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Inflammatory bowel diseases (IBDs) represent a group of chronic inflammatory

disorders of the gastrointestinal (GI) tract including ulcerative colitis (UC),

Crohn’s disease (CD), and unclassified IBDs. The pathogenesis of IBDs is

related to genetic susceptibility, environmental factors, and dysbiosis that can

lead to the dysfunction of immune responses and dysregulated homeostasis of

local mucosal tissues characterized by severe inflammatory responses and

tissue damage in GI tract. To date, extensive studies have indicated that IBDs

cannot be completely cured and easy to relapse, thus prompting researchers to

find novel and more effective therapeutics for this disease. Due to their potent

multipotent differentiation and immunomodulatory capabilities, mesenchymal

stem/stromal cells (MSCs) not only play an important role in regulating immune

and tissue homeostasis but also display potent therapeutic effects on various

inflammatory diseases, including IBDs, in both preclinical and clinical studies. In

this review, we present a comprehensive overview on the pathological

mechanisms, the currently available therapeutics, particularly, the potential

application of MSCs-based regenerative therapy for IBDs.

KEYWORDS

inflammatory bowel diseases, ulcerative colitis, Crohn’s disease, mesenchymal stem/
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1 Introduction

Inflammatory bowel diseases (IBDs) include two major types

of disorders in gastrointestinal (GI) tract, ulcerative colitis (UC)

and Crohn’s disease (CD) (Table 1), characterized by idiopathic

gastrointestinal inflammation and tissue damage with a high

recurrent rate (1). According to epidemiology, the prevalence of

IBDs in Western countries is significantly higher than that in

Eastern countries, but it is also rapidly increasing in Asian

countries (2). The clinical signs and symptoms of the IBDs

mainly include enteritis, diarrhea, recurrent hemorrhage,

abdominal pain, reduced appetite, and weight loss, etc. (3, 4).

Currently, there is still no cure for IBDs (5). In the early stages of

IBDs, it is treated mainly with medication and surgery therapies,

but the former can only control symptoms, while the latter is

invasive and carries a high risk of complications (6). The clinical

remission rates of IBDs range from 20% to 30% with

monotherapy, but the remission rate would be around 50% if

a combination of treatments were used (7). If the disease is not

treated in time, the protracted course of IBDs can eventually

trigger cancer, such as colitis-associated cancer (CAC), caused

by external oncogenic factors (8, 9).

In recent years, mesenchymal stem cells (MSCs)-based

therapy has emerged as a promising strategy for the treatment

of IBDs due to their potent immuno-modulatory and tissue-

repair functions (10). MSCs were first described by Friedenstein

et al. as a population of bone marrow derived adherent cells,

which were fibroblast-like and non-phagocytic cells but could

differentiate into adipocytes, osteocytes, and chondrocytes under

specific induction conditions in vitro (11). Bone marrow has

long been regarded as the main source of MSCs. Nevertheless,

isolation of bone marrow-derived MSCs (BM-MSCs) is a highly

invasive process that may cause severe morbidity, while the

number of BM-MSCs obtained usually decreases significantly
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with aging (12). In addition to bone marrow, MSCs have also

been isolated from a variety of other tissues, such as adipose

tissue (AT-MSCs), umbilical cord blood (UCB-MSCs), human

amniotic tissue (HA-MSCs), and gingiva tissues (GMSCs) that

are easily accessible (13). In order to standardize MSCs of

different tissue origins, the International Society of Cell

Therapy proposed three minimal standards for MSCs (1):

plastic adherence in vitro culture conditions (2); the expression

of a panel of phenotypic markers CD73+, CD90+, and CD105+

and the absence of hematopoietic marker CD11b-, CD14-,

CD19-, CD34-, CD45-, CD79a-, and HLA-DR- (3); the ability

to differentiate into osteoblasts, adipocytes, and chondroblasts in

vitro (14) (Figure 1A).

Given their wide existence in almost all tissues and organs of

the body and their multifaceted biological functions, MSCs have

been implicated to play essential roles in tissue homeostasis,

regeneration, and diseases (15–19). Under physiological

conditions, they may play an essential role in development,

organogenesis, and maintenance of tissue and immune

homeostasis through their cross-talks with specialized tissue

cells and resident immune cells (15, 18, 19). On the other

hand, in response to various insult signals, resident or

endogenous MSCs may act as sensors of various insult signals

and become activated by secreting a myriad of bioactive

mediators that can foster or temper the immune/inflammatory

responses, leading to the establishment of a pro-reparatory or

regenerative microenvironment (20). However, various factors

or pathological conditions, e. g. aging, can dysregulate the

property and function of MSCs, thus contributing to the

pathogenesis of various diseased conditions, including chronic

inflammatory and fibrotic diseases (15–17, 21) and even

tumorigenesis (20). In the review article, we also highlighted

the latest research progress on the potential role of dysregulated

MSCs in the pathogenesis of IBDs.
TABLE 1 The difference between Crohn’s and Ulcerative colitis.

Items/
Type

Crohn’s (CD) Ulcerative colitis (UC)

Causes Inappropriate response of the immune system Immune reaction, genetics

Risk factors Smoking, environmental factors Age, ethnicity

Lesion site Anywhere between the mouth and anus Rectum, colon

Symptoms Abdominal cramping, diarrhoea, bloody stool, mucous stool, loss of appetite,
weight loss, tiredness and mouth ulcers.

Diarrhoea, abdominal, anal pain, weight loss, tiredness, fatigue,
rectal ulcers, bleeding, fevers, chills, anorexia and nausea

Complications Nutritional deficiencies, fistulas, toxic, megacolon, narrowing of the intestines Bleeding, toxic colitis, blood clotting, bowel cancer

Characteristics Discontinuous lesions Continuous lesions

Treatment Lifestyle changes, medication and surgery Self-care, medications and surgery

Medication 5-aminosalicylic acids, corticosteroids, immune system modulators, tumor necrosis
factor-alpha antagonists, antibiotics, antidiarrhoeal medications

aminosalicylic acids, corticosteroids,
biological therapies, antibiotics, probiotics and iron supplements

Surgery It is used for fistulas, strictures (narrowing of the gut), large abscesses or other
therapies have failed.

