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Regulatory interactions mediated by transcription factors (TFs) make up complex networks that control cellular behavior.

Fully understanding these gene regulatory networks (GRNs) offers greater insight into the consequences of disease-causing

perturbations than can be achieved by studying single TF binding events in isolation. Chromosomal translocations of the

lysine methyltransferase 2A (KMT2A) gene produce KMT2A fusion proteins such as KMT2A-AFF1 (previously MLL-AF4), caus-

ing poor prognosis acute lymphoblastic leukemias (ALLs) that sometimes relapse as acute myeloid leukemias (AMLs).

KMT2A-AFF1 drives leukemogenesis through direct binding and inducing the aberrant overexpression of key genes,

such as the anti-apoptotic factor BCL2 and the proto-oncogeneMYC. However, studying direct binding alone does not incor-
porate possible network-generated regulatory outputs, including the indirect induction of gene repression. To better un-

derstand the KMT2A-AFF1-driven regulatory landscape, we integrated ChIP-seq, patient RNA-seq, and CRISPR essentiality

screens to generate a model GRN. This GRN identified several key transcription factors such as RUNX1 that regulate target

genes downstream of KMT2A-AFF1 using feed-forward loop (FFL) and cascade motifs. A core set of nodes are present in

bothALL andAML, and CRISPR screening revealed several factors that help mediate response to the drug venetoclax. Using

our GRN, we then identified a KMT2A-AFF1:RUNX1 cascade that represses CASP9, as well as KMT2A-AFF1-driven FFLs that

regulate BCL2 and MYC through combinatorial TF activity. This illustrates how our GRN can be used to better connect

KMT2A-AFF1 behavior to downstream pathways that contribute to leukemogenesis, and potentially predict shifts in

gene expression that mediate drug response.

[Supplemental material is available for this article.]

The regulated transcription of genes in eukaryotes is a core aspect
of cell behavior. Although some individual genes are critically re-
quired for normal tissue development, these processes, and ho-
meostasis, are driven by the coordinated regulation of entire sets
of genes (Reik 2007; Baxter et al. 2014). Disruption of these genes
can lead to abnormal development and human diseases such as
leukemia (Thoms et al. 2019). Gene regulatory patterns are con-
trolled by transcription factors (TFs), that often function together
in complex cooperative patterns that are hard to functionally dis-
sect (Bhattacharjee et al. 2013; Reiter et al. 2017). To understand

normal and aberrant cell behavior, better models of this combina-
torial code are needed.

To understand this combinatorial code, researchers have con-
structed gene regulatory networks (GRNs) modeling developmen-
tal systems, such as hematopoietic specification (Goode et al.
2016), T-lymphocyte specification (Georgescu et al. 2008), neural
crest development (Williams et al. 2019), and cancers, including
lymphoma (de Matos Simoes et al. 2013) and leukemia (Assi
et al. 2019). A challenging step is to use a GRN to predict key reg-
ulatory interactions, potentially by breaking it down into simple
three-node motifs. Motifs include the feed-forward loop (FFL),
which is enriched in biological GRNs (Milo et al. 2002; Mangan
and Alon 2003), and the TF cascade (or regulator chain), in which
intermediate TFs bridge to indirect targets (Lee et al. 2002;
Rosenfeld and Alon 2003). Although motifs are compelling, these
patterns do not always elucidate biological function (Ingram et al.
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2006) and are difficult to use to predict disease prognosis or pro-
gression, for instance. For these reasons, GRNs are better consid-
ered as a collection of predictive pathways and potential
cooperative interactions that need to be experimentally validated.

