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Abstract: The purpose of this study was to investigate local and network-related changes of limbic grey
matter in early Parkinson’s disease (PD) and their inter-relation with non-motor symptom severity. We
applied voxel-based morphometric methods in 538 T1 MRI images retrieved from the Parkinson’s Pro-
gression Markers Initiative website. Grey matter densities and cross-sectional estimates of age-related
grey matter change were compared between subjects with early PD (n 5 366) and age-matched healthy
controls (n 5 172) within a regression model, and associations of grey matter density with symptoms
were investigated. Structural brain networks were obtained using covariance analysis seeded in regions
showing grey matter abnormalities in PD subject group. Patients displayed focally reduced grey matter
density in the right amygdala, which was present from the earliest stages of the disease without further
advance in mild-moderate disease stages. Right amygdala grey matter density showed negative correla-
tion with autonomic dysfunction and positive with cognitive performance in patients, but no significant
interrelations were found with anxiety scores. Patients with PD also demonstrated right amygdala struc-
tural disconnection with less structural connectivity of the right amygdala with the cerebellum and thala-
mus but increased covariance with bilateral temporal cortices compared with controls. Age-related grey
matter change was also increased in PD preferentially in the limbic system. In conclusion, detailed brain
morphometry in a large group of early PD highlights predominant limbic grey matter deficits with stron-
ger age associations compared with controls and associated altered structural connectivity pattern. This
provides in vivo evidence for early limbic grey matter pathology and structural network changes that may
reflect extranigral disease spread in PD. Hum Brain Mapp 38:3566–3578, 2017. VC 2017 The Authors Human

Brain Mapping Published by Wiley Periodicals Inc.
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INTRODUCTION

Parkinson’s disease (PD) is the second-most common neu-
rodegenerative disorder, affecting up to 2% of individuals
aged 65 years and older [Hanganu et al., 2014]. The hallmark
motor symptoms (bradykinesia, rigor and tremor) are
thought to share the same fundamental aetiology related to
dopaminergic cell death in the substantia nigra pars com-
pacta and subsequent reduction of striatal dopaminergic
innervation [Brown, 2003]. The pathophysiology of non-
motor dysfunction is less well understood, and may reflect
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additional serotonergic, cholinergic and noradrenergic dys-
function. There is increasing recognition of the clinical rele-
vance of these symptoms such as depression, apathy,
fatigue, disturbed sleep, autonomic dysfunction and cogni-
tive deficits.

Braak et al. [1994, 2003] showed relatively early involve-
ment of the amygdala in post-mortem studies, from stage
3 onwards in their postulated progression model of six
consecutive disease stages affecting multiple neuronal sys-
tems. Disease progression with a prolonged premotor
phase is clinically well established with many studies
showing that a range of non-motor signs precede the more
typical motor manifestation of the disease [Iranzo et al.,
2014; Kalaitzakis et al., 2013; Koller, 1992; Simuni and
Sethi, 2008]. Remarkably, early symptoms are typically
non-motor, implying that Parkinsonism may not be the
first manifestation of PD [Diederich et al., 2016; Klock-
gether, 2004]. Furthermore, retrospective studies indicate
that affective symptoms may manifest as one of the first
symptoms many years before the typical motor signs
[Lemke, 2008]. Presence of non-motor signs may also
define a more severe disease subtype, for example, depres-
sion in patients with PD was found to be associated with
a more rapid deterioration in cognitive and motor func-
tions [Burn, 2002]. Studying brain regions associated with
non-motor symptoms in early stages of PD may help us to
gain more insight into their pathophysiology and to unrav-
el pre-motor disease manifestation. Candidate regions that
may be relevant for these non-motor symptoms include
limbic structures such as the hippocampus and the amyg-
dala [Calabresi et al., 2013; Ricciardi et al., 2015; van
Mierlo et al., 2015; Vriend et al., 2016]. Post-mortem stud-
ies have shown a 20% volume loss of grey matter in the
amygdala in PD [De la Monte et al., 1989; Harding et al.,
2002]. Using regional MR volumetric methods, lower
amygdala volume [Junqu�e et al., 2005] as well as hippo-
campal atrophy (as inferred from cross-sectional data)
[Camicioli et al., 2003] have been reported in some studies
of patients with Parkinson’s.

Whole-brain voxel-based morphometry (VBM) studies
have failed to consistently confirm limbic grey matter
changes. Interestingly, the two most recent VBM studies
[Menke et al., 2014; Planetta et al., 2015] did not show any
significant grey matter difference between patients with
PD and healthy controls. This differs from earlier studies
reporting significant grey matter volume reductions out-
side the limbic system, in the right superior temporal
gyrus (BA 41, [Pereira et al., 2012]) or in the frontal lobe
[Burton et al., 2004]. An earlier co-ordinate-based meta-
analysis suggested grey matter reductions in the right infe-
rior frontal-gyrus, extending to the superior temporal
gyrus and the insula in patients with PD [Pan et al., 2012],
but the method used lacked rigorous multiple test correc-
tion [Tench et al., 2013]. Several other studies found limbic
grey matter abnormalities in specific subgroups of patients
with Parkinson’s and dementia, depression or anxiety.