Medications is ineffective, precancerous or cancerous changes in the
bowels, severe symptoms

Canceration Low High

Prognosis Some people can be symptom-free for decades, while others may experience
symptoms every few months.

There is a greater risk than normal of developing bowel cancer,
usually after 7-10 years with ulcerative colitis.
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2 Pathogenic mechanism of IBDs

The etiology of IBDs is very complicated and has not yet

been completely understood. To date, it is generally accepted

that the pathogenesis of IBDs involves a complex interaction of

environmental factors, genetic susceptibility, and dysregulated

immune responses (22). Among the environmental factors,

smoking, drugs use, diet habits, mental stress, and many other

external factors are related to the occurrence of IBDs (23). In

particular, smoking increases the risk of CD and is related with

an increase in the recurrence rate of postoperative diseases (24).

Air pollution can also increase the risk of CD and UC disease

(25, 26). At the same time, Bitton et al. (27) also proposed that

people with less stress would have less chance of developing

IBDs. In addition, IBDs has a strong genetic tendency, especially

in the first-degree relatives of patients who are at higher risk for

IBDs. Compared with fraternal twins, identical twins have a

higher prevalence rate of IBDs (28, 29). Genetic studies have

reached a consistent conclusion: genetic factors play an

important but non-decisive role in the occurrence of IBDs.

The dysregulated immune responses also play a key role in

the pathogenic process of IBDs. The most fundamental

pathogenetic patterns of IBDs is the dysregulation of innate

and adaptive immunity. However, the adaptive immune
Frontiers in Immunology 03
responses are considered to be the main driver of IBDs (22).

In response to different types of pathologic factors and

inflammatory cytokines, naive CD4+ T cells can differentiate

into distinct subsets of CD4+ T-helper (Th) cells, such as Th1,

Th2, Th17, and CD4+FoxP3+ T regulatory cells (Tregs) (30). Th1

and Th17 cells can secrete a variety of inflammatory cytokines

that induce intestinal epithelial inflammatory cells infiltrate and

acute or chronic enteritis. However, intestinal inflammation can

be suppressed via the differentiation Tregs and the

supplementary of Th2 cells (31). Disturbance of immune

homeostasis results in an imbalance of various subtypes of T

cells as evidenced by increased proinflammatory cytokines

derived from Th1 and Th17 cells in CD disease or Th2 cells in

UC (32–34), and a decrease in the infiltration of anti-

inflammatory Tregs in both CD and UC (35). For a long time,

many studies believed that CD was driven by Th1 response,

while UC was related to Th2 response. In the CD mucosa,

macrophage-der ived IL-12, IL-18, and TNF-a are

overexpressed, driving the Th1 immune response to increase

the production of IL-2 and IFN-ɤ. This response is thought to

cause intestinal inflammation. In contrast, UC is characterized

by increased expression of IL-5 and IL-13, which are members of

the Th2 cytokine family, and this response will induce intestinal

inflammation. In addition to the Th1 and Th2 responses, the
B

A

FIGURE 1

(A) The self-renewal and multipotent differentiation functions of MSCs. (B) The mechanism of immune responses in the pathogenic process of IBDs.
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role of Th17 cells, a subset of inflammatory T cells that expand

under the action of pro-inflammatory cytokines, has been the

focus research at this current stage Th17 cells are induced by IL-

6 and TGF-b and produce IL-17A, IL-21, and IL-22, and those

soluble factors will cause inflammation in CD and UC mucosa

(36). IL-10 and TGF-b secreted by Tregs create an

immunosuppressive microenvironment that is beneficial for

repairing gastrointestinal dysfunction and colonic mucosal

lesions (Figure 1B).

In recent years, accumulating evidence has highlighted the

important role of resident MSCs in the establishment of a unique

tissue niche that is essential for tissue and immune homeostasis,

while the dysregulated MSCs might contribute to the

development of various pathological conditions (15–17, 19,

21). Similarly, recent studies have also implicated the

importance of intestinal MSCs in digestive organ development,

mucosal tissue, and immune homeostasis, which can provide

multiple niche signals to support functional integration of

mucosal epithelial cells, immune cells, and gut microbiota (37–

39). On the other hand, deficiency or aberrant activation of

intestinal MSCs may lead to disturbance in mucosal and

immune homeostasis, thus contributing to the pathogenesis of

IBDs (40). Most recently, the emerging studies using scRNA-seq

have significantly improved our understanding of the

heterogeneity and the distinct role of diverse subsets of

intestinal MSCs in regulating mucosal homeostasis and

immunity by providing different niche signals under both

physiological and inflammatory conditions (37, 38). For

instance, Jasso et al. recently identified distinct subpopulations

of stromal fibroblasts with gene signatures that are differentially

regulated by chronic inflammation through scRNA-seq analysis

of colon-derived mesenchymal stromal cells, thus providing

mechanistic insight into how inflammation affects the function

and behavior of intestinal MSCs and their crucial role in

orchestrating mucosal tissue remodeling and healing (41).
3 Mechanisms of MSCs-based
therapy of IBDs

3.1 MSCs-mediated immunomodulatory
modulation

Compared with traditional therapeutics, MSC-based therapy

is emerging as a promising platform for the treatment of IBDs.