Leukemias driven by rearrangements of the lysinemethyltrans-
ferase 2A (KMT2A, previously known asMLL) gene do not respond
well to treatment and have a very poor prognosis (Krivtsov and
Armstrong 2007; Milne 2017). KMT2A rearrangements (KMT2Ar)
are chromosome translocations that fuse KMT2A in frame to one
of a wide number of partner genes, creating novel fusion proteins
(KMT2A-FPs), the most common of which is KMT2A-AFF1 (for-
merly MLL-AF4 or MLL-MLLT2) (Meyer et al. 2013). KMT2Ar leu-
kemias have few cooperating mutations (Bardini et al. 2010,
2011; The Cancer Genome Atlas Research Network 2013; Ander-
sson et al. 2015), thus the KMT2A-FP is able to drive leukemogen-
esis alone through aberrant gene expression profiles. KMT2A-AFF1
is most commonly associated with acute lymphoblastic leukemia
(ALL) (Meyer et al. 2013) but can display a mixed phenotype
with features of both acute myeloid leukemia (AML) and ALL (Al-
exander et al. 2018). A subset of ALLs, such as KMT2A-AFF1, can
also relapse after treatment to become an AML derived from the
original leukemic clone (Dorantes-Acosta and Pelayo 2012; Gard-
ner et al. 2016; Pillai et al. 2019), which is indicative of a core
KMT2A-AFF1 GRN that can drive both ALL and AML.

KMT2A-FPs promote transcription by recruiting a large tran-
scription elongation complex to target genes (Ballabio and Milne
2012; Slany 2020; Takahashi and Yokoyama 2020). Multiple
directly bound KMT2A-AFF1 targets are crucial for driving leuke-
mogenesis, including BCL2 and TFs such as MYC and RUNX1
(Guenther et al. 2008; Wilkinson et al. 2013; Benito et al. 2015).
Because of this, much emphasis has been placed on therapeutical-
ly targeting individual gene products, butmonotherapies are often
susceptible to relapse and resistance, evenwhenpreclinicalmodels
show initial sensitivity to targeted therapies such as the BCL2 pro-
tein inhibitor venetoclax (Niu et al. 2014; Benito et al. 2015; Khaw
et al. 2016). Understanding the regulation of genes such as MYC
and BCL2, and more broadly growth and apoptosis pathways, is
key to understanding leukemic behavior and may also inform
the ways in which leukemias acquire resistance.

Because KMT2Ar leukemias have very few cooperating muta-
tions (Bardini et al. 2010, 2011; Andersson et al. 2015), they repre-
sent an ideal system for understanding how a single perturbation
can drive a leukemic GRN. This study aims to integrate RNA-seq
and ChIP-seq data to create a GRN that includes both directly
bound targets of KMT2A-AFF1 as well as the broader network of in-
direct targets (Fig. 1A). Using this model to construct testable hy-
potheses, we further aim to elucidate key FFL and cascade
network motifs that drive leukemogenesis.

Results

The KMT2A-AFF1 fusion protein controls a wider gene network

via key TFs

We previously characterized the genome-wide binding of KMT2A-
AFF1 (Kerry et al. 2017) in SEM cells, a patient-derived B-ALL
KMT2A-AFF1 cell line (Greil et al. 1994). We annotated KMT2A-
AFF1 ChIP-seq peaks with the nearest gene promoter (Wilkinson
et al. 2013), whichwe refer to as KMT2A-AFF1-bound genes. As im-
mortalized cell lines undergo transcriptional adaptations (Lopes-
Ramos et al. 2017), we validated our KMT2A-AFF1-bound genes
with ChIP-seq in two different KMT2A-AFF1 ALL patient samples.
Themajority of peaks are common (70%) (Fig. 1B), and the level of

KMT2A-AFF1 bound at promoters is well correlated between sam-
ples (Supplemental Fig. S1A). Some of the differences in bound
genes between the data sets are likely a result of variable peak call-
ing, because there is observable KMT2A-N signal in all samples at
“uniquely bound” genes (Supplemental Fig. S1B,C). Peak calling
issues can be caused by a sonication bias toward regions of open
chromatin (Landt et al. 2012), creating “peaks” in the input tracks,
but our SEM data showed minimal such bias (Supplemental Fig.
S1D). Taken together, this analysis suggests that SEM cells are a rea-
sonable model of KMT2A-AFF1 binding in patients.

