacillus homohiochii, and Saccharomyces cere-
visiae [131,133,134]. The synthesis of phosphatidylethanolamine by Zymomonas mobilis was
partially inhibited in the presence of alcohols. As a result, a membrane with an elevated
proportion of acidic phospholipids (phosphatidylglycerol and cardiolipin) and an overall
reduction in the phospholipid:protein ratio is synthesized, thus increasing the efficiency of
efflux pumps in alcohol extrusion [135,136].

10.2. Stress Response System

Exposure to alkyl alcohols leads to changes in the level of expression of certain genes
as responses to stress for adaptation. As demonstrated in E. coli, exposure to 1-butanol
causes downregulation of several genes related to histidine, leucine, arginine, tryptophan,
and methionine biosynthesis and transport, thus leading to a significantly lower level of
related proteins. Downregulation of genes related to amino acids metabolism is an indicator
for bacterial growth inhibition in alcohols. As opposed to that, opp operon (oppABCDF) that
encodes the components in a polyamine-induced oligopeptide ABC transport system is
upregulated for the transport of hydrophilic substances to compensate for the hydropho-
bic pressure exerted by alcohols [137,138]. Genes responsible for response to heat shock
and extracytoplasmic stress (cpx regulon) are upregulated, and periplasmic chaperone
Spy is encoded to respond to protein misfolding activity [139–142]. Increased isobutanol
tolerance of C. acetobutylicum is also conferred to overexpression of genes related to heat
shock [139,143]. Genes related to the membrane and periplasmic space carbohydrate trans-
port and metabolisms are upregulated to transport and phosphorylate hexoses and release
the phosphate esters into the cytoplasm, probably as a repair mechanism for damaged
bilayer [139,144]. Furthermore, the upregulation of genes from the 13-member nuo operon
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and 5-member cyo operon is also an indicator for the increased requirement of energy or
disruption of respiratory efficiency upon exposure to 1-butanol [139]. However, the operons
are downregulated when exposed to isobutanol [137]. Exposure to ethanol causes induced
expression of psp operon to restore proton motive force lost due to disruption of the cell
membrane by ethanol, but the expression level remains unchanged for isobutanol [128,137].

11. Challenges in Wide Implementation of Alkyl Alcohols as 3HV Precursors

Low alcohol tolerance due to alcohol toxicity is the major drawback for the employ-
ment of alkyl alcohols as 3HV precursors. Isolation of novel PHA-producing bacteria with
substantial alcohol tolerance is a continuous effort in developing production processes
with higher economic feasibility. With established primary alkyl alcohol bioproduction
processes, the employment of alkyl alcohols also contributes to sustainability. Alcohol
tolerance involves complex regulatory systems, and knowledge from cell-wide stress re-
sponse is still in demand. Theoretically, genetic engineering can be adopted to create an
alkyl alcohol-tolerant PHA-producing bacteria by either introducing pha genes into an
alkyl alcohol-tolerant host or modulating alcohol tolerance of a non-alkyl alcohol-tolerant
PHA-producing bacteria. Comparatively, the former approach is more rational as alco-
hol tolerance involves complex systems and is not economically feasible for commercial
importance.

Although genetic-engineered E. coli with mutated rpoA gene was constructed suc-
cessfully to produce products with commercial importance such as 1-butanol, the attempt
was based on extensive studies on the rpoA gene and its roles in phenotypic changes of
E. coli [145–149]. Owing to numerous studies on the incorporation of pha genes into E.
coli, which demonstrated successful production of various PHA, such approaches can be
adopted for the construction of alkyl alcohol-tolerant strains with acquired PHA-producing
ability [150–152]. However, a candidate strain with broad substrate preference is preferred
for production process establishment with different substrates and fermentation strategies.
The capability to use wastes with high carbon content will be an added value for higher
industrial applicability owing to its sustainability and higher economic feasibility compared
to pure carbon sources [87].

Despite the promising potential shown by the known alkyl alcohol-tolerant P(3HB-
co-3HV)-producing bacteria, scaling up the production remains challenging. As low 3HV
compositions are commonly reported for shake flask scale production, various production
strategies have to be adopted to increase the molar fraction of 3HV. Fed-batch production
strategies that enable the addition of alkyl alcohols eventually are practically preferred
to achieve high 3HV composition of P(3HB-co-3HV) and at the same time minimize the
negative influences caused by the relative toxicity of alkyl alcohol. However, some of
the bacteria that depicted decreased biomass and PHA content with the employment
of alkyl alcohol at low concentration or with a preference for organic acid sodium salt
over alkyl alcohol have low applicability as candidate P(3HB-co-3HV) producers when
alkyl alcohols are to be employed. In addition, more studies on large-scale P(3HB-co-
3HV) production involving alkyl alcohols are still in demand to compare their industrial
practicality as alternative 3HV precursors for organic acids in terms of sustainability and
economic feasibility.