MSCs have the potential ability to restore immune homeostasis

in patients with IBDs through turning the adverse pro-

inflammatory mucosal immune responses into beneficial anti-

inflammatory immune responses (42, 43). Many reported

suggest that normal derived-MSCs (N-MSCs) can play a

potential role in immunomodulatory or migrated to lesions to

perform special functions during disease occurrence (44).
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However, the research on lesions-derived MSCs (L-MSCs) is

still relatively fragmented (45, 46). L-MSCs, including but not

limited to tumors, granulomas, oral, cervical, skin, precancerous,

and white matter lesions, are the origin of disease occurrence

and development (47–49). A few papers described the presence

of L-MSCs possess many similarities with N-MSCs. It is

noteworthy that L-MSCs may have directly or indirectly

promoted the occurrence and development of local

inflammatory diseases by increased proinflammatory factors

and decreased anti-inflammatory factors (50). For instance, it

has been reported that periapical lesions (PL)-MSCs possess

similar immunomodulatory functions compared to N-MSCs

(51). Dokic et al. reported that PL-MSCs increased the

production of IL-6, IL-1b, TNF-a, and TGF-b, but not IL-8,
thus exerting an pro-inflammatory role. These PL-MSCs can

also inhibit T cell proliferation by suppressing IL-2 production

and cell-cycle regulatory proteins. Additionally, TGF-b secreted

by PL-MSCs can inhibit both Th1 and Th2 differentiation, and

stimulate the expression of RORgt and FoxP3, the master

regulators of Th17 and Tregs, respectively (52). Liu et al. (50)

also showed that skin lesions-derived MSCs affects the activity of

T lymphocytes in local lesions by increasing IL-11 secretion and

reduced IL-6 and HGF. However, Galland et al. observed that

tumor-as soc ia t ed MSCs (T-MSCs) have s t ronger

immunosuppressive effect than N-MSCs, and affected both NK

function and phenotype, such as the expression of CD56. T-

MSCs shifted NK cells toward the CD56dim phenotype and

differentially regulate the function of a subset of CD56bright/dim.

Moreover, T- and N-MSCs both affect degranulation and

activating receptor expression in the CD56dim subset, where

they predominantly inhibit IFN-g production to regulates

immune function (53). Additionally, T-MSCs may largely rely

on PGE2 and to a lesser extent on IL-6 to exert their

immunosuppressive effects, and this effect by T-MSCs may be

determined by signals derived from the tumor cells or the

microenvironment, which may vary from patient to patient

(20). Therefore, these studies have indicated that N- and L-

MSCs possess immunomodulatory properties, which could

make N- and L-MSCs based therapy of IBDs through

mechanisms involving the secretion of anti-inflammatory

soluble factors, direct cell-to-cell contact, and other regulatory

pathways (54, 55).
3.1.1 The secretion of anti-inflammatory
soluble factors

The paracrine functions of transplanted MSCs are much

complex and controversial under the pathological setting of IBDs.

Upon injury, MSCs respond to insult signals and become activated

by secreting an array of soluble bioactive factors that can serve as

feedback signals to foster the immunomodulatory and tissue repair

functions of MSCs (56). It is widely assumed that the property and

function of MSCs are determined by the local microenvironment
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where they reside. TransplantedMSCs can secrete biological factors,

e.g. anti-inflammatory or immunosuppressive factors, either

“spontaneously” or following stimulation by pro-inflammatory

cytokines or other soluble factors produced by local immune

cells, such as IL-1b, TNF-a, and IFN-g (57–59). For instance,

Galland et al. demonstrated that T-MSCs exhibit an

immunosuppressive phenotype mainly through PGE2 mediated

suppression of NK cell function, including inhibition of IFN-g
production, the shift toward the CD56dim phenotype, and

downregulation of NK cell activating receptors (53). However, it

has been reported that MSCs are not always weaponized with

immunosuppressive functions. Fuenzalida et al. showed that MSCs

pretreated with TLR3 l igands could secrete extra

immunosuppressive cytokines and inhibit active T cells

proliferation, while activation of TLR4 could prime MSCs to

secrete proinflammatory factors (60, 61).

Under inflammatory conditions, transplanted MSCs stimulated

by pro-inflammatory factors undergo a cascade of immune

responses (62). Stimulated MSCs release PGE-2 and IL-6 to

inhibit the maturation and function of dendritic cells (DCs),

which leads to the decrease of TNF-a expression in myeloid DCs

and upregulation of IL-1 level in lymphoid DCs (63, 64). MSCs

inhibit T cell proliferation by elevating the expression of IDO and

the secretion of TGF-b, IL-10, and PGE2, which can increase the

expression of IFN- g and IL- 21 (65). MSCs also could suppress

macrophages activation through release of tumor-specific

glycoproteins (TSGs) to convert the phenotype of macrophages

from pro-inflammatory M1 macrophage characterized by secretion

of inflammatory cytokines, e.g. TNF-a and IL-12, to anti-

inflammatory M2 macrophages characterized by secretion of anti-

inflammatory cytokines such as IL-10 and TGF-b (66). Naive CD4+

T cells differentiate into Th17 cells, which are characterized by the

production of high levels of IL-17A, IL-17F, IL-21, and IL-22, upon

combined stimulation of IL-6 and TGF-b, while their expansion is

sustained by IL-23 secreted by macrophages and DCs (66, 67). It

has been shown that MSCs restrain the development and activation

of Th1 and Th17 cells by producing anti-proinflammatory factors,

such as HLA, IL-10, TGF-b, and PGE2, and boost T cells and

suppress B cells proliferation by promoting the expression of CD40,

IL-6, IL-10, and TGF-b in colitis (68) (Figure 2A).

3.1.2 Direct cell-to-cell contact mechanisms
In addition to secreting anti-inflammatory factors,

research evidence shows that MSCs are also capable of

enhancing IL-10 production through a cell-to-cell contact

mechanism between activated T cells and MSCs, which in

turn stimulates the release of soluble human leukocyte

antigen G5 (HLA-G5) (69, 70). HLA-G5 can significantly

downregulate naive and memory antigen-specific T cells

response, inhibit T cell proliferation and cytotoxicity, and

suppresses NK cell function. Meanwhile, MSCs can induce T

cells to form functional Tregs through mechanisms involving
Frontiers in Immunology 05
TGF-b and PD-1/PDL-1 or depends on T cell-dependent

expression of TNFR2 (71, 72). This mechanism of cell-to-

cell contact reaction suggests that MSCs exert powerful

immunosuppressive effects in IBDs (Figure 2B).