Considering the transcription activating role of the KMT2A-
AFF1 complex (Mueller et al. 2007; Lin et al. 2010; Yokoyama
et al. 2010; Biswas et al. 2011; Ballabio and Milne 2012; Okuda
et al. 2015; Kerry et al. 2017), we expected that following
KMT2A-AFF1 siRNA knockdown (KD) (Kerry et al. 2017), differen-
tially expressed genes (DEGs) would be biased toward down-regu-
lation. Instead, up- and down-regulated genes showed no bias in
either direction (Fig. 1C). KMT2A-AFF1 is considered to be the
main driver of leukemogenesis, thereforewe expected themajority
of DEGs would be directly bound by KMT2A-AFF1. Instead, only
19% of up-regulated and 38% of down-regulated genes are bound
(Fig. 1C). We hypothesized that the majority of these unbound
DEGs may be regulated by intermediate TFs whose expression is
regulated by KMT2A-AFF1 (Fig. 1A).

To explore this possibility, we constructed a KMT2A-AFF1
GRN (Methods) by integrating KMT2A-AFF1 KD DEGs, SEM
KMT2A-AFF1 ChIP-seq, and published TF interaction data (Fig.
1D,E; Supplemental Data S1; The FANTOM Consortium and the
Riken Omics Science Center 2009). The top nodes of this GRN,
when ranked by degree centrality (number of connections to and
from a node) include TFs such as ELF1, MAZ, and RUNX1 (Fig.
1F). We have previously shown a role for ELF1 and RUNX1 in
KMT2A-AFF1 leukemias (Wilkinson et al. 2013; Godfrey et al.
2019). ChIP-seq data for ELF1, RUNX1, andMAZ revealed binding
of these TFs at themajority of non-KMT2A-AFF1-boundDEGs (Fig.
1G).Combining these bindingpatternshas the capacity to account
for >90% of KMT2A-AFF1 KD DEGs (Fig. 1G). These data suggest
that a complex interplay ofmultiple TFsmaydetermine the expres-
sion profile of most GRN genes, providing potential mechanisms
by which KMT2A-AFF1 could regulate indirect targets.

To test the robustness of the core nodes of the SEM GRN, we
created a GRN model using a different KMT2A-AFF1 ALL cell line,
RS4;11, using the same methodology (Fig. 1D). The KMT2A-AFF1
siRNA for RS4;11 cells was considerably less efficient than the
SEM siRNA (Supplemental Fig. S2A), as has been previously ob-
served (Thomas et al. 2005; Geng et al. 2012), but many of the
most central nodes of the SEM KMT2A-AFF1 network, including
ELF1, MYC, and RUNX1 are present in both GRNs (Supplemental
Fig. S2B–D). We additionally compared the SEM GRN with net-
works centered around KMT2A-AFF1 complex associated factors,
DOT1 like histone lysine methyltransferase (DOT1L) (Lacoste
et al. 2002; Milne et al. 2005; Okada et al. 2005; Mueller et al.
2007; Krivtsov et al. 2008; Bernt et al. 2011; Biswas et al. 2011;
Lin et al. 2016; Slany 2020) and BRD4 (Supplemental Fig. S2E;
Dawson et al. 2011; Zuber et al. 2011). These networks show con-
siderable overlap with the SEM KMT2A-AFF1 GRN, albeit not fully
with the central GRN TFs (Supplemental Fig. S2F–H).

