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Gauge theories are of paramount importance in our understanding of fundamental con-
stituents of matter and their interactions. However, the complete characterization of their
phase diagrams and the full understanding of non-perturbative effects are still debated,
especially at finite charge density, mostly due to the sign-problem affecting Monte Carlo
numerical simulations. Here, we report the Tensor Network simulation of a three dimensional
lattice gauge theory in the Hamiltonian formulation including dynamical matter: Using this
sign-problem-free method, we simulate the ground states of a compact Quantum Electro-
dynamics at zero and finite charge densities, and address fundamental questions such as the
characterization of collective phases of the model, the presence of a confining phase at large
gauge coupling, and the study of charge-screening effects.
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ARTICLE

anging from high-energy particle physics (Standard

Model)!-3 to low-temperature condensed matter physics (spin

liquids, quantum Hall, and high-T, superconductivity)®>,
gauge theories constitute the baseline in our microscopical descrip-
tion of the universe and are a cornerstone of contemporary scientific
research. Yet, capturing their many-body body behavior beyond
perturbative regimes, a mandatory step before experimentally vali-
dating these theories often eludes us®. One for all, the quark con-
finement mechanism in quantum chromodynamics, a founding
pillar of the Standard Model which has been studied for almost half a
century, is still at the center of current research efforts’~12. Indeed, a
powerful  numerical workhorse such as  Monte-Carlo
simulations'3-13, capable of addressing discretized lattice formula-
tions of gauge theories!>16-18, struggles in highly interesting regimes,
where matter fermions and excess of charge are concerned, due to
the infamous sign problem!®. In recent years, a complementary
numerical approach, Tensor Networks (TN) methods, have found
increasing applications for studying low-dimensional Lattice Gauge
Theories (LGT) in the Hamiltonian formulation?%2!, As tailored
many-body quantum state ansitze, TNs are an efficient approximate
entanglement-based representation of physical states, capable of
efficiently describe equilibrium properties and real-time dynamics of
systems described by complex actions, where Monte Carlo simula-
tions fail to efficiently converge?2. TN methods have proven
remarkable success in simulating LGTs in (1+1) dimensions®3-41,
and very recently they have shown potential in (2+1)
dimensions*2-30, To date, due to the lack of efficient numerical
algorithms to describe high-dimensional systems via TNs, no results
are available regarding the realistic scenario of LGTs in three spatial
dimensions.

In this work, we bridge this gap by numerically simulating, via
TN ansatz states, an Abelian lattice gauge theory akin to (34 1)
Quantum Electrodynamics (QED), at zero temperature. We show
that, by using the quantum link formalism (QLM) of LGTs>!>2
and an unconstrained Tree TN (TTN), we can access multiple
equilibrium regimes of the model, including finite charge den-
sities. Precisely, we analyze the ground state properties of
quantum-link QED in (3 4 1)D for intermediate system sizes, up
to 512 lattice sites. The matter is discretized as a staggered spinless
fermion field on a cubic lattice!®, while the electromagnetic gauge
fields are represented on lattice links, and truncated to a compact
representation of spin-s. Here, we present results from a nontrivial
representation for lattice gauge fields (the spin-1 case), with pos-
sible generalizations to higher spin requiring only a polynomial
overhead in s. Our picture can be similarly adapted to embed non-
Abelian gauge symmetries, such as they appear in QCD32. Finally,
we stress that the truncation of the gauge field is a common step in
quantum simulations and computations®3-%2, making the pre-
sented numerical approach a landmark benchmarking and cross-
verification tool for current and future experiments. By var-
iationally approximating the lattice QED ground state with a TTN,
we address a variety of regimes and questions inaccessible before.
In the scenario with zero excess charge density, we observe that
the transition between the vacuum phase and the charge-crystal
phase is compatible with a second-order quantum phase
transition?”. In the limit of zero magnetic couplings, this transition
occurs at negative bare masses 7y, but as the coupling is activated,
the critical point is shifted to larger, and even positive, m, values.
To investigate field-screening properties, we also consider the case
where two parallel charged plates are placed at a distance (a
capacitor). By studying the polarization of the vacuum in the inner
volume, we observe an equilibrium string-breaking effect akin to
the Schwinger mechanism. Furthermore, we address the con-
finement problem by evaluating the binding energies of charged
particle pairs pinned at specified distances. Finally, we consider

the scenario with a charge imbalance into the system, i.e., at finite
charge density, and we characterize a regime where charges
accumulate at the surface of our finite sample, analogously to a
classic perfect conductor.

Results

The model. Hereafter, we numerically simulate, at zero tem-
perature, the Hamiltonian of U(1) quantum electrodynamics on a
finite L x L x L three-dimensional simple cubic latticel6-18

H= _t%(q/i Ugp Vi + H.c.) (1a)
S 19+ & S B (1b)
& - - -
_7§<D/Axﬂy T 0 Ty + H'C‘> (Ic)
with x = (i,j,k) for 0<i,j k<L —1 labeling the sites of the
. - Pt
lattice and 0, , =U, Ux T UX gt val"ﬁ' Here, we adop-

ted the Kogut—Susskind formulation16, representing fermionic
degrees of freedom with a staggered spinless fermion field
{{1,, ¥} = 8, on lattice sites. Their bare mass my, = (—1)%m is
staggered, as tracked by the site parity (—1)X = (—1)**/1k, so that
fermions on even sites represent particles with positive electric
charge +¢, while holes on odd sites represent anti-particles with a
negative charge —g, as shown in Fig. 1. Charge Q conservation is
thus expressed as global fermion number N conservation, since
Q=3 (v ”ﬁ?:N—ﬁm