3.1.3 MSCs-derived extracellular vesicles
Extracellular vesicles (EVs), including exosomes, are

nanoscale microvesicles released by cells that play an

important role in intercellular communication via transferring

cargos containing various bioactive components (protein, DNA,

mRNA, and non-coding RNA) involved in various

of physiological and pathological processes (73, 74). There

is increasing evidence that MSC-derived EVs display

powerful therapeutic effects in several preclinical models of

inflammatory diseases, suggesting that MSC-EVs may be a

promising cell-free therapy because their properties are

relatively stable and the safety risk is lower than that of the

cell-producing similar products (75, 76). The mechanism of

MSC-EVs in treating IBDs may be through inhibiting the

secretion of pro-inflammatory cytokines and promoting the

secretion of anti-inflammatory factors, regulating colonic

macrophages, inhibiting apoptosis protein, regulating the

expression of transcription factors, regulating signaling

pathways, etc. (Figure 2C). For instance, Yang et al. found that

intravenous injection of bone marrow mesenchymal stem cell-

derived extracellular vesicles (BMSC-EVs) reduced the level of

iNOS, COX-2, TNF-a, and IL-1b, inhibited apoptosis and NF-

kBp65 signal transduction pathway, and regulated the balance

between antioxidants (MPO, MDA) and oxidants (SOD, GSH)

in IBDs mice (77). Liu et al. found that BMSC-EVs can act on

colonic macrophages to produce IL-10, polarize intestinal M2b
macrophages, inhibit inflammation and maintain the integrity of

the colon barrier through metallothionein-2 (78). In addition to,

Chang et al. found that adipose derived mesenchymal stem cell-

derived extracellular vesicles (ADMSCs-EVs) effectively

suppress acute inflammatory colitis in rats by down-regulating

the expression of inflammatory markers (IL-1b, IL-6, TNF-a,
NF-kB, COX-2, MMP-9, TLR-4, ICAM-1), oxidative stress

markers (NOX-1, NOX-2, NOX-4) apoptotic, proteins (Bax,

caspase 3, PARP), and fibrosis markers (Smad3, TGF-b) (79).
Recently, a growing body of evidence has shown that EVs

released by cells of the intestinal mucosa, immune cells, and

gut microbiota play a significant role in maintaining the

intestinal mucosal and immune homeostasis and the

pathogenesis of IBDs (80). However, little is known about the

role of EVs released by intestinal MSCs in both health

and disease.

3.1.4 MSCs-mediated mitochondria transfer
MSCs may exert their therapeutic effects through

mitochondrial transfer, a process to transfer healthy

mitochondria from MSCs to cells with mitochondrial
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dysfunction through the formation of tunnel nanotubes, gap

junctions, microvesicles, cell fusion and separation, or other

mechanisms to restore their aerobic respiratory function (81)

(Figure 2D). MSCs are able to express high levels of RHOT1, a

key RhO GTPase that supports mitochondrial transport from

MSCs to adaptor cells (82). The transfer of mitochondria from

MSCs with low levels of RHOT1 to injured intestinal epithelial

cells is reduced in comparison with that from the MSCs with

higher RHOT1. This reduction is not due to the decrease in

nanotube formation, but to the decrease in RHOT1 mediated

mitochondrial motility through the nanotubes. Mitochondria

donated by MSCs can strengthen the tight junction of intestinal

epithelial cells, provide sufficient ATP for intestinal epithelial

cells, and reduce the oxidative stress response of recipient cells,

thus relieving the intestinal symptoms of IBDs (83). In addition,
Frontiers in Immunology 06
MSCs can recognize mitochondria released from damaged

intestinal epithelial cells as danger signals and activate the

possibility of regenerative therapy (84). However, there is a

need for further studies to determine the specific mechanism

and key factors associated with mitochondrial transfer in MSC-

based therapy for IBDs.

3.1.5 Involvement of PD-L1 in MSCs-mediated
immunosuppression

The regulation of immune checkpoint pathway plays pivotal

roles in the treatment of immune system diseases (85). Among

them, the programmed cell death-1 (PD-1)/programmed cell

death-ligand 1 (PD-L1) checkpoint pathway is one of the

important components to inhibit the immune response and

maintain immune homeostasis (86). PD-1, a costimulatory
FIGURE 2

Schematic diagram of the mechanism of MSCs treatment in IBDs. (A) The secretion of anti-proliferative soluble factors. (B) Cell-To-Cell
Contact. (C) Exosomes treatment. (D) Mitochondria transfer. (E) MSCs express PD-L1.
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molecule, is induced to be expressed on the surface of activated T

cells, B cells and NK cells. PD-L1 (also known as B7 homolog 1, or

B7-H1) is a ligand of PD-1. It is expressed in T cells, B cells, DCs,

macrophages, and some non-hematopoietic cells. The PD-L1

binding with PD-1 prevents immune diseases by inhibiting the

activity of T and B cells (87). However, recent studies have shown

that MSCs also express PD-L1, PD-L2 that contribute

independently to their immunosuppressive effects, which provides

a new research direction for the treatment of IBD (88). In the

inflammatory environment, the PD-L1 and PD-L2 induced by IFN-

g turned out to be constitutively expressed on MSCs derived from

bone marrow, liver, and placenta. Meanwhile, PD-1 and PD-2

overexpression on the surface of T cells influences MSC-mediated

inhibitory effects on T cell proliferation and cytotoxicity in vitro

(89). Therefore, it is worthwhile to explore whether the expression

of PD-L1 and PD-L2 can also contribute to MSC mediated

immunosuppression in the treatment IBDs (Figure 2E).

3.1.6 Signaling pathways
Several signaling pathways involved in immune and

inflammatory responses have been implicated in MSC-based

therapy of IBDs, including Wnt/b-catenin signaling pathway,

the NF-kB pathway, the Notch signaling pathway, the PTEN/

PI3K/Akt signaling pathway, and the FAS/FASL signaling

pathway (90, 91). For instance, several reports have shown

that MSCs inhibit the activity of macrophages, DCs, and T

cells via TNF-a stimulated gene protein 6 (TSG-6) by activating

the NF-kB signaling axis downstream of the CD44 receptor (92,

93). In addition, MSCs are capable of secreting monocyte

chemotactic protein-1 (MCP-1) to promote apoptosis of CD4+

T cells via the FAS/FASL signaling pathway, thereby inhibiting T

lymphocyte proliferation in IBDs (94).
3.2 MSCs alleviate IBDs via restoration of
intestinal mucosal barrier

