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Background: Idiopathic normal pressure hydrocephalus (iNPH) is a common disease
in elderly adults. Patients with iNPH are generally characterized by progressive gait
impairment, cognitive deficits, and urinary urgency and/or incontinence. A number of
radiographic studies have shown that iNPH patients have enlarged ventricles and altered
brain morphology; however, few studies have focused on the relationships between
altered brain structure and gait dysfunction due to iNPH. Thus, this study aimed to
evaluate the abnormalities of white matter (WM) correlated with gait impairment in iNPH
patients and to gain a better understanding of its underlying pathology.

Methods: Fifteen iNPH patients (five women, 10 men) were enrolled in this study, and
each patient’s demographic and gait indices were collected. First, we performed a
correlation analysis between the demographic and gait indices. Then, all gait indices
were grouped according to the number of WM hyperintensities (WMH) among each WM
tract (JHU WM tractography atlas), to perform comparative analysis.

Results: Considering sex and illness duration as covariates, correlation analysis showed
a significantly negative correlation between step length (r = −0.80, p = 0.001), pace
(r = −0.84, p = 2.96e-4), and age. After removing the effects of age, sex, and
illness duration, correlation analysis showed negative correlation between step length
(r = −0.73, p = 0.007), pace (r = −0.74, p = 0.005), and clinical-grade score and
positive correlation between 3-m round trip time (r = 0.66, p = 0.021), rising time
(r = 0.76, p = 0.004), and clinical-grade score. Based on WMH of each white matter
tract, gait indices showed significant differences (p < 0.05/48, corrected by Bonferroni)
between fewer WMH patients and more WMH in the middle cerebellar peduncle, left
medial lemniscus, left posterior limb of the internal capsule (IC), and right posterior limb
of the IC.
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Conclusions: Our results indicated that iNPH patients exhibited gait-related WM
abnormalities located in motor and sensory pathways around the ventricle, which is
beneficial to understand the underlying pathology of iNPH.

Keywords: idiopathic normal pressure hydrocephalus (INPH), white matter microstructure, motor pathways,
sensory pathways, gait indices

INTRODUCTION

Idiopathic normal pressure hydrocephalus (iNPH) is a
common reversible syndrome characterized by progressive
gait impairment, cognitive deficits, urinary urgency and/or
incontinence, ventricular enlargement, and normal mean
intracranial pressure, which typically occurs in the elderly
(>60 years; Adams et al., 1965; Hebb and Cusimano, 2001).
Zaccaria et al. (2019) reviewed and demonstrated that the
incidence of iNPH was 1.8/100,000–7.3/100,000 per year,
without sex differences. Generally, cerebrospinal fluid (CSF)
shunting and drainage aid in improving or reversing symptoms
of iNPH in the early period (Mirzayan et al., 2010); therefore,
accurate diagnosis and appropriate treatment of early iNPH is
important. However, the potential pathological mechanism of
iNPH remains unclear. Dilated ventricles are the most typical
but non-specific clinical-pathological features of iNPH, which
are difficult to distinguish from aging, Alzheimer’s disease (AD;
El Sankari et al., 2011), and Parkinson’s disease (Morishita et al.,
2010). According to the guidelines for the management of iNPH,
the tap test is effective in detecting abnormal CSF hydrodynamics
and predicting the effectiveness of ventriculoperitoneal shunting
(Marmarou et al., 2005; Ishikawa et al., 2008; Mori et al., 2012);
however, it has some potential risk as an invasive procedure.
Thus, in-depth pathological investigations and identification of
specific biomarkers of iNPH are important for accurate diagnosis
and treatment.

Magnetic resonance imaging (MRI) has been used as a
non-invasive and non-radiative procedure in many disease
studies. MRI is used to detect brain structure changes for
auxiliary diagnosis by extracting features such as Evans’ index
(Brix et al., 2017) and callosal angles (Grahnke et al., 2018).
The application of various MRI techniques provided more
insights into the etiology and pathology of iNPH and predicted
the effectiveness of ventriculoperitoneal shunting. Magnetic
resonance elastography is a developing non-invasive imaging
method that assesses brain tissue properties such as parenchymal
stiffness by propagating acoustic strain waves and quantitatively
mapping physical responses (Kruse et al., 2008). Avital et al.
found significantly altered stiffness in patients with iNPH in
the cerebrum compared with healthy controls, which implies
that brain compliance changes and speculated stiffness may be
a feature of surgical effects (Perry et al., 2017). Phase-contrast
MRI also has been applied for the evaluation of complex CSF
dynamics in iNPH (Takizawa et al., 2017; Lindstrom et al., 2018;
Tsai et al., 2018; Yamada et al., 2020). Yamada et al. revealed
higher stroke volumes, reversed flow rates, and shear stress at
the cerebral aqueduct in patients with iNPH compared with
healthy controls (Yamada et al., 2020). Takizawa et al. found