Notably, amygdala grey matter density loss was found in
a number of studies using region of interest (ROI) analysis
or whole-brain VBM in specific subgroups [Bouchard
et al., 2008; Diederich et al., 2016; Feldmann et al., 2008;
Harding et al., 2002; Junqu�e et al., 2005; Ouchi et al., 1999;
Surdhar et al., 2012; Tessitore et al., 2002; van Mierlo et al.,
2015; Vriend et al., 2016]. Similarly, several studies
reported hippocampal volume loss mainly in patients with
cognitive impairment and PD dementia [Burton et al.,
2004; Junque et al., 2005], while findings in PD without
cognitive impairment reported inconsistent changes [Mak
et al., 2015]. Taken together, morphometric studies did not
reveal a consistent pattern of grey matter abnormalities in
limbic structures or elsewhere in PD. The discrepancies
between studies may be due to the limited power in many
studies, but may also reflect true heterogeneity dependent
on disease stage, medication state or subgroup effects. To
overcome such limitations, we investigated a relative large
number of homogenous early stage PD patients. This
included a large proportion of non-medicated patients to
allow unbiased group comparison in hypothesis-free VBM
analysis.

An important advancement in the field of neuroimaging
research is the study of network abnormalities in addition
to local changes when using structural or functional brain
imaging techniques. Functional connectivity studies are a
rich source of information and become increasingly popu-
lar in the clinical neurosciences and PD [Buckner et al.,
2013] despite several unsolved methodological issues [Bas-
tos and Schoffelen, 2016]. Structural connectivity can be
studied using diffusion tensor imaging (DTI) [Le Bihan
et al., 2001], structural covariance analysis [Alexander-
Bloch et al., 2013; Chou et al., 2015; Mechelli et al., 2005]
and independent component analysis. Interestingly, a
recent structural connectivity study based on voxel defor-
mation reported a basal ganglia structural network defi-
ciency in PD in which the degree of GM loss was linked
to motor severity [Chou et al., 2015]. More recently, large
structural covariance network [Zeighami et al., 2015] and
functional connectivity analyses [O’Callaghan et al., 2016]
were successfully applied to characterise striatal and cere-
bellar network change in PD. No studies of PD related
limbic structural connectivity alterations are available,
despite the early pathophysiological involvement of the
limbic system and the putative link with non-motor symp-
toms. Moreover, although atrophy in amygdala and hippo-
campal regions have been investigated [Bouchard et al.,
2008; Pereira et al., 2012], it is not clear whether this is a
regionally specific finding or may reflect generally acceler-
ated brain ageing, which would result in widespread
increased cortical atrophy rates.

To address these knowledge gaps, detailed voxel and
network based grey matter analyses were performed in a
large MRI dataset from the PPMI database. First, we com-
pared brain structural differences between healthy controls
and PD patients using VBM. Second, correlations between
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amygdala grey matter intensity and clinical scores of non-
motor disease severity were investigated; we hypothesised
that amygdala grey matter density loss would underpin
non-motor symptoms in PD. Third, we explored PD
induced alterations of limbic structural connectivity using
structural covariance analysis of the amygdala. Last, local
age-related grey matter density change was estimated in
subjects with Parkinson’s and compared with those esti-
mated in healthy controls hypothesising that this may
prove useful as a potential biomarker of PD progression.

MATERIALS AND METHODS

MRI and Clinical Data

Five hundred and seventy MRI T1 structural cross-
sectional images were used in this study initially. All MRI
image data were obtained from the PPMI website (http://
www.ppmi-info.org/) on 13/10/2015. The dataset includ-
ed 178 healthy controls (113 male, aged 60.57 6 11.38,
mean 6 standard deviation) and 392 people with Parkin-
son’s (253 male, aged 62.09 6 9.80). Six subjects from the
healthy controls and 26 from the PD group were removed
from the study due to grey matter segmentation problems.
In the final analysis, 172 healthy controls (110 male) and
366 PD subjects (235 male) were included. Ages between
different groups were not significantly different (P< 0.05).
All clinical information including PD medication status
(115/366 PD subjects), clinical severity and psychometry
were also obtained from the PPMI database and included
in the analysis (Table I). More detailed information about
the demographics and clinical data can be found on the
PPMI website.

To determine the effects of PD progression on grey mat-
ter morphometric changes, we aimed to classify the PD
cohort according to severity, based on previously validat-
ed MDS-UPDRS III severity thresholds [Mart�ınez-Mart�ın
et al., 2015]. We found there were only 26 (of 366) subjects
who met classification criteria for moderate PD in the
study group. Because of this, we instead used a median-
split to subgroup the PD patients into mild (MDS-UPDRS
part III< 21, n 5 183) and mild to moderate PD (MDS-
UPDRS part III� 21, n 5 182). One PD subject was exclud-
ed in the clinical analysis due to missing MDS-UPDRS III
scores.