ALL and AML patient subnetworks highlight a set of core TFs

To test the applicability of our model to leukemia in patients, we
came up with a strategy to integrate patient data into our GRN
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(Fig. 2A) to answer three questions. First, howmuch of the GRN is
conserved in KMT2Ar ALL patients? Second, is there a core pro-
gram conserved across acute leukemias, including AML? Finally,
how much of the core GRN represents pathways that have been
co-opted from normal hematopoietic cell populations? We used
RNA-seq from KMT2Ar ALL patients (Agraz-Doblas et al. 2019),
AML patients with a range of chromosomal abnormalities (The

CancerGenomeAtlas ResearchNetwork 2013), andhematopoietic
stem and progenitor cell (HSPC) populations and B cells from nor-
mal fetal bone marrow (FBM) (O’Byrne et al. 2019) to generate in-
dividual patient-specific subnetworks derived from our SEM
KMT2A-AFF1 GRN (Supplemental Fig. S3A; Methods).

Themost central nodes of the KMT2A-AFF1GRN (degree cen-
trality > 500, 8/3850 nodes) are constitutively active across ALL
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and AML patient subnetworks (Fig. 2B) and are bound by KMT2A-
AFF1 in the ALL patient ChIP-seq samples, indicating that they are
commonly up-regulated by KMT2A-AFF1 in leukemia (Supple-
mental Fig. S3B). Because the AML data set contains some non-
KMT2Ar leukemias, these factors may apply more generally to
leukemia biology. Node conservationwas reduced in the FBM sam-
ples compared to the leukemia data sets, implying that the circuit-
ry of the GRN differs from normal hematopoietic cell behavior

(Fig. 2B). For example, LMO2 is expressed in only 75%, and MAZ
is inactive in all FBM samples. This is consistent with the concept
that KMT2A-AFF1 drives the GRN to increase, or sustain activation
of, TF regulatorymotifs. Our patient data analysis does not account
for levels of expression, and cases of overexpression or subtle
changes are not captured. For example, RUNX1 is active in both
leukemias and FBM, but past work has also shown that RUNX1 ex-
pression is higher in KMT2A-AFF1 ALLs than in KMT2A-MLLT3
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AML (Wilkinson et al. 2013). This overexpression of FBM-ex-
pressed factors implies that KMT2A-FPs also serve to co-opt normal
hematopoietic circuits. These observations suggest that although
the core GRNmotifs represent common regulatory wiring that en-
ables an oncogenic transcription program, levels of gene and pro-
tein expression likely also contribute to oncogenesis.

To explore the primary RNA-seq data in detail, we clustered
node activity patterns into five groups (Fig. 2C,D; Supplemental
Data S2). Clusters 1 and 2 are active across all data sets and includes
RUNX1, ELF1, KMT2A, andMYC; Cluster 1 is enriched for hemato-
poietic differentiation processes (Supplemental Fig. S3C). In the
case of KMT2Ar leukemias, KMT2A will also represent KMT2A-FP
activity. Cluster 3 contains ALL- and FBM-biased genes, including
SOX7 and KAT6A (ALL specific), and H2AC12 (previously known
as HIST1H2AH) and KAT7 (ALL and FBM specific). Cluster 4 is spe-
cific to AML and ALL data sets with low activity across all FBM cell
types (Supplemental Fig. S3D) and includes MAZ and PROM1.
Cluster 5 is inactive in all of the data sets, and pathway enrichment
implies this represents an immortalized cell program (e.g., cell
junction organization) (Supplemental Fig. S3C).

Clusters 1, 2, and 4 are of particular interest because these rep-
resent commonality across acute leukemias and together contain
the most central GRN nodes (Fig. 2E,F). As KMT2A-FP leukemias
are capable of lineage switching (Dorantes-Acosta and Pelayo
2012; Gardner et al. 2016), this core circuitry could enable this
switch. To reinforce this concept, we compared KMT2A-FP bind-
ing in SEM and THP-1 cells (a KMT2A-MLLT3 AML cell line),
and found similar binding profiles (Supplemental Fig. S4A,B).
Many of the core GRN nodes are bound by KMT2A-FPs in both
SEM and THP-1 cells (Supplemental Fig. S4C), which suggests
these central TFs represent core KMT2A-FP behavior. To further
this analysis, we focused on RUNX1, a core GRN factor expressed
in both AML and ALL samples (Fig. 2D, Cluster 1). Using RUNX1
ChIP-seq, we found similar overlaps in RUNX1-bound genes be-
tween SEMand THP-1 cells, albeit with differential enhancer usage
(such as at GFI1 and EVI5) (Supplemental Fig. S4D,E), and target-
ing of many central GRN nodes (Supplemental Fig. S4F). These
analyses together describe distinct expression patterns in patients
and FBM cell types, highlighting a core KMT2A-AFF1-driven net-
work that exists across ALL and AML leukemias.