different pressure gradients and greater rotation in the cerebral
aqueduct between patients with iNPH and healthy controls
(Takizawa et al., 2017). Lindstrom et al. observed reversal of
CSF net flow direction in patients with iNPH (Lindstrom et al.,
2018). Consistent with previous studies (Baledent et al., 2004), all
results suggested that abnormal CSF dynamics occurred in iNPH,
which may be attributed to altered intracranial compliance
and absorption obstacles of CSF. Arterial spin-labeling is a
quantitative measurement of regional cerebral blood flow (CBF)
using blood as an endogenous contrast agent (Wu et al., 2007).
Virhammar et al. (2017) reported that reduced perfusion was
mainly located in the periventricular white matter (WM) of
patients with iNPH compared with healthy controls, which
indicates that more focal ischemia may occur in such patients.
Thus, we postulated that abnormal CSF dynamics and CBF
mode are related to dysfunctional metabolism and obstacles
in the transport of neurotoxic substances, which have been
reported in some glymphatic MRI studies (Ringstad et al.,
2017; Reeves et al., 2020). All these characteristics found
in MRI may be inducement resulting in dilated ventricles;
however, few studies have determined the interactions between
existing etiologies, which is important for obtaining a truly
pathological mechanism.

Meanwhile, due to the non-specificity of clinical
manifestations, most studies evaluating brain-specific changes
also aim to assist in the diagnosis of iNPH and differentiation
between iNPH and its comorbid and mimic disorders. For
example, a systematic review reported that T-tau and p-
tau may differentiate iNPH from AD and Aβ42 from HC
(Manniche et al., 2019). Diffusion tensor imaging as an
MRI technique determining diffusion characteristics of
white matter (WM) has been performed in most studies of
patients with iNPH (Hattingen et al., 2010; Kanno et al.,
2011; Lenfeldt et al., 2011; Hattori et al., 2012; Kang et al.,
2016; Kamiya et al., 2017; Saito et al., 2020). Griffa et al.
concluded regarding white matter microstructural alteration of
the periventricular, frontal, and temporal regions in patients
with iNPH (Griffa et al., 2020); however, few studies have
investigated gray matter structural changes in such patients.
A study on gray matter structural networks indicated larger
global network modularity and decreased betweenness of
regional networks in iNPH, and the proposed network analysis
may be a promising method for further study (Yin et al.,
2018). Meanwhile, some resting-state MRI (rs-MRI) studies
showed abnormal functional connectivity (FC) mode in
iNPH such as decreased default mode network connectivity
and its strong correlation with worsening clinical symptoms
(Khoo et al., 2016), and distinguished different FC patterns
associated with the triad of iNPH, including gait impairment,
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cognitive deficits, urinary urgency, and/or incontinence
(Ogata et al., 2017), suggesting that the global FC mode
and large-scale brain network properties may be useful
biomarkers for the assessment of iNPH. Among them, gait
disturbances are the most common and earliest symptom
of iNPH, which may be related to abnormal functional and
structural changes and can also be used as a biomarker
for diagnosis; however, few studies focusing on assessing
structural changes associated with abnormal gait needs
further research.

To date, our understanding of iNPH is limited, including
its pathology and etiology. Previous studies have emphasized
that accurate diagnosis contributes to the effective treatment
of iNPH; however, few iNPH-correlated specific changes
have been found for diagnosis. With the development of
MRI techniques and research related to iNPH, an increasing
number of findings have prompted the combination of
imaging and clinical features to gain a better understanding
and diagnosis of iNPH. Meanwhile, studies on structural
networks related to gait are limited. Therefore, in this study,
we first collected a series of gait indices and T2-weighted
imaging in patients with iNPH. Following this, each gait
index was grouped according to the number of white matter
hyperintensities (WMH) of each white matter fiber tract to
discover which fiber tracts are associated with gait. Then,
we built a gait-correlated structural network according to
survival WM regions to better understand iNPH itself and
auxiliary clinical applications. Finally, a correlation analysis
was applied between the gait indices and demographic and
clinical data.