Several software packages and computer languages
were employed in the analysis. The FMRIB software
library (FSL) VBM package (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FSLVBM) was adopted for image registration,
image segmentation, grey matter modulation and image
smoothing. Image Registration Toolkit (IRTK) (https://
www.doc.ic.ac.uk/~dr/software/index.html) was also
employed for image registration [Rueckert et al., 1999] if
FSL failed for the image registration. R language (https://
www.r-project.org/) was used for VBM analysis and sta-
tistical comparison between different groups. In addition,

Python language (https://www.python.org/) was imple-
mented to extract patient information from the clinical
table, including search age, calculation of total MDS-
UPDRS and other clinical and psychometric scores. The
results for each image and clinical data processing steps
were checked visually.

VBM Analysis

The FSL-VBM processing was conducted as follows.
First, structural T1 images were registered to the Montr�eal
Neurological Institute (MNI) template using the FSL Line-
ar Image Registration Tool (FLIRT) [Jenkinson and Smith,
2001] function. If the images failed to be registered, then
the IRTK package with a manual registration was carried
out to obtain the initial value for a rigid registration. A
large head mask as part of the MNI template was
employed to exclude shoulder and neck in the brain
image. This was done by multiplying the registered
images with the head mask using FSL-maths functions.
After that the brain extract tool (BET) method [Smith 2002]
was employed to cut the skull from whole image for each
of the 570 T1 MRI structural images. Next, non-uniformity
correction was carried out, and the FSL Automated Seg-
mentation Tool (FAST v.4) [Zhang et al., 2001] was
adopted to segment tissues according to their type. The
segmented grey matter partial volume images were then
aligned to the MNI standard space (MNI152) by applying
the affine registration tool FLIRT (FMRIB’s linear image
registration tool) and nonlinear registration FNIRT

TABLE I. Demographics and clinical details table (172

healthy controls and 366 PD subjects derived from

PPMI repository)

Healthy controls
(mean 6 SD)

PD
(mean 6 SD)

Age 60.62 6 11.36 62.18 6 9.80
Total MDS-UPDRS I 4.68 6 3.57 4.88 6 3.30
Total MDS-UPDRS II 7.93 6 4.90 7.94 6 4.76
Total MDS-UPDRS III 1.21 6 2.18 21.60 6 9.71

Total GDS 4.11 6 1.40 4.27 6 1.55
Total ESS 6.61 6 3.46 7.17 6 4.13
HVLT 49.72 6 6.41 46.75 6 7.72

SCOP-AUT (SCAU1�SCAU21) 4.83 6 3.37 9.28 6 6.73

STAI state 27.78 6 8.89 33.60 6 10.64

STAI trait 32.73 6 6.40 35.24 6 7.25

Clinical information of healthy controls subject number 3063 could
not be found and was thus discarded. Bold text in the table
denotes a significant difference between healthy controls and peo-
ple with PD (P< 0.01).
Abbreviations: ESS: epworth sleepiness scale; GDS: geriatric
depression scale; HVLT: Hopkins verbal learning test; MDS-
UPDRS: Movement Disorders Society Unified Parkinson’s Disease
Rating Scale; SCOPA-AUT: scale for outcomes in Parkinson’s dis-
ease for autonomic symptoms; SD: standard deviation; STAI:
state-trait anxiety inventory.
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(FMRIB’s nonlinear image registration tool) methods, which
use a B-spline representation of the registration warp field.
A study-specific template was created by averaging the reg-
istered images (before smoothing), and used for non-linear
re-registration of the native grey matter images. The regis-
tered grey matter partial volume images were modulated
(to correct for local expansion or contraction) by dividing
them by the Jacobian of the warp field. The segmented and
modulated images were then smoothed with an isotropic
Gaussian kernel with a standard deviation (r 5 3mm).
Based on the smoothed images, a GLM with permutation
test was employed for the group comparison [Winkler et al.,
2014]. All VBM comparisons between different groups were
conducted within the framework of GLM. In the design
matrix of GLM, subject age and sex were also included as
covariates in the analysis. Cluster-based threshold correc-
tion for the grey matter comparison was set to be P< 0.05.
The significance threshold with the family-wise error (FWE)
was employed for the final significant statistical comparison.
T statistical threshold (e.g., t> 4) was predefined for the
FWE correction. To help localise grey matter differences, the
116 regions specified in the automated anatomical labelling
(AAL) template [Tzourio-Mazoyer et al., 2002] were used to
label regions in the resulting statistical maps. Visual inspec-
tion was carried out in each step.