The hnks of the 3D laftice are uniquely identified by a couple of
parameters (X, 4) where X is any site, ¢ is one of the three positive
lattice unit vectors y, = (1,0,0), u,=(0,1, 0), and p, = (0,0, 1).
The gauge fields are defined on lattice links through the pair of
operators IA:‘X‘# (electric field) and Uw (unitary comparator) that
satisfy the commutation relation

[Ex,w Ux’,,u’] = 6)( x’6/4;4 U (2)

For comfort of notation, we can extend the deﬁnition to negative

lattice unit vectors via Ey su—u = —Ey, and Ugs U x4

The Hamiltonian of Egs. (la)- (lc) consists ofM four terms: the
parallel transporter (1a) describes the creation and annihilation of
a particle-antiparticle pair, shifting the gauge field in-between to
preserve local gauge symmetries. The staggered mass and the
electric energy density (1b) are completely local. Finally, the
plaquette terms (1c) capture the magnetic energy density and
are related to the smallest Wilson loops along the closed
plaquettes along the three planes x-y, x-z, y-z of the lattice. In
dimensionless units (% =c = 1), the couplings in Eqgs. (1a)-(1c)
are not independent: They can be expressed as t=1/a, m = my,
g2 =g¢*/a, g*, = 8/(g%a), where a is the lattice spacing, g is the
coupling constant of QED, and mj is the bare mass of particles/
antiparticles. The numerical setup allows us to consider the
couplings (f, m, ge, gm) as mutually independent. We then recover
the physical regime of QED by enforcing g.g,, = 2+/2t1%. We also
fix the energy scale by setting t= 1.

The local U(1) gauge symmetry of the theory is encoded in
Gauss’s law, whose generators

6 — it 1— (-1
2

V/xwx — - ZEX7’4a (3)
U

are defined around each lattice site x. The sum in Eq. (3) involves
the six electric field operators on the links identified by +u,, +u,,
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Fig. 1 Scheme of the three-dimensional LGT with three electric field levels (spin-1 compact representation). Fermionic degrees of freedom are
represented by staggered fermions on sites with different parity: on the even (odd) sites, a full red (blue) circle corresponds to a particle (antiparticle) with
a positive (negative) charge. As an illustrative example, it is shown a gauge-invariant configuration of matter and gauge fields with one particle and one

antiparticle in the sector of zero total charge.

+u,. Each G, commutes with the Hamiltonian H. In the absence
of static (background) charges, the gauge-invariant Hilbert space
consists of physical many-body quantum states |®) satisfying
GXIG)) = 0 at every site x.

As stressed in the standard Wilson’s formulation of lattice
QED!!, faithful representations of the (E, U) algebra are infinite-
dimensional. A truncation to a finite dimension becomes
therefore necessary for numerical simulations with TN methods,
which require a finite effective Hilbert dimension at each lattice
site. We use the quantum link model (QLM) approach in which
the gauge field algebra 1s replaced by SU(2) spin algebra, ie.,

= S and U = S /s for a spin-s representation. This
substltutlon keeps the electrlc field operator hermitian and
preserves Eq. (2), but U is no longer unitary. Throughout this
work, we will select s =1, the smallest representation ensuring a
nontrivial contribution of all the terms in the Hamiltonian (see
also Fig. 1). This truncation introduces a local energy cutoff based
on gﬁ, which in turn requires larger spin s to accurately represent
weaker coupling regimes, still potentially accessible via TNs3!

Transition at zero charge. We focus on the zero charge sector,
Le, S 0y, = %3, and periodic boundary conditions. As shown in
Fig. 2 (upper panel), for g2 = 0 the system undergoes a transition
between two regimes, analogously to the (1 4+ 1)D and (24 1)D
cases?>3747; for large positive masses, the system approaches the
bare vacuum, while for large negative masses, the system is
arranged into a crystal of charges, a highly degenerate state in the
semiclassical limit (f — 0) due to the exponential number of
electric field configurations allowed. We track this transition by
monitoring the average matter density p = L;Z <GS|n,|GS>,

where 71, 1+( D°_ (—1) V’x‘/’x is the matter occupation
operator and the many-body ground state |GS> has been com-
puted by TTN algorithm (see the “Methods” section for details).
Figure 2b displays the result for different sizes L (and
gg /2 =t = 1), portraying the transition. Panels (a) and (c) dis-
play local configurations of matter <7, > and gauge sites (E, ) for
m=—3.0 and m = +3.0 respectively. In the former regnne, the
algorithm seems to favor a single allowed configuration of gauge
fields rather than a superposition of many configuations: This is
due to the fact that, when g% =0, the matrix element that

rearranges the configurations occurs at very high perturbative
order in |t/m], and is numerically neglected. A finite-size scaling
analysis of the transition (as detailed in the Methods’ subsection
“Critical points: scaling analysis”) yields results compatible with a
II-order phase transition, with the critical point occurring at
negative bare masses m.

The same transition appears to be more interesting when we
activate the magnetic coupling, by setting g2 = 8t*/g> =4
(physical line). The phase at large negative m now appears to
be a genuine superposition of many configurations of the electric
field, as they are coupled by matrix elements of the order ~g2,
kept as numerically relevant by the algorithm. Moreover, the
transition is still compatible with an II-order phase transition,
and the critical point is shifted to larger m values. This can lead to
a critical bare mass m, that is positive (as we observed m. =+
0.22 for the case g2/2 = t = 1), ultimately making the transition
physically relevant.