MATERIAL AND METHODS

Participants
Fifteen patients with probable iNPH (10 men and five women)
were recruited in our study. All patients were from the
Department of Neurology of Zhongshan Hospital and diagnosed
as probable iNPH which is consistent with the Japanese iNPH
Guidelines (third edition; Nakajima et al., 2021) more than
one symptom in the clinical triad (gait disturbance, cognitive
impairment, and urinary incontinence); above-mentioned
clinical symptoms cannot be completely explained by other
neurological or non-neurological disease; preceding diseases
possibly causing ventricular dilation (including subarachnoid
hemorrhage, meningitis, head injury, congenital/developmental
hydrocephalus, and aqueductal stenosis) are not obvious; CSF
pressure of 200 mm H2O or less and normal CSF content;
improvement of symptoms after CSF tap test. A series of
demographic and clinical indices of patients were collected,
including age, sex, illness duration, comorbidities, iNPH grading
scale (iNPHGS) score (Kubo et al., 2008), and Fazekas score
(Fazekas et al., 1987). Patients were initially divided into a
absent-to-mild WMH burden group (Fazekas score 0–2) and
a moderate-to-severe WMH burden group (Fazekas score 3–6)
(Helenius and Henninger, 2015; Patti et al., 2016). The gait
of all patients was evaluated using 10 gait indices including
10-m walking time (s), 10-m step counter (steps), step length

(m), pace (m/s), step frequency (steps/min), step width (m),
turning 180◦ (steps), time of timed-up-and-go (TUG) test (s),
rising time (s), and turning 180◦ (s). All participants signed
the informed consent forms approved by the Zhongshan
Ethics Committee.

MRI Acquisition
MRI was acquired using a 3.0-T UIH uMR770 system at
Zhongshan Hospital Fudan University. All participants were
instructed to remain still while custom-fit foam pads were placed
on either side of their heads for fixation. Fast spin-echo (FSE)
pulse sequences were used to gather T2-weighted images. The
following parameters were used for the FSE pulse sequences:
repetition time, 4,300 ms; echo time, 107 ms; flip angle = 150◦,
number of slices 21, transverse orientation, the field of view,
384 × 334; slice thickness, 5 mm; and spacing between slices,
6.5 mm.

Imaging Preprocessing
Image pre-processing includes registration for aligning all images
into the same coordinate system, imaging normalization, and
white matter hyperintensities extraction. Although the images
were acquired during the same session, a certain amount of
subject motion and movement was unavoidable between the
slides, leading to image misalignment. For each participant, all
slides were aligned using a three-dimensional rigid body image
registration algorithm proposed by Ashburner et al. (2000). We
then applied a non-rigid normalization toolbox and transformed
the images into a standard template of theMontreal Neurological
Institute (MNI) space (Friston et al., 2007). Finally, we used
the Lesion Segmentation Toolbox (Schmidt et al., 2012) to
identify white matter hyperactivities (WMH) automatically for
each participant, which could be considered as potential lesions
(Debette and Markus, 2010). All the preprocessing, results were
examined by a trained neurologist blinded one-by-one to assure
the imaging quality.

Statistical Analysis
Continuous variables were presented as the mean ± standard
deviation (SD), minimum-maximum, and were analyzed using
Student’s t-test. Pearson correlation coefficients were used to
extract the associations between different variables. In addition,
voxel-based lesion-symptom mapping (VLSM; Bates et al.,
2003) was used to analyze the relationship between WMH
and gait indices on a voxel-by-voxel basis, which could help
to identify key brain areas of gait function. Different from
the previous regular grouping method, VLSM is performed
to compare the gait performance in a group of iNPH
patients with a common area of WMH with others without
WMH in this area. Analysis of covariance was performed
to reduce the interferences of age, sex, illness duration, and
iNPHGS on the gait parameters. We applied Fisher’s method
(Fisher’s combined probability test) to combine the results
of statistical tests of various gait indices. Statistical analysis
was performed using the MATLAB software, version 2019b
(MathWorks Inc.).
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TABLE 1 | Demographic, clinical and gait data of patients.

iNPH patients Total Absent-to-mild WMH burden Moderate-to-severe WMH burden t or χ2 p