Covariance Analysis

R language was adopted for the structural grey matter
covariance analysis [Mechelli et al., 2005] to calculate the
correlation coefficients between regional individual grey
matter density (averaged within a predefined seed region)
and the local grey matter density of the whole brain. In
this study, we were interested in the structural connectivi-
ty of limbic areas affected by the disease and we thus
selected limbic regions showing significant grey matter
changes in PD vs healthy controls as seeds. Structural
covariance analysis results in one correlation map per seed
for the whole group. To enable between group comparison
and testing for differences between healthy controls and
patients with PD, we employed a linear regression model
with group variables and interaction term as follows:

Y5a1b � X1c � PD1d � PD � X1e (1)

where Y is the averaged grey matter intensity in the seed
region; a,b,c,d are the regression coefficients; e is the model
error; PD is the disease state group variable with 0 for
healthy controls and 1 for PD subjects; and X is the local
grey matter intensity for structural covariance analysis. For
each group, we normalised dependent variable Y and inde-
pendent variable X separately. Then we solved the equation
by using the least squares method. The coefficient d before
the disease state and X is the interaction term; if d 5 0, then
there is no correlation difference between healthy controls
and PD patients; if d is significantly different from 0, then
there is a structural covariance difference between healthy

controls and patients with PD. We applied T statistics to
quantify the significance between different groups [Hock-
ing, 2003]. To illustrate qualitative pattern differences within
each group, we also applied a simplified within group
regression model (e.g., c 5 0 and b 5 0).

Age-Related Grey Matter Intensity Change

To assess differences in age-related grey matter intensity
change between PD and control groups from a cross-
sectional sample, we undertook voxel-wise estimation of
age versus grey matter (GM) density separately in PD and
control groups. We applied the same linear regression mod-
el as shown in Eq. (1) that allows us to compare local age-
related GM loss between healthy controls and PD patients.
To achieve this, the dependent variable Y in this model
denotes the local grey matter intensity and the independent
variable X represents subject age with identical group.
Again, we normalised grey matter intensity and age for
each group separately. To test the deterioration speed differ-
ence between healthy controls and PD patients, T statistics
were applied to assess whether coefficient d is significantly
different from 0 or not. If d is significantly different from 0,
it implies that there is a significant brain deterioration speed
difference between healthy controls and PD patients.

For ROI analysis, we also calculated change speed for
each group separately. This is achieved by simplifying Eq.
(1), that is, set c50 and d50. Then in this reduced model,
b denotes the brain age-related grey matter density change
and X represents the subject age and Y is the local grey
matter intensity. Because X represents the subject age,
regression slope b can be considered as an estimate of the
predicted rate of grey matter degeneration [Ziegler et al.,
2012] while rates of atrophy can only be measured using
longitudinal data.

Grey Matter and Clinical Data Correlation

Analysis

In addition, correlation analysis was carried out to study
the clinical relevance of observed limbic grey matter
changes. To this end, we investigated the inter-relation
between clinical non-motor scores and grey matter intensi-
ty in affected limbic areas. Similar correlations were inves-
tigated for grey matter intensity across abnormal limbic
structural networks. Correlation between grey matter and
clinical information was computed using cor.R function in
R language. For each subject, because the clinical informa-
tion was collected several times for many of the subjects,
we used the clinical information which was the nearest to
the MRI scan time. In some cases where there was a miss-
ing value in the clinical table, we replaced the value with
most recent clinical information from the table. It should
be mentioned that the VBM, covariance and structural con-
nectivity analysis in this study was based on the grey
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matter intensity from the modulated and smoothed grey
matter images in VBM analysis.

RESULTS

Grey Matter Density Loss in PD Primarily

Affects the Amygdala

Using FSL-VBM, we found few deficits in grey matter
density in PD compared to healthy controls (PD<healthy
controls) most notably in the right amygdala region (Fig. 1
and Table II). Also, a small part of right superior temporal
pole (Table II) adjacent to the amygdala showed signifi-
cantly reduced grey matter density in PD versus healthy
controls. Because we used FWE with cluster-based VBM
for threshold correction for the group comparison, these
results can be considered too conservative. This has been
criticised and the risk of FWE to produce false-negative
results is well known [Bennett et al., 2009]. To validate the
results, we hence applied R language to compare healthy
controls and PD group using a less restrictive two sample
t-test method with an uncorrected threshold. In addition

to the amygdala and superior temporal pole abnormalities,
this showed significant (T> 2.8, P< 0.005, two-tailed test)
grey matter intensity loss in the following regions (Sup-
porting Information, Fig. S1): parahippocampal (627.4, 0.2,
230), hippocampal (226.3, 23.2, 227.2), fusiform (35.3,
217.3, 234), pallidum (223.2, 27.4, 26) and precentral
cortex (244.2, 211.2, 38). There were no regions with
increased grey matter density in PD compared with
healthy controls using both FWE threshold correction
method and uncorrected methods.

Effect of Disease Severity on Grey

Matter Density

We compared 172 healthy controls with 183 mild MDS-
UPDRS-III< 21 and 172 healthy controls with 182 mild-
moderate subjects (MDS-UPDRS-III � 21). Again, though
age was not significantly different between the mild and
mild-moderate subgroups, we included age and sex as
covariates in the design matrix of the GLM for the two
subgroups compared with healthy controls. Using the
same statistical threshold and correction method in VBM

Figure 1.