Quantum capacitor. To investigate field-screening and equili-
brium string-breaking properties, we analyze the scenario where
two charged plates (an electric capacitor) are placed at the
opposite faces of a volume, with open boundary conditions
(OBQ). In our simulations, we achieve this regime by setting large
local chemical potentials on the two boundaries. We expect that
for small positive masses m, the vacuum inside the plates will
spontaneously polarize to an effective dielectric, by creating
particle and antiparticle pairs to screen the electric field from the
plates, into an energetically favorable configuration.

We observe this phenomenon by monitoring the charge density

function along the direction p, orthogonal to the plates q_(d) =
250 <GS|(_1)X‘AV(TdJ<k)‘7/(dJ.k)|GS> as well as the electric field
amplitude along p1,, By, (d) =15
as presented in Fig. 3.

A transition from a vacuum regime to a string-breaking
dielectric regime is observed, when driving m from negative to
positive. However, here the critical point occurs at positive masses
(m.>0) even at zero magnetic coupling g> = 0, analogously to
the (1+ 1)D case?®. In conclusion, the charged capacitor can
make the phase transition physical even when g can not be tuned.

The observed behavior can be interpreted as an equilibrium
counterpart to the Schwinger mechanism, a real-time dynamical

; >
21 <GSIE (@ (d+1501GS>
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Fig. 2 Transition at zero total charge. Ground state charge occupation and electric field on links for m = —3.0 (a) and m = 3.0 (¢) and g2, = O. b Particle

density as a function of m, for different system size L and g% = 0. Ground state charge occupation and electric field on links for m = —3.0 (d) and m = 3.0
(F) in the presence of magnetic interactions with g2, = 8/g? = 4. e Particle density as a function of m, for different system size L and g%, = 8/g2 = 4.
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Fig. 3 Quantum capacitor properties. a Ground state configuration of the quantum capacitor for m=3.0. b Mean charge density on the sites along the
transverse direction for different values of m. € Mean value of the electric field on the transverse links for different values of m. d Ground state configuration
of the quantum capacitor for m = —3.0. e lllustration of the creation of a particle-antiparticle pair along the transverse direction, starting from the initial
electric field string generated by the boundary charges. f Particle density as a function of m, with a comparison to the case with no boundary charges.
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Fig. 4 Confinement properties. Interaction potential V(r) between two charges of opposite sign as a function of their distance r in the (upper panel) weak

coupling regime g <1 and (lower panel) strong coupling regime g>1.

phenomenon in which the spontaneous creation of electron-
positron pairs out of the vacuum is stimulated by a strong
external electric field®3. This could either be potentially verified in
experiments or quantum simulations, by means of adiabatic
quenches, ramping up the capacitor voltage.

Confinement properties. The (3 + 1)-dimensional pure compact
lattice QED predicts a confining phase at large coupling g'1-64-67.
This phase, where the magnetic coupling is negligible, is char-
acterized by the presence of a linear potential between static test
charges, and is expected to survive at the continuum limit. By
decreasing g, the system undergoes a phase transition to the
Coulomb phase where the magnetic terms are not negligible and
the static charges interact through the 1/r Coulomb potential at
distance r%8. When the gauge field is coupled to dynamical matter
(t#0 and finite m), new possible scenarios emerge, such as the
string-breaking mechanism. Nevertheless, the transition between
confined and deconfined phases is still expected to occur®.

We can investigate this specific scenario with our TN method:
we consider a 16 x 4 x 4 lattice and pin two opposite charges via
large local chemical potentials at distance r along direction y,.
The energy E(r) = V(r) — V(o) + 2¢; + E, of this ground state
comprises: the work V(r) — V(o) needed to bring two charges
from infinity to distance r, plus twice the excitation energy e; of
an isolated pinned charge, on top of the dressed-vacuum energy
E,. Therefore we can estimate the interaction potential as V(r) =
E(r) — Ey + & where the additive constant & does not scale with
the volume (while E(r) and E, separately do).

The presence of dynamical matter heavily impacts the strong-
coupling picture (g2 ~ 0), as it can be extrapolated in the
semiclassical limit (t~0). Here, a particle-antiparticle pair at
distance r with, a field-string between them, has an energy

2

g
E(r) — Ey=2m+ 22" 4)

that scales linearly with r (here g = ag?). By contrast, two
mesons (neighboring particle-antiparticle pairs) have a flat

energy profile

2

_Eoz4m+g (5)

E .
a

pairs
Thus, for any mass m, there is critical distance r, above which the
string is broken, and the formation of two mesons is energetically
favorable.

We observe this transition at finite t, as shown in Fig. 4
(bottom panel, g# =4). The crossover from the short-range to
long-range behavior is still relatively sharp, and the distance r, at
which it occurs strongly depends on the bare mass m. This is in
contrast to the weak-coupling regime (top panel, g = 1/4), where
the potential profile V(r) is smoothly increasing with , and its
slope at short distances disagrees with the string tension ansatz
rg*/2 + const.. Thus our simulations highlight visibly different
features between confined and deconfined regimes, even with the
dynamical matter.

Finite density. One of the most important features of our
numerical approach is the possibility to tackle finite charge-
density regimes. In fact, by exploiting the global U(1) Fermion-
number symmetry, implemented in our TTN algorithms, we can
inject any desired charge imbalance into the system, while
working under OBC. Figure 5 shows the results for charge density
p= Q/L3 = 1/4. In the vacuum phase (m > g§/2 ~ t), we obtain
configurations as displayed in panel (a), where the charges are
expelled from the bulk and stick to the boundaries to minimize
the electric field energy of the outcoming fields. To quantify this
effect, which can also be interpreted as a field-screening phe-
nomenon, we introduce the surface charge density

1 PN
o0 = 5.5, () ©)

where A(l) contains only sites sitting at lattice distance [ from the
closest boundary. The deeper we are in the vacuum phase, the
faster the surface charge decays to zero away from the boundary
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Fig. 5 Finite density analysis. a Ground state configuration for m=4.0 at
finite charge density p = Q/L =1/4. The system is in the global symmetry
sector with Q =16 positive charges on the lattice with linear size L = 4.
b Surface charge density 6, on a cube whose faces are at distance / from the
boundaries of the lattice with linear size L = 8. The system is in the global
symmetry sector with Q =128 positive charges (finite density p =1/4).