N 15 6 9
Age (years) 68.93 ± 12.40 65.83 ± 16.70 71.00 ± 9.70 0.78 0.45
Sex (female, ratio) 4/15 3/6 1/9 2.78 0.10
Illness duration (years) 1.93 ± 1.64 1.50 ± 1.60 2.21 ± 1.70 0.81 0.43
iNPHGS score(points) 5.33 ± 2.47 3.67 ± 2.66 6.44 ± 1.67 2.50 0.03
Fazekas score(points) 2.87 ± 1.52 1.33 ± 0.52 3.89 ± 0.93 6.10 <0.01
Comorbidity

Hypertension (ratio) 8/15 4/6 4/9 0.71 0.40
Type 2 diabetes (ratio) 6/15 3/6 3/9 0.42 0.52
Current smoking or drinking (ratio) 1/15 0/6 1/9 0.71 0.40

Gait temporal-spatial parameters
10-m walking time (seconds) 45.24 ± 47.18 25.87 ± 19.83 58.16 ± 56.29 1.33 0.21
10-m step counter (steps) 63.2 ± 60.02 31.83 ± 21.25 84.11 ± 69.23 1.78 0.10
Step length (meters) 0.30 ± 0.23 0.44 ± 0.25 0.21 ± 0.18 2.07 0.06
Pace (m/s) 0.45 ± 0.36 0.63 ± 0.43 0.33 ± 0.26 1.65 0.12
Step frequency (steps/min) 91.05 ± 27.83 81.04 ± 15.31 97.72 ± 32.92 1.15 0.27
Step width (meters) 0.20 ± 0.05 0.21 ± 0.07 0.20 ± 0.04 0.35 0.73
Turning 180 degrees (steps) 9.13 ± 7.95 4.67 ± 2.07 12.11 ± 9.10 1.95 0.07
TUG time (seconds) 45.72 ± 40.82 26.95 ± 19.31 58.23 ± 47.35 1.52 0.15
Rising time (seconds) 3.48 ± 2.24 2.27 ± 1.05 4.29 ± 2.50 1.86 0.09
Turning 180 degrees (time, seconds) 5.66 ± 5.71 3.17 ± 2.14 7.32 ± 6.82 1.43 0.18

All the indices are shown as mean ± standard deviation (SD). iNPH, idiopathic normal pressure hydrocephalus. WMH, white matter hyperintensity. iNPHGS, iNPH grading scale.

RESULTS

Correlation With Behavioral Performance
The demographic and clinical data presented in Table 1,
including age, sex, illness duration, iNPHGS score, Fazekas
score, comorbidities, and 10 gait indices. The average Fazekas
score and iNPHGS score of patients with moderate-to-severe
WMHburden were higher than those with absent-to-mildWMH
burden. There were no significant differences between the two
groups in age, sex, illness duration, comorbidities, and gait
indices. All patients recruited in our study had gait improvement
after the CSF tap test. Eight of them underwent ventriculo-
peritoneal shunt surgery, and all responded well to shunt surgery.
The other seven patients refused to undergo shunt due to
concerns and hesitations about the risks of surgical treatment.
Figure 1 shows the correlation analysis results between age,
iNPHGS, and gait indices through a scatter diagram. Choosing
sex and illness duration as covariates, correlation analysis
showed a significantly negative correlation between step length
(r = −0.80, p = 0.001), pace (r = −0.84, p = 2.96e-4),
and age. Removing effects of age, sex, and illness duration,
correlation analysis showed negative correlation between step
length (r = −0.73, p = 0.007), pace (r = −0.74, p = 0.005),
and iNPHGS and positive correlation between time of TUG test
(r = 0.66, p = 0.021), rising time (r = 0.76, p = 0.004), and
iNPHGS.

Correlation Between WM-Tract Damage
and Gait Indices
Based on white matter hyperintensities of each white matter
tract, gait indices were significantly different (p < 0.05)
between fewer WMH patients and more WMH in the middle
cerebellar peduncle (MCP), pontine crossing tract (a part of
MCP), left corticospinal tract (CST), right corticospinal tract,

left medial lemniscus, right medial lemniscus, left anterior
limb of the internal capsule (IC), left posterior limb of the
internal capsule, right posterior limb of the internal capsule, left
cingulum (cingulate gyrus), right cingulum (cingulate gyrus),
and left cingulum (hippocampus). After correction by Bonferroni
correction, significant correlations (p < 0.05/48), four white
matter tracts survived, including the MCP, left medial lemniscus,
left posterior limb of the internal capsule, and right posterior
limb of the internal capsule. The spatial location of white matter
tracts related to gait indices is shown in Figure 2, Table 2, and the
differences in the gait indices of the four survival white matter
tracts are shown in Figure 3.