Grey matter intensity loss in PD (n 5 366) versus healthy controls (n 5 172) using FSL-VBM

with cluster-based FWE corrected (t > 4, P < 0.05), seeing in the right amygdala region. [Color

figure can be viewed at wileyonlinelibrary.com]

TABLE II. Grey matter density deficits in PD patients

Contrast groups Brain regions MNI coordinates (x,y,z) T value

All PD patients (n 5 366)
<healthy controls (n 5 172)

Right amygdala (31, 1.6, 218) 4.58
Right superior temporal pole (31.3, 5.2, 221.1) 4.15

Mild (MDS-UPDRS3 < 21)
(n 5 183)<healthy controls (n 5 172)

Right amygdala (28.5, 1.3, 227.8) 4.40
Left amygdala (229.2, 1.3, 227.6) 4.60
Left middle temporal pole (229, 17.7, 237.1) 4.41
Right fusiform gyrus (34.9, 28, 238.9) 4.03
Right superior temporal pole (32.8, 4.3, 222.1) 4.69
Parahippocampal region (228.2, 1.6, 229.9) 4.16

r Li et al. r

r 3570 r

http://wileyonlinelibrary.com


analysis as in healthy controls versus PD comparison (Fig.
1; 172 healthy controls versus 183 mild PD comparison),
we found a significant difference in grey matter density in
the bilateral amygdala, left middle temporal pole, right
fusiform gyrus, right superior temporal pole and parahip-
pocampal region as shown in Fig. 2 and Table II.

For the comparison of 172 healthy controls versus the
remainder 182 mild-moderate PD group, we found similar
regional differences as in Fig. 1 (results not shown here).
However, the significant region was much smaller; for the
healthy controls versus all PD patients comparison, 77
voxels survived after FWE correction, whereas only 27 sur-
vived for the healthy controls versus mild-moderate PD
comparison. This surprising result cannot be explained by
medication effects, as a similarly low number of subjects
were on dopaminergic medication (51 [27.9%] in mild PD
and 64 [35.2%] in mild-moderate PD). We did not find sta-
tistical differences between the subgroups of 183 mild
MDS-UPDRS-III< 21 PD and 182 mild-moderate PD
patients using VBM.

Non-Motor Symptoms and Amygdala GM

Cognitive impairment was significantly correlated with
lower right amygdala GM (HVTL: R 5 0.155, P 5 0.033 and
UPDRS 1.1 R 5 20.111, P 5 0.03). Also the severity auto-
nomic dysfunction (SCOPA-AUT) was significantly larger
with lower right amygdala GM density. By contrast, we
did not find associations with anxiety scores.

Owing to the possible confounding effects of age and
sex on amygdala GM density, we repeated the association
using multivariate regression controlling for age and sex.
This confirmed an independent significant association of
SCOPA-AUT (T<22.79, P< 0.006) and HVLT (T> 3.99,
P< 0.0001).

Structural Connectivity Deficits in the Limbic

System in PD

The averaged grey matter intensity within the right amyg-
dala seed region (extracted from VBM result, see Fig. 1) and
the whole brain grey matter intensity was then calculated
using the simple within group regression model (Fig. 3A,B).
To allow an unbiased group comparison, we used the same
number of healthy controls and PD subjects, and thus ran-
domly selected the 172 (the total number of healthy controls)
subjects from PD group, when calculating the correlation
maps for healthy controls (Fig. 3A) and PD (Fig. 3B) groups.
The mean age of the healthy controls was 60.62 6 11.36
years, which did not differ from the 172 PD group
(61.59 6 10.11). Groups were also well matched for sex (110
males in controls and 112 males in patients).

In Figure 3A,B, the colour regions denote the significant
correlation false discovery rate correction (P< 6 3 1028)
between the affected amygdala region and the whole
brain. A small P value was adopted, thresholding the cor-
relation map. Similar results were found when using the
rest of the PD subjects (366 2 172 5 194) as a confirmatory
correlation test. Furthermore, we repeated the random
selection and correlation calculation processing 100 times,
and then averaged the correlation from these 100 random
samples. The results (not shown here) were very similar to
the correlation analysis results using all PD subjects as
shown in Figure 3B. In the healthy controls, we found
structural connectivity of the right amygdala with the left
amygdala, hippocampus (629.3, 28.6, 214), and parahip-
pocampus (625.4, 228.2, 214), brainstem, thalamus
(615.8, 214.7, 10) and superior cerebellar vermis. In con-
trast, the structural network in PD was limited to the
amygdala, parahippocampus and fornix, suggesting long-
range structural connectivity deficits in PD.

In addition, Eq. (1) was employed to test for significant
group differences. The structural amygdala network showed
significant differences between the PD and healthy control
groups with reduced covariance in the cerebellum and thala-
mus regions (Fig. 3C and Table III), but stronger covariance
in bilateral temporal cortices and to a lesser extent the left
occipital cortex (Fig. 3D and Table III) in patients.

Increased Age-Related Grey Matter Intensity

Reduction in PD Preferentially Affects the Limbic

and Paralimbic System

Maps of age-related grey matter intensity change were
calculated for both PD and healthy control groups using

Figure 2.

Grey matter intensity loss in mild PD (total MDS-UPDRS III

score< 21, 183 subjects) versus healthy controls (n 5 172) with

age and sex as covariates (FWE correction, t > 4, P < 0.05).