RUNX1 is a highly central and essential node of the KMT2A-AFF1

network

To determine the functional importance of the core GRN nodes,
we integrated data from published CRISPR essentiality screens.
Analysis of the Project Score Cancer Dependency Map (Sanger
Institute) (Behan et al. 2019) and the Avana CRISPR screen data
set (DepMap, Broad Institute) (Doench et al. 2016; Meyers et al.
2017) showed that MYC is pan-essential, ELF1 is essential in one
cancer cell line, RUNX1 is essential inmultiple hematopoietic can-
cer cells in the DepMap data set, and MAZ and ELF1 were not re-
ported to be essential in any hematopoietic cancer models
(Supplemental Fig. S5A,B).

We also analyzed a screen more targeted to leukemia, involv-
ing two KMT2Ar cell lines, MOLM-13 (KMT2A-MLLT3 AML) and
MV4-11 (KMT2A-AFF1 pediatric AML) and two non-leukemic can-
cer cell lines, HT-29 (colon adenocarcinoma) and HT-1080 (fibro-
sarcoma) (Tzelepis et al. 2016).We classified genes as nonessential,
nonspecific essential (hit in HT-29 or HT-1080), and essential spe-
cifically in one or both leukemia cell lines (hit in MOLM-13 or
MV4-11, but not HT-29 or HT-1080) (Fig. 3A,B). MYC is essential

not only in leukemia cell lines, but also the non-leukemia cancer
models. Conversely,MAZ and ELF1were not found to be essential
in the Tzelepis screen, suggesting that their targets are not impor-
tant for survival or proliferation in these models. RUNX1 is essen-
tial for both MOLM-13 and MV4-11 cell lines, and not HT-29 or
HT-1080 (Fig. 3B), in alignment with the DepMap data, in which
RUNX1 essentiality is biased toward hematopoietic cell lines
(Supplemental Fig. S5B). Other key leukemia-specific hits include
MYB, MED13L, HOXA10, and the binding partner of RUNX1,
CBFB.

Because there is a delay between activation of a gene and pro-
tein production, network path length may influence perturbation
response (Aittokallio and Schwikowski 2006). Stress centrality
(number of shortest paths between any two points of a network
that pass through a particular node) (Ghasemi et al. 2014) may
therefore be a better indicator of essentiality. MAZ is highly con-
nected with relatively low stress, whereas RUNX1 is among the
highest stress nodes despite lower connectivity than MAZ (Fig.
3C). In silico deletion of KMT2A-AFF1, RUNX1, or MYC GRN
nodes, followed by recalculation of centrality, caused considerable
redistribution of stress scores across nodes, greater than in silico
deletion of MAZ (Fig. 3D). This may be one reason why MAZ
does not come out as a key survival gene in any of the CRISPR
screens. The further implication from this analysis may be that
connections are rerouted through alternative TFs in the absence
of key nodes. In particular, in silico deletion of RUNX1 led to in-
creased NCOR1 and FLI1 stress, indicating they may act as alter-
nate pathways. KMT2A-AFF1 in silico deletion shows a general
loss of stress across TFs, andmay suggest TFs that have few alterna-
tive upstream regulators (Fig. 3E). Overall, this analysis shows the
importance of experimental validation of the GRN, because a cen-
tral node such as MAZ does not appear to be important for leuke-
mia survival. However, this analysis also reveals RUNX1 to have a
key role in the KMT2A-AFF1 GRN and be a promising core TF that
may cooperate with KMT2A-AFF1 behavior.