(I=1). By contrast, close to the transition, the spontaneous
creation of charge-anticharge pairs determines a finite charge
density of the bulk. Finally, for large negative m, the charge
distribution is roughly uniform.

Discussion
We have shown that TN methods can simulate LGT in three
spatial dimensions, in the presence of matter and charge imbal-
ance, ultimately exploring those regimes where other known
numerical strategies struggle. We have investigated collective
phenomena of lattice QED which stand at the forefront of the
current research efforts, including quantum phase diagrams,
confinement issues, and the string breaking mechanism at equi-
librium. We envision the possibility of including more sophisti-
cated diagnostic tools, such as the ’t Hooft operators’® which
nicely fit TNs designs, to provide more quantitatively precise
answers to the aforementioned open problems.

From a theoretical standpoint, our work corroborates the long-
term perspective to employ TN methods to efficiently tackle non-

perturbative phenomena of LGTs, in high dimensions and in
regimes that are out of reach for other numerical techniques. As
ansatz states with a refinement parameter chosen by the user, the
bond dimension, TTNs are automatically equipped with a self-
validation tool: convergence of each quantity with the bond
dimension can be verified in polynomial time.

However, while TTNs perform well for small and intermediate
system sizes, as the ones considered in this work (L =2, 4, 8), the
pathway to general LGT's analysis with large L is still a technical
challenge. In particular, TTNs suffer from poor scalability for
higher L, since they fail to explicitly capture area law for large
systems, which denotes a possible bottleneck for further investi-
gations toward the study of the thermodynamical limit of Abelian
and non-Abelian high-dimensional LGTs. As a promising per-
spective, ref. 7! presents the augmented TTN ansatz which
compensates this drawback offering better scalability. Further
development in this direction will contribute to overcoming the
current limitations of TTN in high-dimensional systems opening
the pathway to the possibility of investigating realistic physics by
starting from the TTN approach presented here.

Furthermore, we stress that our simulations have been per-
formed on standard clusters by taking advantage only of OpenMP
parallelization on single multi-core nodes. We have not yet
exploited a full-scale parallelization on multi-node architectures.
At a purely technical level, it is straightforward to upgrade our
algorithms in this direction, in order to fully exploit the cap-
abilities of high-performance computing. For instance, following
the ideas presented in ref. 72, each TTN variational sweep could
be parallelized in a way to optimize its tensors separately on
different computing nodes, so as to optimally scale the compu-
tational resources with the system size. On top of this, the
implementation of tensor contractions on GPUs could be used to
speed up the low-level computations as well”3.

In this work we consider the spin s =1 representation, which
leads to a local basis dimension of 267, as described in the
Methods’ subsection “Fermionic compact representation of local
gauge-invariant site”. Following the same theoretical construction
for the local gauge-invariant sites, we estimate a local basis
dimension of 1102 for the next representation of QED with
s = 3/2, whereas, for the SU(2) Yang-Mills theory, by truncating
after the first nontrivial irreducible representation and consider-
ing the spin-1/2 fermionic matter, one finds a local basis of
178 states for the cubic lattice. TTNs algorithms scale only
polynomially with the local basis dimension but taking into
account the aforementioned numbers, specific strategies for
truncating also the local dimension in an optimal way (see for
instance ref. 74) could be required for studying higher repre-
sentations of the gauge fields.

In conclusion, the aforementioned technical steps will be
fundamental to tackle the problem of the continuum limit of
realistic Abelian and non-Abelian LTGs and we foresee that,
although very challenging, they are only some steps away along
the path of TTNs developments presented here.

Alongside, from an experimental point of view, QLM for-
mulations are among the most studied pathway towards the
simulation of LGTs on quantum hardware®7>. The recent
developments in low-temperature physics and control techniques,
for trapped ions, ultracold atoms, and Rydberg atoms in optical
lattices, have led to the first experimental quantum simulations of
one-dimensional LGTs>=>°. In this framework, numerical
methods capable of accessing intermediate sizes, such as TNs,
play a fundamental role as a cross-verification toolbox.

Methods
Fermionic compact representation of the local gauge-invariant site. In
describing a framework for LGT, a common requirement of TN numerical
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Fig. 6 Construction of the gauge-invariant configurations for the local sites. a Representation of the gauge field in terms of two species of Dirac modes in
the sector with a total number of fermions equal to two. b Generic state of the local site composed by the matter degrees of freedom and six half-links
along with the three spatial directions. On each half-link, the coefficients k; € {0, 1, 2} define the fermionic modes. ¢ Examples of gauge-invariant
configurations for even and odd sites. Due to the use of staggered-fermions, the presence/absence of a fermion in an even/odd site represents the

presence of a charge/anti-charge.

simulations’®-7?, as well as quantum simulations®0-86, is working with finite-
dimensional local degrees of freedom. This is a hard requirement when investi-
gating both LGT descending from high-energy quantum field theories®”-%°, and
condensed matter models with emergent gauge fields”1:92. While other pathways
have been developed”3-%, in this work we adopted the well-known approach of
truncating the gauge field space based on an energy density cutoff. In this section,
we present the construction of the QED gauge-invariant configurations for the
local sites that we exploit as a computational basis in our TN algorithm.