DISCUSSION

In our study, we focused on gait-related WM tract damage in
iNPH based on the brain atlas. This study performed a new
computer-based automated method for WMH detection based
on lesion segmentation and VLSM, which might be a promising
supplementary analysis protocol for T2-weighted imaging in the
future. Besides, this study is a new attempt to combine MRI
data and clinical behavior data in iNPH, which has been rare
in the past. Our results provide evidence that there are local
brain structural changes associated with gait in iNPH. We found
a significant correlation between gait indices and age. After
removing the effects of age, sex, and illness duration, correlation
analysis showed a significant correlation between gait indices
and clinical-grade scores. In grouping based on the number
of abnormal WMH, all gait indicators also showed significant
differences in regional WM tracts, including the MCP, bilateral
medial lemniscus, bilateral posterior limb of the internal capsule,
bilateral CST, left anterior limb of the internal capsule, and
cingulum. We believe that damage to the brain structure may
play an important role in gait abnormalities in patients with
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FIGURE 1 | Gait index vs. age and clinical grade. *Left panel: patients’ step length and pace are significantly correlated with age (r = −0.80, p = 0.001 and
r = −0.84, p = 2.96 × 10−4). Other gait indices do not show significant (p > 0.05) correlations with age. The effects of sex and illness duration are removed. *Right
panel: patients’ step length, pace, 3 m round trip time, and rising time are significantly correlated with their clinical-grade scores (r = −0.73, p = 0.007, r = −0.74,
p = 0.005 and r = 0.66, p = 0.021, r = 0.76, p = 0.004). Other gait indices are not significantly correlated with the clinical grade scores (p > 0.05). Age, sex, and
illness duration effects are removed.

FIGURE 2 | White matter tracts related with gait indices. Based on white matter hyperintensities extracted from every white matter tract, patients are separated into
two groups. White matter tracts with significant gait index differences (indicated as z-scores in the graph) in the two groups are represented. Tracts with a hotter
color have stronger relationships with gait indices.
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TABLE 2 | Montreal Neurological Institute (MNI) coordinates of peak voxels for white matter tracts.

Fiber tracts X Y Z Fisher’s method z p

Middle cerebellar peduncle 8 −20 −32 7.94 9.99 × 10−16

Medial lemniscus (left) −8 −38 −35 6.83 4.20 × 10−12

Internal capsule (posterior limb, left) −12 −3 5 5.43 2.79 × 10−8

Internal capsule (posterior limb, right) 9 −3 3 6.39 8.56 × 10−11

X, Y, and Z refer to MNI coordinates, and Fisher’s method z and p refer to the z and p values of the peak voxels.

FIGURE 3 | White matter tracts with strongest gait index relationships. Based on white matter hyperintensities (WMH) extracted from different white matter tracts,
patients are separated into two groups (blue in the graph: patients with fewer WMHs. Green: those with more WMHs). Various gait score (normalized based on
maximum values) differences are observed between the two groups. Gait score differences are combined (Fisher’s method) to extract white matter tracts most
strongly related with gait indices [middle cerebellar peduncle (MCP): z = 3.17, p = 7.60 × 10−4 and medial lemniscus (left): z = 4.06, p = 2.42 × 10−5; internal
capsule (IC; posterior limb, left): z = 5.40, p = 3.35 × 10−8 and internal capsule (posterior limb, right): z = 3.28, p = 5.25 × 10−4]. *p < 0.1, **p < 0.001.

iNPH. Beyond the traditional view on elderly-onset iNPH, a
34-year-old young woman was recruited in our study, who
met all criteria of probable iNPH, and no evidence of other
diseases possibly causing ventricular dilation was found. She was
diagnosed as probable iNPH according to the latest version of
guidelines (Nakajima et al., 2021), which removed the age limit
of ‘‘onset at 60 s or older’’ in old version guideline (Mori et al.,
2012).