[Color figure can be viewed at wileyonlinelibrary.com]
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Eq. (1) with c50 and d50 to obtain voxel-wise age-related
change (age predictor regression slope) b for each group
separately. We then subtracted the control groups’ age-
related GM change maps from those in PD group to yield
a difference map that represents the local increase of age-
related change in PD. The difference map was thresholded
at two thousandths/year (absolute age-related change dif-
ference) as shown in Figure 4A. Figure 4A shows the

difference results with cluster size threshold of 20 voxels
using 26 neighbourhoods. The largest regional grey matter
change differences are summarised in Table IV. No areas
with a negative grey matter change difference were found
at the threshold of two thousandths/year.

Because the biggest alterations were seen in core
limbic hubs, hippocampus and parahippocampus regions
(Fig. 4A), we applied post hoc ROI analysis to compare

Figure 3.

Structural connectivity analysis to right amygdala grey matter

seed shows reduced and altered covariance in PD. (A) Healthy

controls group covariance map (n 5 172). (B) PD group covari-

ance map (n 5 172). (C) Structural connectivity difference map:

healthy controls> PD, FWE corrected (P < 0.05). (D) Structural

connectivity difference map: healthy controls< PD, FWE cor-

rected (P < 0.05). [Color figure can be viewed at wileyonlineli-

brary.com]

r Li et al. r

r 3572 r

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


the difference between PD and healthy controls in these
regions.

For each region, the right hemispheres and left hemi-
spheres are compared separately as shown in the supple-
ment (Supporting Information, Fig. S2 and Table S1).
Regression results showed that the regression slopes of all
these regions are significantly steeper in PD, confirming
that the right parahippocampus (Supporting Information,
E of Fig. S2) has the largest increase in age-related GM
change in PD followed by the right hippocampus and
right amygdala (Supporting Information, Table S1).

Similar to covariance group comparison, we applied
Eq. (1) to test for significant deterioration speed differences

between patients and controls. As shown in B of Fig. S2, we
found significantly increased age-related grey matter intensi-
ty change in patients with Parkinson’s in the left parahippo-
campal region (229, 222.5, 224.6, T 5 3.12) and a small
cluster in the left fusiform gyrus (232.8, 223.7, 225.1,
T 5 3.13) using small volume and false discovery rate (FDR)
threshold correction (P< 0.05).

DISCUSSION

In this study including 538 subjects, we compared the
structural grey matter density, connectivity, and age-relat-
ed grey matter intensity change estimates between healthy
controls and early PD. The main findings are predominant
right-hemispheric limbic grey matter alterations in early
PD, as demonstrated by right amygdala grey matter defi-
cits and reduced cerebellar, but increased temporal con-
nectivity and increased age-related grey matter intensity
changes in the right limbic and paralimbic system.

Preferential Amygdala Grey Matter Intensity

Decrease in Early PD

VBM analysis of this large dataset of brain MRI revealed
that the amygdala was the most prominently affected grey
matter region in PD subjects. This result is in good agree-
ment with previous post-mortem [Harding et al., 2002]
and some MRI studies [Junqu�e et al., 2005] which showed
amygdala volume reduction. Although numerous previous
papers report amygdala deficits in PD subjects [Bouchard

TABLE III. Structural right amygdala covariance

changes in PD

Brain regions MNI coordinates (x,y,z) T value

Healthy control>PD
Left cerebellum (23.7, 249.8, 252.1) 5.33
Right cerebellum (6.7, 250, 252.1) 4.79
Right thalamus (12.7, 220.7, 21.4) 4.76
Healthy control<PD
Left superior temporal gyrus (258.8, 224.2, 7.8) 25.51
Right superior temporal gyrus (54, 227.1, 7.8) 24.81
Middle temporal gyrus (55.9, 255.7, 7.8) 24.59
Middle temporal gyrus (261.6, 242.4, 7.8) 24.54
Left inferior temporal gyrus (255.9, 29, 225.1) 24.63
Right inferior temporal gyrus (51.1, 25.1, 227.6) 24.30
Right superior occipital (19.6, 278.5, 25.4) 24.39

Figure 4.

Maps of increased age-related changes in PD. (A) Between group difference (PD age-related

change 2 healthy control age-related change) shown at a cut-off of 0.002/year. (B) Statistical

comparison, significant age-related change difference map (PD age-related change> healthy con-

trol age-related change); FDR threshold correction (P < 0.05). [Color figure can be viewed at

wileyonlinelibrary.com]
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et al., 2008; Burton et al., 2004; Vriend et al., 2016], amyg-
dala atrophy is mainly seen in subgroups of PD patients
with dementia [Junqu�e et al., 2005] or mood disorders
[Diederich et al., 2016] and mostly reported in patients
with more advanced disease. Also amygdala changes in
those studies are not the predominant finding. Interesting-
ly, we found right amygdala grey matter density loss as
the most consistent abnormality in a large group of early
PD patients, 93% classified as mild [Mart�ınez-Mart�ın et al.,
2015] (MDS-UPDRS-III< 33) and 69% not on PD medica-
tion. We confirmed strong amygdala grey matter intensity
loss also in the more mildly affected subgroup of patients
with MDS-UPDRS-III< 21 (Fig. 2). This finding provides
further evidence that there is relatively early involvement
of the amygdala in PD subjects [Diederich et al., 2016].