The use of the spin-1 representation implies that the gauge degrees of freedom
on each link of the lattice is represented by three orthogonal eigenstates of the
electric field operator

B =) =12, By lg) =0, Eyle) = @
The parallel transporter, which is proportional to the raising operator in the spin
language, acts on these states as

—l<).

Ugl=) =0, Uy,|9) = =), Uyl = |9).
In the following, in order to obtain a representation of the gauge degrees of
freedom that will be useful for constructing our TN ansatz, we employ the local
mapping presented in ref. +7 (see also®”%8), generalizing it to the case with three
spatial dimensions. This technique is related to the standard rishon formulation of
QLM?-101 and allows us to encode Gauss’s law taking into account the
anticommutation relations of the fermionic particles on the lattice.

Let us consider a generic link of the lattice (x, 4) between the two sites x and
x + p: the starting point is the splitting of the gauge field of this link into a pair of
rishon modes so that each mode belongs to either one of the two sites. For the s =1
case, we can set each rishon mode (or half-link) to be a three-hardcore fermionic
field 7, . Such lattice quantum fields satisfy 7y i 4 *0and ﬁi” = 0. They mutually

anticommute at different spatial positions, i.e., {nx w ﬁi )14 }

()

=0forx=x oru=y,
and also anticommute with the staggered matter fermionic fields

{nxw 1//(”} = 01718, Then, we express the comparator on the link as

U

lmk, we consider two species of standard Dirac fermions a,,
the following relation:

To explicitly build these three-hardcore fermions for each half-
and l;x#

ﬂx y”xﬂt —u
and we use

A bl +(1 - )

e = by ),
where 7%, and ﬁb
iy .= ai iy
operators act on a three-dimensional local Hilbert space with basis [0>, ,,
N>, = af‘_ﬂ\o >ew 1225y = bx/i”o > 4u- In fact, due to the definition in

Eq. (9), the algebra of the operators 7, , never accesses the fourth state obtained as

o
by 10>,

are the occupation number operators for each species, i.e.,

and the same for 7 n - FOr each three-hardcore mode, these

. By using the same representation on the other half-link through the

N ot . .
Dirac operators @] and by, _,» we would obtain for the complete link a local

Xt —p
space of dimension 9. However, the operator that counts the total number of

fermions on the complete link as

L =ﬁfw+n

xu + i

i, H+nxﬂ —w (10)

defines asymmetry of the Hamiltonian since it commutes with the operators Exw

and Uw‘ Thus, we can select the sector with Ilw = 2 (two rishons on each full
link), reducing the link space to dimension 3 with the basis

Ai
=)= —10,2) =al,, by W00y
[¢) =11,1) = af al,, 10}, 100ty 11)
o) =12,0) = byl 0}, 410}y

where the minus sign in the first element allows the operator 0“ to act correctly
following the properties of Eq. (8). By using this representation, the electric field
finally corresponds to the imbalance of Dirac fermions between the two halves of

the link, so that

7 1 ~a 78 ~b
Ex,p. = 2 (nx+y, —u + nxﬂx —u T Py xy) (12)

This construction in terms of 3-hardcore fermions allows us to define, for each
lattice site, a local basis that directly incorporates Gauss’s law, by constraining in
this way the dynamics to the physical states only. This is a crucial point for both
numerical and quantum simulations since non-physical states determine an
exponential increase in the complexity of the problem.

From the definition of the link basis states of Eq. (11), it follows that, within the
sector with the link-symmetry constraint L, , = 2, the electric field operator is
uniquely identified by taking only the half-link fermionic configuration, namely

i ab
E,=1- iy e~ My (13)

In this way, the generators of the Gauss’s law of Eq. (3) are transformed into

completely local operators acting on the site x only
. Lt a 1— (-1 N N
Gy :Wl‘/’x_%_z(l_”u —ab )

X, X,
m u "

(14)

Taking into account this property, it is possible to construct the gauge-invariant
basis for the local site x, which is composed by the lattice site and the six half-links
along with the directions *u,, +u,, *u_ (see Fig. 6)

ks
ks
k¢ k4> :(_1)6k1z+6l\2,z+5k3,2}¢>x
ke Ty (15)

X |kl >X~*l‘x ‘kz >x,—}4/‘, ‘k3 >x.—;4Z

x |ky >x,‘u( ks >x_ﬂy ‘k5>x,;42

where ‘¢>x = (ﬁ/j‘)“’m) with ¢ =0, 1 describes the presence or the absence of the
matter/antimatter particles. The indices k; run over {0, 1, 2} selecting a
configuration of the 3-hardcore modes for each respective half-link. The presence
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Fig. 7 TTN ansazts. TTN representations for a 1D lattice and b 2D square lattice. Green circles indicate the sites of the lattice connected to the physical
indices of the tree, whereas the yellow circles are the tensors making up the TTN. In ¢, we showed our generalization to the 3D cubic lattice that we use for
the numerical simulations of the LGT. The different colors of the bond indices are just for better visualization of the tree structure.

of the factor (—1)% 2% 2+%2 allows us to satisfy the anticommutation relations of
the fermionic representation recovering the correct signs of Eq. (11). The
occupation numbers ¢ and k; are not independent due to the constraint imposed by
Gauss’s law

(16)

This equation, in the new language of matter fermions and rishons, reads

1-(=D*

3 17)

6
o+ k=6+
j=1

where the factor 6 is indeed the coordination number of the cubic lattice. Thus, the
gauge-invariant configurations of the local basis are obtained by applying this
constraint, effectively reducing the “dressed-site” (matter and 6 rishon modes)
dimension from 2 x 36 = 1458 to merely 267. We encode these states as building
blocks of our computational representation for the TN algorithms. In Fig. 6, we
show some examples of gauge-invariant configurations for even and odd sites.