Generally, abnormal WMH on T2-weighted imaging
represents some abnormal WM structure changes, including
neural degeneration, ischemia, myelin impairments, and edema.
Consistent with numerous previous results, many altered

white matter microstructures around the ventricles were also
detected in our iNPH participants; however, the underlying
pathological mechanisms are unclear. Most studies based
on diffusion-weighted imaging showed WM microstructural
alteration of the periventricular in patients with iNPH by
using fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (AD), and radial diffusivity (RD), which are sensitive
to changes in the WM microstructure. For example, compared
with healthy controls, patients with iNPH showed increased
FA, MD, and AD in the periventricular section of the CST
(Hattingen et al., 2010; Hattori et al., 2012; Saito et al., 2020);
decreased FA; and increased RD in the upper section of the
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CST and corpus callosum (Kanno et al., 2011; Saito et al.,
2020), which may result from the mechanical force exerted
by the abnormal ventriculomegaly on the surrounding tissues.
Aso et al. suggested that one of the mechanisms of ventricular
enlargement is that changes in the venous drainage pattern
could result in CSF absorption disorder in patients with iNPH
(Aso et al., 2020). Kamiya et al. (2017) reported an increased
orientational coherence at the CST in patients with iNPH
after CSF shunt surgery, which supports the oppression of
periventricular tissue. Meanwhile, a review also concluded that
chronic cycle disturbance in the CSF may cause periventricular
edema and eventually lead to local ischemia (Brautigam et al.,
2019), as reported by previous research (Virhammar et al.,
2017). Thus, we speculate that the microstructural alteration
of periventricular WM may play a role in the pathological
mechanism of hydrocephalus, which requires further study.
The reason why we performed T2-weighted imaging analysis
to show WM tract damage was that many iNPH patients
couldn’t tolerate a longer MRI scan time due to their cognitive
impairment and urinary incontinence. Previous studies have
demonstrated that WMH on the T2-weighted imaging was
associated with an increased risk of stroke, dementia, and death
(Debette andMarkus, 2010). Different from the traditional visual
semiquantitative scales (such as the Fazekas scale) or manual
volumetric measurements, our study performed an automated
algorithm to segment WMH lesions. We were more concerned
about the locations and functional roles of WM tract damage
than the volumes. VLSM investigates the relationship between
a common area and a particular behavior by comparing the
performance of individuals with and without the lesion on a
voxelwise basis. Using VLSM is more helpful to understand
whether WMH in a specific area disrupts the performance of a
specific behavior. VLSM has been initially applied in exploring
the relationship between WMH location and poor executive
function, mental processing speed, memory, and verbal abilities
in the previous studies (Smith et al., 2011; Ramirez et al., 2014;
Camerino et al., 2021). But there is a rare study to discuss the
relationship between gait performance and WMH burden. How
to distinguish non-ischemic WMH caused by CSF extravasation
from ischemic WMH is still somewhat controversial, and there
is no objective, unambiguous and non-disputable consensus
currently (Kim et al., 2008). Previous studies have shown that
hypertension and diabetes mellitus may correlate with whatever
periventricular WMH or deep WMH (King et al., 2014; de
Bresser et al., 2018; Wang et al., 2020). Due to the small sample
size, we were unable to perform a stratified analysis of vascular
factors. We cannot deny that comorbidities in elderly iNPH
patients such as hypertension and diabetes mellitus may cause
some WMH load in our study. Nevertheless, the purpose of our
study was to explore the relationship between WMH location
and gait performance. As Finsterwalder et al.’s report, CADASIL
patients showed only mild gait impairment in the rhythm
domain despite severe WMH burden, which indicated that
the gait impairment caused by pure vascular-original WMH
was relatively minor especially combined with a definitively
diagnosed gait disorder (Finsterwalder et al., 2019). Thus, we
consider that the comorbidities will not affect our results.

Previous studies have shown abnormal gait in patients with
iNPH, including shortened stride length, difficulties in turning,
and difficulty in balance (Hebb and Cusimano, 2001; Marmarou
et al., 2005; Ishikawa et al., 2008; Mori et al., 2012). In our
study, we found that step length and pace were significantly
negatively correlated with age, without the influence of sex and
illness duration. We also found a significant negative correlation
between clinical grade score and step length and pace and a
significant positive correlation between clinical grade score and
3 m round trip time and rising time, removing the effects of
age, sex, and illness duration. Clinical grade scores are evaluated
according to the severity of clinical symptoms; the higher the
score, the more severe the illness (Kubo et al., 2008). These
findings suggest that changes in gait in patients with iNPH may
be influenced by both aging and iNPH. Satow et al. (2017)
showed that extended drainage times with age were mainly
distributed in the periventricular region in healthy controls,
which implied altered venous drainage. Thus, we speculated
that periventricular structural and dynamic changes may be
associated with gait disturbances.