3.2.1 Repair the intestinal microenvironment
The intestinal microenvironment has an important role in

MSC-mediated therapeutic effects on IBDs. Under a normal

environment, the sustainable renewal and proliferation of

intestinal stem cells promote the continuous renewal of

intestinal epithelium. During injury or damage to the

intestinal tract, the disrupted microenvironment impairs the

ability of intestinal stem cells to self-renewal, proliferate, and

differentiate (95). The microenvironment of intestinal stem cells

is jointly regulated by Wnt, Notch, and BMP signaling pathways

(96). For instance, intestinal Paneth cells and pericryptal

fibroblasts are essential components of the niche that mediate

major signaling pathways of Wnt, Notch, and BMP to regulate

the mechanism of self-renewal, proliferation, and differentiation

of intestinal MSCs (97). Constituents of the crypt lumen

produced by epithelial cells or bacteria may have potent effects
Frontiers in Immunology 07
on the intestinal stem cells. Furthermore, intestinal subepithelial

myofibroblasts mediate interactions between epithelial and

mesenchymal cells via secreting multiple morphogenetic

factors involved in stem cell homeostasis. This process will

determine the intestinal architecture and the balance between

intestinal cell proliferation and differentiation (98).
3.2.2 Repair intestinal epithelial cell
The view of “cell fusion” holds that when the in situ stem

cells in tissues and mature cells are seriously damaged and

unable to be rebuilt, the mature cells can be re-entered into

the stem cell state by nuclear transfer (99). For example, BM-

MSCs can differentiate into epithelial cells through “cell

fusion” in vitro under certain culture conditions that

include HGF, EGF, KGF, and IGF-II (100). In previous

studies, Rizvi et al. used double-labeled intestinal epithelial

cells with Y-FISH and enhanced green fluorescent protein

immunohistochemical method, the former as a recipient

source marker and the latter as a donor source marker.

Among the tested cells, double-positive epithelial cells were

found, which confirmed that donor BM-MSCs were involved

in the repair of intestinal epithelial cell injury through the

cell fusion mechanism after transplantation (101). However,

Ferrand et al. argued that further studies are warranted

to explore whether BM-MSCs can acquire epithelial

characteristics through “cell fusion” with resident intestinal

epithelial cells after engraftment (102).
3.2.3 Tissue homing and tissue regeneration
The homing or recruitment of MSCs to the damaged tissue

can also contribute an important role to the therapeutic efficacy

of MSCs-based therapy for various inflammatory diseases,

including IBDs. Tissue-oriented homing means that MSCs

have the capacity to migrate and engraft specifically into

damaged tissue sites, where they can differentiate into

functional cells to replace damaged or diseased cells (103).

Previous studies have shown that the molecular mechanisms

underlying tissue homing of MSCs involve the expression of

chemotactic receptors, matrix metalloproteinases (MMPs), and

adhesion molecules. The chemotactic receptors mainly include

CCR1, CCR2, CCR4, CCR5, CCR9, CXCR1, CXCR4, and

CXCR5, whereby CCR2 and CCR4 assist the migration of

MSCs, and CXCR4/SDF-1 axis can directly promote MSCs

migration (104). The receptors expressed on MSCs can

specifically bind to their ligands, which are released by certain

histiocytes in the enteritis environment, such as CCL5, CCL19,

CCL22, CCL25, CXCL8, CXCL13, etc. (105). MSCs may alleviate

disease severity by expressing some adhesion molecules, such as

CD29, CD44, CD49e, CD54, CD105, CD106, and CD166, which

are essential for MSCs’ tissue homing (104). In addition, the

adhesion molecules including P-selectin, VCAM-1, ALCAM,

and VLA-4 have been demonstrated to promote the adhesion of
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MSCs to endothelial cells (106). Therefore, the expression of

adhesion molecules may promote MSCs to integrate into

damaged intestinal tissues to facilitate tissue regeneration

through differentiation into intestinal epithelial cells,

suppressing inflammation, and promoting angiogenesis (107).

Additionally, several MMPs, such as MMP-2 and MT1- MMP,

are also indispensable for tissue homing and tissue regeneration

of MSCs. Tissue regeneration has been found after MSCs arrive

at inflamed tissue (108). It is well accepted that MSCs contribute

to tissue repair, mainly due to their ability to stimulate local

tissue proliferation and survival by secreting proteolytic enzymes

and angiogenic factors, while inhibiting tissue apoptosis and

fibrosis (109). Some bioactive molecules, such as NO, IFN-g, and
TNF-a, can also stimulate tissue repair functions of MSCs

through altering their migration, differentiation, or

immunologic properties (110, 111). In particular, the

migration rate and duration of MSCs are decisive factor

affecting the efficiency of tissue repair and regeneration.

However, there are still few studies on tissue homing and

tissue regeneration through MSCs in the treatment of IBDs.

Table 2 Summarizes the related mechanisms of MSCs therapy.
4 Route of MSCs-based therapy
for IBDs

The administration route can affect the therapeutic efficacy

of MSCs for various pathological conditions, including IBDs.

Two main approaches have been developed for administration

of MSCs for IBDs treatment: local administration of MSCs for

treatment of perianal fistulizing CD and systemic administration

of MSCs for treatment of luminal inflammatory disease (131).

Studies have demonstrated that local administration of

autologous or allogeneic BM-MSCs and AT-MSCs achieved

obvious clinical efficacy in patients with fistulazing CD by

downregulating local immune responses and initiating wound

healing (131). The effects of systemic administration of

autologous or allogeneic MSCs have been evaluated in clinical

trials., indicating that the systemic administration of AT-MSCs

significantly improved the clinical outcome and prognosis for

IBDs (132). However, there is still no standard reference for

selecting the route for MSCs administration, either local or

systemic administration, which might be determined according

to the specification of diseases to be treated.
5 MSCs-based therapy for IBDs

MSCs can differentiate from other stem cells. Human

pluripotent stem cells (hPSCs) include human embryonic

stem cells (hESCs) and induced pluripotent stem cells

(iPSCs), both of which can differentiate into MSCs (133).
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MSCs derived from hESCs and iPSCs exhibited similar

properties, such as their ability to secrete anti-inflammatory

soluble factors, and to restore the intestinal mucosal barrier in

IBDs (134). hESCs-MSCs exhibit potent immunosuppressive

on the colonic mucosa through preferentially homing to

inflamed tissues and secondary lymphoid organs. It has a

very effective inhibitory effect on the proliferation of Th1,

but not the Th2 (135). However, iPSCs-MSCs can exhibit

immunosuppressive directly inhibiting Th2 differentiation

and promoting Tregs responses, depending on the

mechanism of PGE2 production and cell-cell contact (136).