RUNX1 and KMT2A-AFF1 regulate targets in feed-forward loops

and cascade motifs

Because RUNX1 is part of the core KMT2A-AFF1 network, wewant-
ed to interrogate the regulatory logic of combined KMT2A-AFF1:
RUNX1 activity in theGRN.Nascent RNA-seq in RUNX1KDs iden-
tified 5212 DEGs (Supplemental Data S3), the majority of which
were bound by RUNX1 (Fig. 4A; Supplemental Fig. S6A,B). In total,
2279 genes were affected by both RUNX1KD andKMT2A-AFF1 KD
(Fig. 4B) and were enriched for pathways related to hematopoiesis,
regulation of cell death, and B cell proliferation, consistent with a
leukemic expression program (Fig. 4C; Supplemental Fig. S6C).

We created a RUNX1-centric GRN (Supplemental Data S1;
Methods), and observed known targets of RUNX1 such as GFI1
(Wilson et al. 2010) and MYB (Fig. 4D; Choi et al. 2017). As
RUNX1 is a direct target of KMT2A-AFF1, we expected that the
RUNX1 and KMT2A-AFF1 GRNs should have commonality. We
found direct KMT2A-AFF1 targets to be predominantly down-reg-
ulated with KMT2A-AFF1 KD, RUNX1 KD, and DOT1L inhibition,
suggesting similar behavior at these loci (Supplemental Fig. S6D).
RUNX1 KD also slightly impacted KMT2A-AFF1 binding genome-
wide (Supplemental Fig. S6E,F), although nascent RNAwas not af-
fected and RUNX1 and KMT2A-AFF1 KD logFC across DEGs does
not correlate (R=0.3).

To assess how RUNX1 behaves in the context of the KMT2A-
AFF1 network, we integrated the two GRNs together and extracted
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gene targets that are regulated by network motifs involving both
RUNX1 and KMT2A-AFF1 (Supplemental Data S4). Because
RUNX1 is a target of KMT2A-AFF1 (Wilkinson et al. 2013), we fo-
cused on FFLs (KMT2A-AFF1 activating RUNX1, and both
KMT2A-AFF1 and RUNX1 coregulating a gene target) (Fig. 4E)
and cascade motifs (KMT2A-AFF1 activating RUNX1, and RUNX1
regulating a gene target independent of KMT2A-AFF1) (Fig. 4E).
FFLs can be classified as coherent (C1-FFL, C3-FFL, the same sign
of effect) and incoherent (I1-FFL, I3-FFL, opposing signs), based
on the regulatory effect (up- or down-regulation) on the target
gene by RUNX1 and KMT2A-AFF1 (Mangan and Alon 2003).

We found 71.6% of FFLs were coherent, suggesting that
KMT2A-AFF1 and RUNX1 predominantly act cooperatively (Fig.
4F, left). For example, BCL2 (Godfrey et al. 2017) is activated in a
C1-FFL (Fig. 4G; Supplemental Fig. S6G), whereas BID is repressed
in a C3-FFL (Supplemental Fig. S6H). Similar to other analyses
(Mangan et al. 2006; Joanito et al. 2018), C1-FFLs are the most
common FFL in our system, which suggests that RUNX1 activity
at KMT2A-AFF1 targets is biased toward gene activation.

Themajority of TF cascades show agreement in transcription-
al response to KMT2A-AFF1 and RUNX1 KD (72.9%) (Fig. 4F, right)
with CEBPG shown as a specific example (Fig. 4G; Supplemental
Fig. S6G). This is in line with our hypothesis that indirect effects
of KMT2A-AFF1 KD are mediated by TFs such as RUNX1, and sug-
gests that RUNX1 activity is a strong determining factor for cascade
motifs. Incoherent cascade motifs (27.1% of TF cascades) (Fig. 4E,

denoted with #) may represent transcriptional noise or regulatory
control by additional TFs. Although FFLs are activation biased, cas-
cades show more balanced regulatory logic, suggesting that
RUNX1 mediates repression as well as activation within the same
regulatory network, consistent with reported RUNX1 activity in
hematopoietic differentiation (Lutterbach and Hiebert 2000;
Kuvardina et al. 2015).