Comparative analysis in our study reported that patients
with iNPH with more WMH had poor gait performance, with
the fiber tracts most significantly correlated with gait indices:
MCP, left medial lemniscus, and bilateral posterior limb of
the IC; the fiber tracts that were significantly associated with
gait were the bilateral CST (section of the pons), right medial
lemniscus, left anterior limb of the IC, and cingulum. MCP is
the biggest peduncle of the three cerebellar peduncles, which
arise from the pontine nucleus to the contralateral cerebellar
cortex. As the main cerebellar afferent fiber, the MCP receives
information from the cerebral cortex. The medial lemniscus
is the proprioceptive conduction pathway of the limbs, whose
structure is through the medulla oblongata, pons, and midbrain
to thalamus and projecting proprioception by the posterior
limb of IC to the contralateral sensorimotor cortex (Navarro-
Orozco and Bollu, 2020). The IC is the concentration area
of projecting fibers that connect the cerebral cortex to the
thalamus, brainstem, and spinal cord, in which minor lesions
could also cause sensorimotor disorders (Emos and Agarwal,
2020). Kanno et al. reported the number of steps of the Timed
‘‘Up and Go’’ test was negatively correlated with FA in the
left supplementary motor area and left anterior limb of IC
(Kanno et al., 2011). The structure of the CST is the largest
descending fiber tract in the spinal cord, which originates from
the primary motor cortex and premotor areas as the major
motor pathway that innervates the lower motor neurons (Jang,
2014; Rong et al., 2014). Hattingen et al. (2010) also found that
MD in the CST was correlated with severe gait disturbances.
The cingulum is an association fiber whose function is to
connect the neocortex to the limbic system, and its structural
damage may also result in an information transmission barrier.
According to our results, we speculated thatWMmicrostructural
damage in the above may affect pathways correlated with
motor function, consistent with previous research. Kang et al.
(2016) reported decreased FA in the MCP of patients with
iNPH compared with HC. An animal model of hydrocephalus
found distinct cerebellar changes in biochemical parameters
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(Kondziella et al., 2002). The cerebellum is involved in motor
control through two main pathways: the efferent pathway
(cerebello-thalamocortical) and the afferent pathway (cortico-
pontocerebellar; Palesi et al., 2017). Meanwhile, Griffa et al.
indicated that frontoparietal-subcortical-cerebellar circuits may
be a vulnerable area for the pathophysiological mechanisms of
iNPH (Griffa et al., 2020). Therefore, in our study, we believe
that WM microstructural alterations of the periventricular may
induce disturbance transmission of information correlated with
abnormal gait.

In conclusion, we found that WMmicrostructural alterations
of periventricular in patients with iNPH in our study and
some of the WM damage were associated with gait indices
and were mainly located in some neuroanatomical circuits. We
also found a significant correlation between gait indices, age,
and grade score. These results suggest that abnormal gait in
patients with iNPHmay be related to both aging and pathological
changes. Meanwhile, gait-related WM microstructural damage
was located in the motor and sensory pathways, suggesting an
information transmission barrier in such patients.

LIMITATIONS

While our research reveals that patients with iNPH exhibit
dysfunctions in some neuroanatomical circuits, our study also
has several limitations. First, our sample size was relatively
limited due to the low incidence of iNPH and traumatic
diagnostic tests. Second, in the present study, we used
T2-weighted imaging, which has a lower spatial resolution, to
analyze WM damage. Besides, many patients with iNPH are
elderly-onset with metabolic comorbidities. It is difficult to
remove WMH of presumed vascular origin during imaging
analysis. In future studies, we should perform a large-sample
longitudinal cohort study of iNPH to better understand
iNPH-related short-and medium–term plasticity mechanisms
through stratification of vascular factors and follow-up of the
dynamic changes of brain structure and function. Furthermore,

we can also explain the structural and functional changes of
iNPH-related WMH combined with advanced white matter
imaging technologies. Additionally, the association between
multiple clinical manifestations in patients with iNPH, such as
gait and cognition, should also be considered in further research
to help us understand its pathology.
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