The construction of the gauge-invariant local sites is particularly advantageous
for our numerical purposes: in fact, it is now possible to express all the terms in the
Hamiltonian of Egs. (1a)-(1c) of the main text as the product of completely local
operators that commute on different sites. Let us consider the kinetic term of the
Hamiltonian and apply the representation of the gauge field in terms of the 3-
hardcore fermionic modes

CiE e _ote ot o
Vi UsuWxrw = Vsl —u Vxsu

— (0 5 e 0

- (Ux.ﬂ’x) (’1x+/4‘7/4v/x+[4)
P

:Mia) Mz#»y

(18)

where the indices « and « select the right operators depending on the different
directions in which the hopping process takes place. The operators My, are
genuinely local (i.e., they commute with operators acting elsewhere) as they are
always quadratic in the fermionic operators (y and/or #). The same argument

applies to the magnetic (plaquette) terms in the Hamiltonian

0,, =00

. ot
Bty Xfy U,

sttty U, g, U, =

ot - f
= Mo Mt o, Tt o, Mt sy~
x (7 ol 7 nt !
Mot o, Tt~ ) M, b, o,
_ PR . -
= - (Wx.yy ’1,%) (Wx-hux.—y'\ 11"+I4x~l‘,>
< (#t - At X
Moty =, Mt by =, ) \Mxcbp, i Txb, -,

_ ) @) @) @)
= Cig“ CX+[4X Cx+/4x+/4), CxﬂAy?

*
i

(19)

where the indices o, «, «”, a” depend on the plane of the plaquette (in this case
x-y) and the links involved in the loop. The operators C; are genuinely local and
act on the four sites at the corners of the plaquette. The decomposition is the same
for the other plaquettes in the planes x-z and y-z. The present construction ensures
that they can be treated as spin (or bosonic) operators®”%3, so we can exploit
standard TN algorithms, without the need of explicitly implementing the fermionic
parity at each site!02-104,

The mass term and the electric field energy in the Hamiltonian of Egs. (1a)—(1c)
of the main text are diagonal in the gauge-invariant basis with the rishon
representation and so it is trivial to express them as local operators. These
operators include the local chemical potential terms, which we use to pin charges in
order to study confinement properties!?>-107, In conclusion, all the operators we
employ in the TTN algorithms (see the “Methods” subsection “Tensor Networks”)
are genuinely local. In order to get an idea of the numerical complexity, we
emphasize that the dimension of these matrices acting on the local gauge-invariant
basis is 267 x 267.

Tensor networks. In this section, we present the main concepts of TNs with a
particular focus on the TTN ansatz that we exploit in this work!%8, For a detailed
and exhaustive description of the subject, please see the technical reviews and
textbooks21,109:110,

Let us consider a generic quantum system composed by N lattice sites, each of
which described by a local Hilbert space Hy of finite dimension d and equipped
with a local basis {|i>},_,_ ;- The whole Hilbert space of the system will be
generated by the tensor product of the local Hilbert spaces, that is,

H =M, ®H, ® - -+ Hy, with a resulting dimension equal to d¥. Thus, a generic
pure quantum state of the system |y) can be expressed as a linear combination of
the basis elements of H, i.e.,

d
ly)= X

iy ey =1

Cii iy ‘i1>1 ® |i2>2 ®..® ‘iN>N' (20)
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Fig. 8 Numerical convergence. a Driven optimization (in three steps: linear, quadratic, constant) of the penalty coefficient v (red) and behavior of the
energy (blue) as a function of the iterations for an exemplifying simulation. The energy is reported as the difference with the lowest final energy that we
reach. b Driven optimization of the penalty coefficient v (red) and global error 8L (green) with respect to the link symmetry during the optimization steps.
¢ Scaling of the energy density as a function of the inverse of the bond dimension 1/y. The bond dimension y is in the range [100, 450].

In principle, the coefficients ¢; _; are dN complex numbers. As a consequence,

this exact representation of the quantum state is completely inefficient from a
computational point of view, since it scales exponentially with the system size N. In
other words, the amount of information that we would need to store in memory for
a computational representation of the generic quantum state of the system is
exponentially large in the number of degrees of freedom.

However, if we are concerned with local Hamiltonians, which means that a
lattice site interacts only with a finite set of neighboring sites and not with all sites
of the lattice, it is possible to exploit rigorous results on the scaling of entanglement
under a bipartition (area law)!11:112 in order to obtain an efficient representation of
the states in the low-energy sectors of such Hamiltonians, e.g., ground-states and
first excited states. TN provide a natural language for this representation!!3114 by
decomposing the complete rank-N tensor c; in Eq. (20) into a network of
smaller-rank local tensors interconnected with auxiliary indices (bond indices). If
we control the dimension of the bond indices with a parameter y, called the bond
dimension, the number of coefficients in the TN is of the order O(poly(N)poly(y)),
allowing an efficient representation of the information encoded in the quantum
state. Furthermore, the bond dimension y is a quantitative estimate of the number
of quantum correlations and entanglement present in the TN. In fact, by varying y,
TNs interpolate between a product state (y = 1) and the exact, inefficient,
representation of the considered quantum state (y = dV).

Matrix product states (MPS) for 1D systems!!>-117, projected entangled pair
state (PEPS) for 2D and 3D systems! 4118119 muyltiscale entanglement
renormalization ansatz!2%-121 and TTN, that can be defined in any
dimension,108:122.123 are all important examples of efficient representations based
on TNs.