Amygdala Grey Matter Change and Non-Motor

Symptoms in Early PD

In this sample, we found partial support for a role of
amygdala degeneration and non-motor symptoms in early
PD, specifically cognition and autonomous dysfunction
but not anxiety. We showed significant (P< 0.5) negative
correlation between right amygdala grey matter intensity
and SCOP-AUT score. A positive significant correlation
between amygdala grey matter intensity and HVLT was
also discovered and confirmed by a negative correlation
with the cognitive impairment UPDRS I subscore. More-
over, we show that these associations are independent of
age and sex effects. Despite the low correlation strengths,
our findings extend previous reports on a cognitive role of
the amygdala in patients with Parkinson’s even in early
stages when only mild cognitive abnormalities are noted.
It is however noteworthy that we did not observe an inter-
relation between right amygdala GM density and anxiety
scores in contrast to several previous studies [Remy et al.,
2005; Wen et al., 2016]. This may be explained by the mildly
elevated anxiety scores that may not have been severe

enough to reveal associations with amygdala deterioration.
Our findings are however in line with a recent VBM study in
PD [Vriend et al., 2016] that reported no association with
amygdala volumes and total Beck anxiety score. Interesting-
ly, they found lower amygdala volumes with higher ‘psycho-
logical’ anxiety subscores. Moreover, the interrelationship
between anxiety and limbic morphometry is complex, with
some studies reporting increased amygdala volumes in gen-
eralised anxiety disorders [Schienle et al., 2011], and both
children and adults with high trait anxiety [Qin et al., 2014].
More detailed studies including analysis of amygdala subnu-
clei in well phenotyped longitudinal cohorts are required to
clarify the neuroanatomical basis of anxiety dimensions in
PD.

To the best of our knowledge, we report the first investi-
gation of a link between autonomic dysfunction and amyg-
dala grey matter reduction in Parkinson’s. Patients with
higher scores of autonomic dysfunction showed lower
amygdala grey matter density. This observed association is
well supported by the anatomical connections of the amyg-
dala with major projections to regulatory centres of the auto-
nomic nervous system. The amygdala forms part of the
central autonomic network [Beissner et al., 2013] overlap-
ping the salience network (bilateral insula and midcingu-
late). Our findings are broadly in line with a suggested role
of the central autonomous network in cardiac dysautonomic
function in PD. A recent small study [Chen et al., 2016] in 23
patients with PD showed associations between hippocampal
and insular volumes and baroreflex sensitivity, and also
reported reduced right amygdala volumes, but did not find
associations between amygdala volume and baroreflex sen-
sitivity. More detailed analyses of dysautonomic subscores
are warranted to further assess the nature and possible
symptom and regional specificity of the central autonomic
network dysfunction in PD.

Structural Amygdala Covariance is

Disrupted in PD

We studied the structural connectivity between amygda-
la with other brain regions to explore whether early amyg-
dala involvement could trigger disease progression across
a structural network centred on the amygdala. Using seed-
based covariance analysis [Mechelli et al., 2005], we found
stronger structural covariance between the amygdala and
cerebellum and posterior thalamic nuclei in the healthy
control group. Connections and projections from the
amygdala to the thalamus have been demonstrated in ani-
mal studies [Aggleton and Mishkin, 1984; Su and Bentivo-
glio, 1990] and are supported by functional connectivity
studies using resting-state fMRI [Roy et al., 2009]. Path-
ways from the thalamus to the amygdala are important in
emotional learning [Pessoa and Adolphs, 2010]. To the
best of our knowledge, no detailed grey matter structural
covariance analysis has been reported for the amygdala.
The observed structural covariance at similar thresholds

TABLE IV. Brain regions showing a bigger age-related

change in PD compared with healthy controls

Brain regions
MNI coordinates

(x,y,z)

Change speed
difference
(0 00= /year)

Right hippocampus (23.6, 210.8, 218) 3.2
Left hippocampus (223.6, 210.8, 218) 2.96
Left parahippocampus (226.7, 29.5, 234) 2.43
Rectus gyrus (21.5, 23.4, 218) 3.19
Fusiform gyrus (228, 234.3, 218) 2.93
Frontal middle orbital

gyrus
(24.1, 40.7, 210) 3.13

Anterior cingulum (0.7, 41.2, 2) 2.86
Temporal middle lobe (50.5, 256.8, 14) 3.47
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(Z> 2.3, data not shown) overlaps with the functional
amygdala network, as derived from resting-state fMRI
data including the insula, thalamus, cingulate and medial
prefrontal cortex (in Fig. 2 of Roy et al. [2009]).