For instance, Xu et al. reported that intravenous injection of

hESCs-MSCs alleviated both acute and chronic DSS-induced

colitis in mice through increasing endogenous IGF-1 secretion

and maintaining colonic epithelial integrity and regenerative

(137). Soontararak et al. showed that iPSCs-MSCs ameliorated

clinical abnormalities in IBDs by stimulating intestinal

epithelial cell proliferation increasing the numbers of Lgr5+

intestinal stem cells, and increasing intestinal angiogenesis,

changing the microbiome in colitis and restoring its normal

microecology (124).

Due to the self-renewal, multipotency, and immunosuppressive

characteristics of MSCs, more clinical trials have been conducted to

find a suitable treatment for IBDs using MSCs. In recent years, a

growing number of clinical trials have proved the beneficial effects

of MSCs on IBDs. Through searching the ClinicalTrials.gov

database, 34 clinical trials have been identified on MSC

based therapy for IBDs (Table 3). In these data, we found that

different sources of MSCs, different injection methods, and doses

of IBDs can improve clinical symptoms in different degrees.

However, the clinical treatment of IBDs has a large sample size

and a long cycle. The therapeutic effect still needs to be

further observed.

Besides using MSCs to treat IBDs, it has also been shown

that MSCs exhibit a powerful therapeutic function in CAC,

which develops from chronic enteritis and frequently occurs in

areas of chronic inflammation (31). The research found that

hUC-MSCs migrated into the intestinal structure and then

moved to the colon to reduce the number of tumors with the

reduction of Ki67 by inhibiting chronic inflammation and the

Smad2 signaling pathway (138). However, the therapeutic effect

of MSCs in colorectal cancer is in dispute due to the potent

immunosuppressive properties of MSCs that can contribute to

the immunosuppressive tumor microenvironment favoring

immune evasion of cancer cells, and thus, negatively affect the

therapeutic effect of CAC (139).

MSCs-based therapy for many other diseases has also shown

great promise. Numerous basic studies and clinical trials have

proved that MSCs exhibit an obvious therapeutic effect on

nervous system diseases, cardiovascular system diseases,

pulmonary lung diseases, etc., and show potent regenerative

potential in diseased liver, lung, kidney, skin, and other organs
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(140, 141). The regenerative therapeutic potentials of MSCs are

mainly attributed to their unique properties, such as self-renewal

and multipotent differentiation capability, immunomodulatory/

anti-inflammatory function, easy isolation and expansion in

vitro, etc. Meanwhile, the lack of expression of the major
Frontiers in Immunology 09
MHC II molecule and the low expression level of MHC I and

co-stimulatory molecule (CD40, CD80, CD86, and CD154) coin

MSCs with a hypoimmunogenic and immune tolerant

phenotype, which allows MSCs to escape immune recognition

and clearance in vivo delivery (142). In addition, MSCs have
TABLE 2 The mechanism of difference source of MSCs in treatment Inflammatory Bowel Disease.

MSCs
source

Model Type Pathway Dosage Mechanism Refs

BM-
MSCs

C57BL/6 Mice IBD i.v. 1×106

cells
Up-regulation of COX2 and the activation of EP4 receptors Brown et al.

(112)

BM-
MSCs

C57BL/6 mice UC i.p. 2×106

cells
Through suppression of DCs’ inflammatory phenotype through Gal-3 Nikolic et al.

(113)

BM-
MSCs

BALB/c mice UC i.p. 2×106

cells
Promoted M2-like macrophage polarization and relieved inflammatory responses Cao et al.

(114)

BM-
MSCs

Wister rats UC i.p. 2×106

cells
By reducing the neutrophil infiltration, lipid peroxidation, and proinflammatory
cytokine levels

Froushani
et al. (115)

hUC-
MSCs

Patients IBD i.v. 2.3-
4.7×107

cells

Accelerate the apoptosis of active inflammatory cells by down-regulating
inflammatory mediator production

Hu et al.
(116)

hUC-
MSCs

KM mice IBD i.p. 1.3×106

cells
By regulating the expression of IL-7 Fei et al.

(117)

hUC-
MSCs

BALB/c mice IBD i.p. 1×106

cells
Modulation of immunosuppression by producing PGE2 inducing TLR3 to
activate Notch-1 signaling

Qiu et al.
(90)

hUC-
MSCs

BALB/c mice IBD i.v. n/a Reduce ubiquitin-protein expression and reduction of NF-kB and mTOR
activation

Wu et al.
(118)

hUC-
MSCs

C57BL/6 mice IBD i.p. 3×106

cells
By inhibiting ERK signalling, polarize neutrophils toward the “N2” phenotype. Wang et al.

(119)

GMSCs C57BL/6J mice UC i.v. 2×106

cells
By downregulating the production of inflammatory cytokines by reducing colonic
infiltration of inflammatory cells and promoting the generation/activation of
Tregs

Zhang et al.
(43)

GMSCs C57BL/6J mice UC i.v. n/a By modulating inflammatory immune cells via IL-10 signalling Lu et al.
(120)

GMSCs C57BL/6J mice UC i.v. 2×105

cells
By upregulating expression of FAS ligand Xu et al.

(121)

GMSCs C57BL/6J B6.129P2-
Cbstm1Unc/J, and Cbs+/−

mice

UC i.v. 2×105

cells
By Fas/FasL coupling-induced T-cell apoptosis Yang et al.

(94)

GMSCs C57BL/6J mice UC i.v. 1×106

cells
By upregulating expression of FAS ligand Yu et al.