MPS algorithms, such as the density matrix renormalization group!?4,
represent the state-of-the-art technique for the numerical simulation of many-
body systems in 1D. MPS satisfy area law and are extremely powerful since they
allow to compute scalar products between two wave functions and local
observables in an exact and efficient way. This property does not hold true for
higher-dimensional generalizations, such as PEPS, and the development of TN
algorithms, for accurate and efficiently scalable computations, is at the center of
current research efforts.

In particular, one of the main problems is related to the choice of the TN
geometry for simulating higher-dimensional systems. PEPS intuitively reproduces
the structure of the lattice with one tensor for each physical site and the bond
indices directly follow the lattice grid. The resulting TN follows the area-law of
entanglement but it contains loops, making the contractions for computing
expectation values exponentially hard!25. Furthermore, the computational cost for
performing the variational optimization of PEPS, as for instance in the ground state
searching, scales as O(y!0) as a function of the bond dimension. This severely limits
the possibility of reaching high values of y, especially for large system sizes (typical
values are y =10 for spin systems). For our purpose of simulating LGT in three-
spatial dimensions, this represents a crucial problem since the local dimension of
our model is extremely high, i.e., d = 267, and so, it becomes necessary to be able to
handle high values of y in order to reach the numerical convergence.

Alternative ansitze for simulating quantum many-body systems are the TTNs,
which decompose the wave function into a network of tensors without loops,
allowing efficient contraction algorithms with a polynomial scaling as a function of
the system size. In Fig. 7, we show the typical TTN ansazts for 1D and 2D systems
and our generalization to the 3D lattice. TTNs offer more tractable computational
costs since the complete contraction and the variational optimization algorithms
scale as O(y*), making it easier to reach high values of the bond dimension (up to
X =1000). The price to pay for using the loopless structure is related to the area law
that TTNs may not explicitly reproduce in dimensions higher than one!2°.
Nevertheless, we use the TTN ansatz in a variational optimization, so we can
improve the precision by using increasing values of y, providing in this way a
careful control over the convergence of our numerical results.

..... iy

Ground state computation of our LGT model employs the TTN algorithm for
variational ground state search, including the exploitation of Abelian symmetries
and the Krylov subspace expansion!!?, The algorithm is implemented to conserve
the total charge through the definition of global U(1) symmetry sectors encoded in
the TTN. Thus, we can easily access finite charge-density regimes, with an
arbitrary imbalance between charges and anticharges.

Our TTN for the 3D lattice is composed entirely of tensors with three links (this
structure is usually called binary tree). The construction of the TTN starts from
merging the physical indices at the bottom, which represent two neighboring lattice
sites along the x-direction, into one tensor. Then, these tensors are connected along
the y-direction through new tensors in an upper layer. The tensors in this layer are
then connected along the z-direction through a new layer of tensors. Thus, this
procedure is iteratively repeated by properly setting the connections along with the
three spatial directions in the upper layers of the tree. At the beginning of the
simulation, we randomly initialize all the tensors in the network and the
distribution of the global symmetry sectors. During the variational optimization
stage, in order to improve the convergence, we perform the single-tensor
optimization with subspace-expansion technique, i.e., allowing a dynamical
increase of the local bond dimension and adapting the symmetry sectors!10. This
scheme has a global computational cost of the order O(y*). The single tensor
optimization is implemented in three steps: (i) the effective Hamiltonian Heg for
the tensor is obtained by contracting the complete Hamiltonian of the system with
all the remaining tensors of the tree; (ii) the local eigenvalue problem for Heg is
solved by using the Arnoldi method of the ARPACK library; (iii) the tensor is
updated by the eigenvector of Hg corresponding to the lowest eigenvalue. This
procedure is iterated by sweeping through the TTN from the lowest to the highest
layers, gradually reducing the energy expectation value. After completing the whole
sweep, the procedure is iterated again and again, until the desired convergence in
the energy is reached. The precision of the Arnoldi algorithm is increased in each
sweep, for gaining more accuracy in solving the local eigenvalue problems as we
approach the final convergence.

TTN computations presented in this work are extremely challenging due to the
complexity of LGTs in the three-dimensional scenario. They were performed on
different HPC-clusters (CloudVeneto, CINECA, BwUniCluster, and ATOS Bull): a
single simulation for the maximum size that we reached, an 8 x 8 x 8 lattice, can
last up to five weeks until final convergence, depending on the different regimes of
the model and the control parameters of the algorithms.

Numerical convergence. With our numerical simulations, we characterize the
properties of the ground state of the system as a function of the parameters in the
Hamiltonian of Egs. (1a)—(1c) of the main text. We fix the energy scale by setting
the hopping coefficient t =1 and we access several regimes of the mass m, the
electric g. and the magnetic coupling g,,. We consider simple cubic lattices L x L x
L with the linear size L being a binary power; in particular, we simulate the case
with L =2, 4, 8, that is, up to 512 lattice sites.

As explained in the “Methods” subsection “Fermionic compact representation
of local gauge-invariant site”, in order to obtain the right representation of the
electric field operators, we have to enforce the extra link symmetry constraint
ix‘,l = 2 at every pair of neighboring sites. For this reason, we include in the
Hamiltonian additional terms that energetically penalize all the states with a
number of hardcore fermions per link different from two, namely

Hpe = I/X%(l - 61%) (21)
where v > 0 is the penalty coefficient and Sz i are the projectors on the states that
ey

satisfy the extra link constraint. In this way, the penalty terms vanish when the link
symmetry is satisfied and raise the energy of the states violating the constraint. In
principle, the link symmetry is rigorously satisfied for v — co. At the numerical
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Fig. 9 Finite-size scaling analysis. a Particle density as a function of m, for t =0, g; = 0 and L = 4. b Universal scaling function A(x) close to the transition
point m. ~#—0.39 for g2, = O with critical exponents #~ 0.16 and v~ 1.22. The inset shows the same universal behavior close to the transition point m.