12. Concluding Remark

The high sale price of P(3HB-co-3HV) has been the major obstacle to commercialization.
Although various carbon sources have been explored, limited precursor choice due to the
domination by propionate and valerate has caused the development of diverse P(3HB-co-
3HV) production to reach a bottleneck. With increasing studies reporting the discovery of
alkyl alcohol-utilizing PHA-producing bacteria with promising bioconversion efficiency of
1-propanol and 1-pentanol into 3HV, the toxicity of alkyl alcohols and low 3HV yield are no
longer the major concern. Future attempts should focus on continuous searching of alkyl
alcohols tolerant PHA-producing bacteria to discover more promising wild-type strains.
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Moreover, genetic engineering of bacterial metabolic pathways to achieve successful or
higher bioconversion rate of alkyl alcohols into 3HV is also important to overcome low
bacterial viability and alcohol-3HV bioconversion efficiency. However, more studies are
required for techno-economic assessment to compare to what extent 1-propanol and 1-
pentanol could contribute to higher economic feasibility than propionate and valerate.
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Abbreviations

3HB 3-hydroxybutyrate
3HV 3-hydroxyvalerate
α-P(3HB) Synthetic atactic poly(3-hydroxybutyrate)
Ag/BSA Bovine serum albumin capped silver
AS Ascorbic acid
CNC Cellulose nanocrystals
CNT Carbon nanotubes
DCP Dicumyl peroxide
HA Hydroxyapatite
HDPE High-density polyethylene
LDPE Low-density polyethylene
LLDPE Linear low-density polyethylene
MAT Organophilic attapulgite
mPEG Monomethoxy poly(ethylene glycol)
NA Not available
P(3HB) Poly(3-hydroxybutyrate)
P(3HV) Poly(3-hydroxyvalerate)
P(3HB-co-3HV) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
PBAT Poly(butylene adipate-co-terephthalate)
PBS Poly(butylene succinate)
PCL Poly(ε-caprolactone)
PDLLA Poly(d,l-lactide)
PEG Poly(ethylene glycol)
PHA Polyhydroxyalkanoates
PHEMA Poly(2-hydroxyl ethyl methacrylate)
PLA Poly(lactic acid)
PP Polypropylene
PPC Poly(propylene carbonate)
Ref. References
SBM Sleeping beauty mutase

References
1. Pellis, A.; Malinconico, M.; Guarneri, A.; Gardossi, L. Renewable polymers and plastics: Performance beyond the green. New

Biotechnol. 2020, 60, 146–158. [CrossRef] [PubMed]
2. Braunegg, G.; Lefebvre, G.; Genser, K.F. Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and

engineering aspects. J. Biotechnol. 1998, 65, 127–161. [CrossRef]
3. Policastro, G.; Panico, A.; Fabbricino, M. Improving biological production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

(PHBV) co-polymer: A critical review. Rev. Environ. Sci. Biotechnol. 2021, 1–35. [CrossRef]

http://doi.org/10.1016/j.nbt.2020.10.003
http://www.ncbi.nlm.nih.gov/pubmed/33068793
http://doi.org/10.1016/S0168-1656(98)00126-6
http://doi.org/10.1007/s11157-021-09575-z


Polymers 2022, 14, 670 26 of 31

4. Taguchi, S.; Iwata, T.; Abe, H.; Doi, Y. 9.09-Poly(hydroxyalkanoate)s. In Polymer Science: A Comprehensive Reference; Matyjaszewski,
K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 157–182. [CrossRef]

5. Alvarez, H.M.; Kalscheuer, R.; Steinbüchel, A. Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of
inhibitors and polyethylene glycol. Lipid/Fett 1997, 99, 239–246. [CrossRef]

6. Anderson, A.J.; Williams, D.R.; Dawes, E.A.; Ewing, D.F. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in
Rhodococcus ruber. Can. J. Microbiol. 1995, 41, 4–13. [CrossRef]

7. Haywood, G.W.; Anderson, A.J.; Williams, D.R.; Dawes, E.A.; Ewing, D.F. Accumulation of a poly(hydroxyalkanoate) copolymer
containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int. J. Biol.
Macromol. 1991, 13, 83–88. [CrossRef]

8. Valentin, H.F.; Dennis, D. Metabolic pathway for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) formation in Nocardia corallina:
Inactivation of mutB by chromosomal integration of a kanamycin resistance gene. Appl. Environ. Microbiol. 1996, 62, 372–379.
[CrossRef] [PubMed]