KMT2A-AFF1 GRN interactions are connected to venetoclax

resistance and predict CASP9 regulation through cascade motifs

Having established regulatory interplay between RUNX1 and
KMT2A-AFF1, we wanted to focus on specific key genes. BCL2
and MYC are key targets of KMT2A-AFF1 and promote leukemia
survival (Benito et al. 2015; Godfrey et al. 2017). KMT2Ar leuke-
mias, as well asMYC-driven B cell lymphomas, are highly sensitive
to inhibition of BCL2 through venetoclax treatment (Vandenberg
and Cory 2013; Niu et al. 2014; Khaw et al. 2016). However vene-
toclax sensitivity is variable across cell line models (Pan et al.
2014), and drug resistance acquisition can be problematic. We
therefore set out to askwhether anyGRNmotifs have the potential
to mediate venetoclax resistance. For example, our GRN predicts
that several TFs could regulate genes in the apoptosis pathway
(Supplemental Fig. S7A).

To determine what contributes to venetoclax sensitivity and
resistance, we treated an AML cell line (THP-1 cells) with
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Figure 3. RUNX1 is a key essential node in the core KMT2A-AFF1 network. (A) Schematic illustrating howCRISPR screen results from Tzelepis et al. (2016)
are categorized. Essential genes in HT-29 or HT-1080 were nonspecific essential. Genes not essential in HT-29 or HT-1080 but essential in MOLM-13 or
MV4-11 were specific to leukemia. (B) Association of log2 degree centrality (KMT2A-AFF1 GRN) with CRISPR essentiality groups as outlined in A. (C)
Degree centrality plotted against stress centrality of KMT2A-AFF1 GRN nodes. (D) Mean absolute stress fold change (FC) response to in silico deletion
of GRN nodes and subsequent recalculation of stress centrality. Stress FC is calculated on a per gene basis in the GRN before and after in silico deletion.
The top 20 nodes are shown. (E) Stress FC after in silico deletion of RUNX1 or KMT2A-AFF1, plotted against degree. Blue and red indicate positive (FC
>0.1 FC) and negative (FC <−0.1) stress FC, respectively.
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venetoclax and performed a CRISPR screen (Supplemental Fig.
S7B–E; Supplemental Data S5). Although SEM and THP-1 cells
represent different leukemia types, the core GRN nodes are com-
mon to both AML and ALL (see Fig. 2). Because ALL leukemias
have the potential to switch to AML under selective pressure, as
seen with CAR-T cell therapy (Gardner et al. 2016; Pillai et al.
2019), we reasoned that important GRN motifs should be con-
served. Owing to problems with maintaining library complexity
in the DMSO control arm, we instead used the T0 baseline (com-
paring T0 with T18 venetoclax) to extract genes that mediate cell
survival both generally and in the context of venetoclax. We

therefore cannot distinguish whether genes are generally essen-
tial or only with venetoclax treatment. We reasoned that post-
screen validations would clarify the interplay with venetoclax
for key genes.