~0.22 in the presence of magnetic interactions with g2, = 8/g?

= 4 and the same critical exponents =~ 0.16 and v ~ 1.22. ¢ Contour plot of the square root

of the residual sum of squares in the (v, ) plane for the best-fitting values of the critical exponents.

level, this limit translates into choosing v much larger than the other simulation
parameters of the Hamiltonian, i.e., v >> max{ [t], Iml,|g.l,] gml}. However, setting
v too large in the first optimization steps could lead to local minima or non-
physical states, since the variational algorithm would focus only on the penalty
terms more than the physical ones. In order to avoid this problem and reach the
convergence, we adopt a driven optimization, by varying the penalty coefficient v in
three steps: (i) starting from a very small value of v and from a random state of the
TTN, that in general does not respect the extra link symmetry, we drive the penalty
term with linear growth of v during the first optimization sweeps. In this stage, the
optimization will focus mainly on the physical quantities, until we notice a slight
rise in the energy: this effect signals that the global optimization procedure of the
TTN becomes significantly sensitive to the penalty terms. (ii) Thus, we impose a
quadratic growth of v so that, in the immediately following sweeps, the penalty is
increased at a slower rate with respect to the linear regime. (iii) After reaching the
maximum desired value of v, which is an input parameter of the simulation, we
keep it fixed, performing the last sweeps in order to ensure the convergence of the
energy. This driven optimization strategy is summarized in Fig. 8a where we show
the three different stages of the penalty coefficient v and typical behavior of the
energy difference de, computed with respect to the lowest final energy that we
reach, as a function of the iterations.

We can also quantify the global error with respect to the link symmetry during
the driven optimization sweeps, by defining

—2)|GS>

8L = |<GS|(L,, (22)
X4

i.e., the sum of the deviations from the exact link constraint IA,W = 2, computed
over all the links of the lattice on the ground state. The typical behavior of this
quantity is shown in Fig. 8b: at the end of the optimization procedure, the global
error results of the order of 1076, We also check the convergence of our TTN
algorithms as a function of the bond dimension y, by using y =450 at most to
ensure the stability of our findings. Depending on the different system sizes and
regimes of physical parameters, we estimate the relative error of the energy in the
range [10‘2, 10_4}. A typical scaling of the energy density as a function of the
inverse of the bond dimension 1/x is shown in Fig. 8c.

Critical points: scaling analysis. In this section, we show the finite-size scaling
analysis for detecting the phase transition separating the charge-crystal phase and
the vacuum phase and the related location of the critical points.

At t =0 and neglecting the magnetic interactions, i.e., for g2 = 0, the
Hamiltonian of Eq. (1a)-(1c) results diagonal in the local basis described in the
“Methods” subsection “Fermionic compact representation of local gauge-invariant
site” and it is trivial to prove that the system undergoes a first-order phase

transition between the bare vacuum, with energy E, = 7m£ and the charge-

crystal phase, with energy E,, = (m + )L The ground-state exhibits a level-

crossing at the critical value m{® = 7‘%1 = —1 that is obtained at E, = E,. This
behavior is clearly seen in Fig. 9a, showing a discontinuous transition between the
two configurations.

In order to understand the behavior of the system for finite t=1 and g2, =
we observe that the density, plotted in Fig. 2a of the main text, changes
continuously as a function of the mass parameter and we might have a second-
order phase transition. Finite-size scaling theory!'?” implies that the behavior of the
system close to a critical point, i.e., for m = m,, can be described in terms of a

0,

10

universal function A(x) such that for our observable

(Lon—m) (23)

where 8 and v are critical exponents. In particular, this relation implies that for

po-i =

B, . . .
m = m,, the value of pL~ is independent of the size of the system. We use this
property to get an estimate of the values of m,, f, v. In particular, we consider a grid

of values for this parameter, and for each set of values, we fit our points po}f with an
high-degree polynomial f (Li(m - mc)>. We compute the residual sum of squares

(RSS) and we select the set of values which minimize this quantity, producing the
best data collapse. We get for the critical point m. =~ —0.39 and for the critical
exponents 3 =0.16 and v =1.22. In Fig. 9(b) we show the collapse of our numerical
results onto the same universal function A(x) and in Fig. 9(c) a contour plot of the
square root of the RSS in the (v, 8) plane for the best-fitting values.

By extending the previous considerations and the finite-size scaling analysis to
the case with magnetic interactions with g2, = 8/g = 4, we check again the
presence of a critical point and the values of critical exponents through the formula
of Eq. (23). We obtain a universal scaling function for m. = 0.22 and the same
critical exponents 8 =0.16, v =1.22, as reported in the inset of Fig. 9b. Thus, while
the transition and its universality remain unchanged in the presence of the
magnetic coupling, the critical point is shifted toward positive values of the mass
parameter, signaling that the magnetic interactions determine a visible
enhancement of the production of charges and anti charges out of the vacuum.

Although a more precise determination of the numerical values of the critical
exponents would require additional extensive analysis that results beyond the scope
of this paper, our findings strongly indicate the presence of a phase transition at
finite m for the three-dimensional lattice model of QED (compare with other
previously investigated transitions in lattice QED, e.g., ref. 128).
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