Intriguingly, we observed an altered long-range struc-
tural covariance network of the right amygdala in Parkin-
son’s patients. There were fewer connections to the
cerebellum and left thalamus, but increased connections
were noted to bilateral temporal gyri and left occipital cor-
tex in patients with PD. The observed disconnection of the
right amygdala is of particular interest in view of the dis-
connection from cerebellar regions, as this connection has
been shown to reflect an important brain ‘alarm system’
for subliminal signals of fear [Liddell et al., 2005]. In the
healthy control group, the amygdala handles this ‘alarm
system’ efficiently but subconsciously and rapidly; howev-
er, if the network is disrupted, then the reaction time in
response to an emotion stimulus will be increased [Tessi-
tore et al., 2002]. We noted additional increased connec-
tions of the right amygdala with bilateral temporal
association cortex pointing to network alteration that either
reflects compensatory processes or within network syn-
chronisation of disease-related grey matter modulation. On
the basis of primary observation of amygdala grey matter
deficit, we consider the second interpretation as more like-
ly despite absence of temporal cortical deterioration evi-
dence from VBM in this cohort. Covariance analysis can
be considered more sensitive, and in fact some previous
VBM studies reported temporal lobe abnormality in Par-
kinson’s [Camicioli et al., 2003]. Regardless of the nature
of the shown network alterations, the changes imply that
the emotion processing network is affected in early PD in
line with the amygdala as a densely connected ‘hub’, coor-
dinating and integrating tasks and providing a general
handling of emotion. This may provide an explanation for
the emotional face recognition difficulties in PD that could
however not be probed in this patient sample [Diederich
et al., 2016].

Increased Limbic Age-Related Grey Matter

Change in PD

We investigated age-related grey matter change in PD
subjects as a further approach to explore the pattern of
disease progression. Brain atrophy in PD subjects has been
recognised for a long time [Bouchard et al., 2008; Camicioli
et al., 2003; Junqu�e et al., 2005]; however, most of these
studies focus on the regional grey matter changes in the
hippocampus and amygdala of PD. Because previous stud-
ies did not employ voxel-based methods to study age-
related GM change, they did not allow characterisation of
the temporal-spatial pattern of brain ageing in PD. To
address this, we applied a linear regression method and
used cross-sectional age information to map local age-
related grey matter change [Ziegler, et al., 2012]. This
method based on cross-sectional data does not allow to

infer on atrophy but provides a means to estimate and
compare age-related grey matter change between groups.
Nevertheless, such group-based estimates of age-related
rates of GM loss are indices of predicted atrophy rates.
However, our results are in general good agreement with
previous work, demonstrating that the hippocampus, par-
ahippocampal regions and parts of the amygdala showed
a stronger age-related grey matter deficit in PD versus
controls (Table IV), with strongest increase in age-related
GM change in the right hippocampal region (for healthy
controls, the predicted age-related GM loss rate is
20.001234; for PD patient group, the rate is 20.004434).
Taken together, we describe an extended limbic and fron-
totemporal pattern of augmented GM loss in early PD
cases suggesting that extrastriatal deterioration is a region-
specific and earlier phenomenon than previously
considered.

Strengths and Limitations

One of the advantages in this study is that we combined
different software packages and languages for optimal
data analysis, and employed Python to process text files
and string variables from clinical information tables. We
applied R language for the VBM, structural covariance
and statistical analysis to compare different subject groups.
We combined IRTK and FSL software packages for image
registration. The other advantage of this study was that
we employed the relatively large PPMI data with compre-
hensive clinical information. Most previous studies used a
smaller number of subjects (<200 subjects). It should be
pointed out that PPMI data is from multi-centres (33
centres from different countries) with different scanners
introducing technical heterogeneity, yet, overall, multi-
centre structural MRI [Stonnington et al., 2008] studies are
thought to have greater statistical power than single-centre
studies for VBM analysis [Schnack et al., 2010]. Our study
has however several limitations. Foremost, it was based on
cross-sectional structural MRI image analysis, and thus
estimates of age-related grey matter change was based on
different subjects, precluding direct assessment of atrophy
rates. To overcome this limitation, future studies are need-
ed using serial MRI to evaluate the effects of individual
brain ageing more accurately. Last, the clinical and
psychometric scores indexing non-motor symptoms were
limited not allowing to study more detailed structur-
e–symptom relationships. The PPMI is an early cohort of
patients and we did not observe mood or sleep abnormali-
ties at group level preventing meaningful correlation anal-
yses. There are also some missing values in the cognitive
measures. Importantly, the relation between grey matter
intensity and these measures may not be linear, and while
grey matter changes will be stable, variability of the clinical
measures even within 1 day may have further masked
undetected associations. Nevertheless, the large sample size
allowed us to detect significant albeit weak associations
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between amygdala GM reduction and some non-motor
symptoms at the early stages of PD.

Further research is warranted to more fully investigate
putative region and network-specific limbic atrophy pat-
terns underpinning specific non-motor symptoms, such as
specific autonomic dysfunctions, psychological versus
somatic affective symptoms, olfactory and face recognition
impairment.

CONCLUSION

This study provides new evidence for amygdala involve-
ment, associated structural disconnection, and increased
medial temporal age-related grey matter change in early PD
based on advanced morphometric analyses in a large sam-
ple of patients. These findings support the early affection of
the limbic network in Parkinson’s and a role in autonomic
dysfunction and early cognitive impairment, and offer novel
tools to track extranigral disease progression.
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