9. Williams, D.R.; Anderson, A.J.; Dawes, E.A.; Ewing, D.F. Production of a co-polyester of 3-hydroxybutyric acid and 3-
hydroxyvaleric acid from succinic acid by Rhodococcus ruber: Biosynthetic considerations. Appl. Microbiol. Biotechnol. 1994, 40,
717–723. [CrossRef]

10. Berezina, N. Enhancing the 3-hydroxyvalerate component in bioplastic PHBV production by Cupriavidus necator. Biotechnol. J.
2012, 7, 304–309. [CrossRef]

11. Novackova, I.; Kucera, D.; Porizka, J.; Pernicova, I.; Sedlacek, P.; Koller, M.; Kovalcik, A.; Obruca, S. Adaptation of Cupriavidus
necator to levulinic acid for enhanced production of P(3HB-co-3HV) copolyesters. Biochem. Eng. J. 2019, 151, 107350–107360.
[CrossRef]

12. Scully, S.M.; Orlygsson, J. Biological production of alcohols. In Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and
Bioproducts; Woodhead Publishing: Cambridge, MA, USA, 2019; pp. 83–108.

13. Obruca, S.; Marova, I.; Snajdar, O.; Mravcova, L.; Svoboda, Z. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol. Lett. 2010, 32,
1925–1932. [CrossRef]

14. Yamane, T.; Chen, X.; Ueda, S. Growth-associated production of poly(3-hydroxyvalerate) from n-pentanol by a methylotrophic
bacterium, Paracoccus denitrificans. Appl. Environ. Microbiol. 1996, 62, 380–384. [CrossRef] [PubMed]

15. Strong, P.J.; Laycock, B.; Mahamud, S.N.S.; Jensen, P.D.; Lant, P.A.; Tyson, G.; Pratt, S. The opportunity for high-performance
biomaterials from methane. Microorganisms 2016, 4, 11. [CrossRef] [PubMed]

16. Liu, Q.; Zhang, H.; Deng, B.; Zhao, X. Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Structure,
property, and fiber. Int. J. Polym. Sci. 2014, 2014, 1–11. [CrossRef]

17. Shishatskaya, E.I.; Kamendov, I.V.; Starosvetsky, S.I.; Vinnik, Y.S.; Markelova, N.N.; Shageev, A.A.; Khorzhevsky, V.A.; Peryanova,
O.V.; Shumilova, A.A. An in vivo study of osteoplastic properties of resorbable poly-3-hydroxybutyrate in models of segmental
osteotomy and chronic osteomyelitis. Artif. Cells, Nanomed. Biotechnol. 2014, 42, 344–355. [CrossRef] [PubMed]

18. Naser, A.Z.; Deiab, I.; Darras, B.M. Poly(lactic acid)(PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-
based plastics: A review. RSC Adv. 2021, 11, 17151–17196. [CrossRef]

19. Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog.
Polym. Sci. 2013, 38, 536–583. [CrossRef]

20. Ali, I.; Jamil, N. Polyhydroxyalkanoates: Current applications in the medical field. Front. Biol. 2016, 11, 19–27. [CrossRef]
21. Wu, L.P.; Wang, D.; Parhamifar, L.; Hall, A.; Chen, G.Q.; Moghimi, S.M. Poly(3-hydroxybutyrate-co-R-3-hydroxyhexanoate)

nanoparticles with polyethylenimine coat as simple, safe, and versatile vehicles for cell targeting: Population characteristics, cell
uptake, and intracellular trafficking. Adv. Healthc. Mater. 2014, 3, 817–824. [CrossRef]

22. Catoni, S.E.; Trindade, K.N.; Gomes, C.A.; Schneider, A.L.; Pezzin, A.; Soldi, V. Influence of poly(ethylene grycol)-(PEG) on the
properties of influence of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-PHBV. Polímeros 2013, 23, 320–325. [CrossRef]

23. Li, Z.; Loh, X.J. Water soluble polyhydroxyalkanoates: Future materials for therapeutic applications. Chem. Soc. Rev. 2015, 44,
2865–2879. [CrossRef]

24. Shah, M.; Naseer, M.I.; Choi, M.H.; Kim, M.O.; Yoon, S.C. Amphiphilic PHA–mPEG copolymeric nanocontainers for drug
delivery: Preparation, characterization and in vitro evaluation. Int. J. Pharm. 2010, 400, 165–175. [CrossRef] [PubMed]

25. Scandola, M.; Focarete, M.L.; Adamus, G.; Sikorska, W.; Baranowska, I.; Świerczek, S.; Gnatowski, M.; Kowalczuk, M.; Jedliński,
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