(122)

HA-
MSCs

SD rats IBD i.v. 1×106

cells
By producing a variety of humoral factors Miyamoto

et al. (123)

HA-
MSCs

CD-1 mice IBD i.v. 2×106

cells
By increasing the numbers of Lgr51 intestinal stem cells, stimulating intestinal
epithelial cell proliferation, and increasing intestinal angiogenesis

Soontararak
et al. (124)

AT-
MSCs

C57BL/6J mice IBD i.p. 2×106

cells
Increased release of TSG-6 and PGE2 Song et al.

(125)

AT-
MSCs

C57BL/6J mice IBD i.p. 1-5×106

cells
Induces an innate immune memory response Lopez-

Santalla et
al. (126)

AT-
MSCs

SD rats UC i.v. 1×107

cells
By suppressing NF-kB signaling pathway Qi et al.

(127)

MSC-
CM

Rat IBD i.v. 4.5×107

cells
Produced pleiotropic gut trophic factors Watanabe

et al. (128)

iPSC-
MSCs

C57BL/6J mice IBD i.p. 2×106

cells
Hyaluronan-CD44 interacts with TSG-6 in an Akt-dependent manner Yang et al.

(129)

DF-
MSCs

CD patients CD i.v. n/a By inducing increased numbers of Tregs and reducing CD4+IL22BP T cell ratio Zibandeh
et al. (130)
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TABLE 3 MSC-based clinical trials for inflammatory bowel disease.

ClinicalTrials.gov
identifier

Status Phase Estimated
Enrollment

Pathway Dosage Conditions Type of cells Country

NCT03299413 Active, not
recruiting

Phase
1
Phase
2

20 i.v. 1.2×109

cells
IBD Wharton Jelly mesenchymal

stem cells
Jordan

NCT03115749 Not yet
recruiting

n/a 60 n/a n/a IBD Intestinal mesenchymal stem stells Montpellier

NCT01914887 Recruiting Phase
1
Phase
2

8 Colonoscope 6×107 cells UC Allogeneic adipose tissue-derived
mesenchymal stem cells

Spain

NCT01874015 Recruiting Phase
1

10 n/a n/a CD Bone marrow mesenchymal stem cell Spain

NCT01157650 Completed Phase
1
Phase
2

15 n/a n/a CD Autologous mesenchymal stem cells United
States

NCT00294112 Completed Phase
2

10 i.v. 8×106/
2×106 cells

CD Adult human mesenchymal stem cells United
States

NCT02677350 Withdrawn Phase
1

20 i.v. 2×107 cells CD Allogeneic bone marrow derived
human mesenchymal stem cells

United
States

NCT02445547 Completed Phase
1
Phase
2

82 i.v. 1×106 cell/
kg

CD Umbilical cord mesenchymal stem
cells

China

NCT00543374 Completed Phase
3

98 i.v. 6×108-
1.2×109

cells

CD PROCHYMAL adult human
mesenchymal stem cells

United
States

NCT00482092 Completed Phase
3

330 i.v. 6×108-
1.2×109

cells

CD Mesenchymal stem cells United
States

NCT01540292 Unknown
status

Phase
1
Phase
2

20 i.v. 1.5-2.0 ×
106 cell/kg

CD Mesenchymal stem cell Belgium

NCT04519671 Recruiting Phase
1
Phase
2

20 i.v. 7.5×107

cells
CD Bone marrow derived mesenchymal

stem cells
United
States

NCT04519684 Recruiting Phase
1
Phase
2

20 i.v. 7.5×107
cells

CD Bone marrow derived mesenchymal
stem cells

United
States

NCT01144962 Completed Phase
1
Phase
2

21 Local
injection

1×107-
9×107 cells

CD Bone marrow derived mesenchymal
stem cells

United
States

NCT04519697 Recruiting Phase
1
Phase
2

20 Local
injection

7.5×107
cells

CD Mesenchymal stem cells Netherlands

NCT04073472 Not yet
recruiting

Phase
1

15 Local
injection

6×107 cells CD Bone marrow derived mesenchymal
stem cells

United
States

NCT04548583 Recruiting Phase
1
Phase
2

24 Targeted
endoscopic

1.5×108-
3×108 cells

CD Bone marrow derived mesenchymal
stem cells

United
States

(Continued)
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TABLE 3 Continued

ClinicalTrials.gov
identifier

Status Phase Estimated
Enrollment

Pathway Dosage Conditions Type of cells Country

NCT03183661 Enrolling by
invitation

phase 1 9 i.v. 2×106/
8×106 cell/

kg

CD Allogenic adipose-derived
mesenchymal stem cells

China

NCT01221428 Unknown Phase
1
Phase
2

50 i.v. 2×107 cells UC Umbilical cord mesenchymal stem
cells

Austria

NCT01541579 Completed Phase
3

278 Local
injection

1.2×108

cells
CD Adipose-derived stem cells Austria

NCT04312113 Recruiting Phase
1

20 Intra-
arterial
delivery

1.5×107-
3×107 cells

UC Autologous adipose-derived
mesenchymal stem cells

United
States

NCT04543994 Recruiting Phase
1
Phase
2

24 Endoscopic
delivery

1.5×108/
3×108cells

UC Bone marrow mesenchymal stem cell United
States

NCT01233960 Completed Phase
3

73 Intra-
arterial
delivery

2×108 cells UC Mesenchymal stem cells United
States

NCT03609905 Recruiting Phase
1
Phase
2

50 Colonoscope 5×107 cells UC Adipose-cord mesenchymal stromal
cells

China

NCT03901235 Recruiting Phase
1
Phase
2

60 Intratissular
injection

n/a n/a Mesenchymal stem cells Belgium

NCT02442037 Recruiting Phase
1
Phase
2

30 i.v. 1×106 cell/
kg

UC Umbilical cord derived mesenchymal
stem cell

China

NCT02580617 Recruiting Phase
1

9 n/a 1.5×107-
1×108 cells

CD Adipose-derived mesenchymal stem
cells

Korea

NCT01510431 No longer
available

n/a n/a n/a 2×108 cells CD Mesenchymal stem cells United
States

NCT02403232 Recruiting Phase
2

10 n/a n/a CD Adipose tissue-derived stem cells Italy

NCT02403232 Unknown
status

Phase
1
Phase
2

24 i.v. 0.5×108/
1×108 cells

CD Umbilical cord blood derived-
universal stem cells

Korea

NCT02926300 Recruiting Phase
1
Phase
2

24 n/a n/a CD Stem cells Korea

NCT03220243 Completed Phase
1

5 Local
injection

2×107 cells CD Mesenchymal stromal cell United
States

NCT01915927 Completed Phase
1

20 Local
injection

2×107 cells CD Mesenchymal stromal cell United
States

NCT03449069 Recruiting Phase
1

5 Local
injection

2×107 cells CD Mesenchymal stromal cell United
States
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great application value in tissue engineering, wound repair, gene

therapy, cell replacement therapy, etc (143).
6 Unanswered questions and future
perspectives

Even though the regenerative and therapeutic potentials of

MSCs have been widely studied in both preclinical studies and

clinical trials, it remains largely unknown about the cellular

and molecular mechanisms underlying MSC mediated

therapeutic effects in vivo. There are still numerous issues to

be solved when MSCs are widely used in the clinic, such as the

suitable source of MSCs, the dosage and modality of

administration, the long-term fate of transplanted cells, and

the potential side effects e.g. tumorigenicity following

transplantation, etc. Similarly, such issues also exist in MSC-

based therapy of IBDs. Therefore, more in-depth mechanistic

basic and preclinical studies, clinical trials, and long-term

follow-up are required to establish optimal treatment

modalities for MSC based therapy of IBDs.
6.1 Sources of MSCs

Sources of MSCs will obviously influence the therapeutic

effect. For a long time, BM-MSCs are the main source for the

acquisition of MSCs, but their isolation is an invasive

treatment method (12). Therefore, alternative sources of

MSCs, such as umbilical cord blood and adipose tissue, have

been aggressively pursued. The biggest advantages of AT-

MSCs are that they can be acquired in large numbers and

are less invasive procedures. There is a growing body of data

showing differences between BM-, AT-, and UCB-MSCs,

including their immunomodulatory properties (144). Several

reports found that AT- and UCB-MSCs may suppress immune

responses more effectively than BM-MSCs in vitro (145).

However, there are still few studies on the sources of L-MSC

in the treatment of IBDs. Therefore, studies comparing their

efficacy in vivo will need to be done to choose the best type of

MSCs to use for IBDs treatment.
6.2 Modalities and dosage of
administration

There is a general agreement by now that local injection of

MSCs is the most suitable route of administration for treating

IBDs. In the recent trials, data have shown that local injection of

MSCs into the fistula wall itself was appropriate for perianal

fistulas, which makes partial healing of the lesion without

rejection of the cells and adverse effects. The detailed
Frontiers in Immunology
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procedure of the local injection has a significant impact on the

observation and needs to be better elucidated (146). Conversely,

systemic administration is a better option in luminal CD disease.

Because the intravenous injection is easy, minimally invasive,

and safe for patients and plays an important role in the

attenuation or progression of CD (147). However,

accumulating evidence has shown that a small part of MSCs

through intravenous injection is easily stuck in the lungs, so the

proportion of MSCs reaching the inflamed intestine needs to be

further evaluated. Meanwhile, it is vital that the amount of MSCs

transplanted to patients is clearly defined, with an eye toward

balancing safety with efficacy in MSC-based therapy (148). The

dose of MSCs administration were determined by the sources of

MSCs, injection method, and the type of disease. A large number

of experiments show that lower dose of MSCs seems to have a

higher healing rate in perianal fistulizing Crohn’s disease.

According to Molendijk et al’s experiments, the higher healing

rate was observed in patients that received 3×107 MSCs when

compared to patients that received 9×107 MSCs (131).

Therefore, the optimal number of MSCs cannot be determined

due to the impact of multiple factors, and dose escalation study is

required to address this problem under the condition of the same

independent variable.
6.3 Combination of MSCs and
immunosuppressant

The combination of MSCs and other drugs will alter the

therapeutic effect. MSCs have been used together with

immunosuppressive drugs due to their shared common targets

in clinical studies. As reported by Duijvestein M, incubation of

MSCs with physiological concentrations of immunosuppressive

drugs, such as azathioprine, mercaptopurine, methotrexate, and

anti-TNFa compounds, does not directly alter the phenotypical,

functional properties, survival, and inhibitory effects on

peripheral blood mononuclear cell growth in vitro. There may

even be an additive effect between 6-mercaptopurine and anti-

TNFa antibodies (149). However, azathioprine can reduce the

proliferation of rat BM-MSCs and increase their apoptosis and

necrosis at a higher level in vitro (150). Dexamethasone has been

shown to restrain the expression of iNOS and IDO, thus

reversing MSC-mediated immunosuppression in vitro and

abolishing the therapeutic effects of MSCs in vivo (151). The

clinic experiments have also proven that steroids and MSCs

should not be administered in combination (152). Nevertheless,

there are few studies on the use of L-MSCs in combination with

immunosuppressants in IBDs treatment. Therefore, the

molecular mechanisms of interaction between MSCs and

immunosuppressants should be further studied carefully in

order to enable more effective manipulation of MSCs function

for clinical applications.
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6.4 MSC-related adverse event

The research showed that intravenous MSCs may cause mild

and transient fever, headache, insomnia, dysgeusia, and

diarrhea, but these symptoms will disappear after a period of

time (153). To date, no serious MSCs related adverse effects have

been reported in clinical studies, including clinical trials with

patients suffering from IBDs or other diseases (154).

Nevertheless, the most worrying adverse effect was whether

MSCs have the potential to promote tumor growth and

mitigate the effectiveness of treating enteritis due to their

tumorigenic characteristics activated by oncogenes (155). To

date, the clinical adverse effects have not been fully understood

and then further studies are warranted in future clinical studies.
7 Conclusion

MSCs based therapy has unique advantages and shows its

irreplaceable potential in medical applications nowadays. It

represents a novel therapeutic option for IBDs and other

diseases, showing durable efficacy, low trauma, and low

recurrence rates, even in cases in which healing cannot be

achieved with biologics or conventional surgical procedures

cannot be performed. However, MSCs based therapy for IBDs

is still at an exploratory stage and further basic mechanistic and

clinical studies are warranted.
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