Depleted sgRNAs (perturbation inhibits survival) include
those targeting KMT2A, resulting in inactivation of the essential
KMT2A-MLLT3 fusion protein (Fig. 5A). Validation of this target
showed that although KMT2A is essential for THP-1 cell survival,
it does not confer significant sensitivity to venetoclax
(Supplemental Fig. S7E). We also observed depleted sgRNAs for
proteasome subunits (PSMB5, PSMC1, PSMD2), suggesting the
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Figure 4. KMT2A-AFF1 cooperates with RUNX1 in FFL and cascade motifs to regulate downstream targets. (A) DEGs from nascent RNA-seq after 96 h
RUNX1 KD. DEGs are defined as FDR<0.05 (n=3). Shaded area represents RUNX1-bound genes. (B) Overlap between KMT2A-AFF1 KD DEGs (Fig. 1C) and
RUNX1 KDDEGs (A). (C) GO biological process enrichment for overlap shown in B. Size of points is proportional to significance. (D) The top 20 genes of the
RUNX1 GRN by degree centrality. Lines indicate predicted interaction from protein to gene locus, with arrowheads pointing downstream. (E) FFL (left) and
cascade (right) motifs. FFLs are subcategorized into C1-FFL, C3-FFL, I1-FFL, and I3-FFL as indicated. Cascade motifs are grouped into same sign of effect (∗)
and opposing sign of effect (#). (F ) Scatter plot of RUNX1 and KMT2A-AFF1 KD logFC response at FFL (left) and TF cascade (right) target genes. Density plots
along the axis show distribution of logFC values. Quadrants of scatter plots align with FFL and cascade types shown in E. (G) ChIP-seq tracks for KMT2A-N,
AFF1-C, RUNX1, and H3K27ac, normalized to 1 ×107 reads. (Top) BCL2, a FFL target, bound by both KMT2A-AFF1 and RUNX1. (Bottom) CEBPG, a cascade
target, bound by RUNX1 only.
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Figure 5. KMT2A-AFF1 and intermediate TFs cooperate to regulate cascade and FFL motif targets. (A) MAGeCK analysis of CRISPR screen comparing T0
(baseline) and T18 (venetoclax), plotting −log10 FDR against log2 gRNA FC. (Left) Key genes; (right) core GRN TFs. (B) Select cascade motifs in the KMT2A-
AFF1 GRN that explain interactions between KMT2A-AFF1 and CASP9. Node color represents logFC response to KMT2A-AFF1 KD. (C,E) Western blot in SEM
cells showing RUNX1 protein levels after 48 h KMT2A-AFF1 KD (C) or 48 h RUNX1 KD (E), with GAPDH as a loading control. (D,F) qRT-PCR assaying KMT2A-
AFF1, RUNX1 and CASP9 expression following 48 h KMT2A-AFF1 KD (D) or 48 h RUNX1 KD (F) in SEM cells (n=3). Expression normalized to GAPDH and
shown relative to NT control. (G,H) Subnetworks illustrating interactions from KMT2A-AFF1 and cooperative TFs that feed intoMYC (G) and BCL2 (H). (I,J)
qRT-PCR analysis probing mature MYC mRNA (I) and BCL2 pre-mRNA (J) after 96 h KD targeting genes as indicated (n=3, n=5 for NT and RUNX1 KD).
Expression normalized to GAPDHmaturemRNA levels and shown relative to NT control. (K) Colony assay counts after 96 h KD targeting genes as indicated
(n=3, n=5 for NT and RUNX1 KD). Colony counts shown relative to NT control. Error bars represent standard error of themean; (#) P<0.1; (∗) P<0.05; (∗∗)
P<0.01; (∗∗∗) P<0.001.
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proteasome complex promotes survival under venetoclax treat-
ment. To validate whether essentiality is dependent on veneto-
clax, we used individual sgRNA to perturb several genes and
confirmed thatMUL1, XIAP, and PSMD2 are essential under vene-
toclax conditions (Supplemental Fig. S7E).

To identify regulatory interactions that may mediate veneto-
clax resistance, we focused on enriched sgRNAs that are targets of
KMT2A-AFF1:RUNX1 motifs. This identified CASP9 (Fig. 5A,B),
perturbation of which improves cell survival, consistent with the
pro-apoptotic role of caspase 9 (Li et al. 1997; Slee et al. 1999;
Li and Yuan 2008). Using individual sgRNAs, we validated that
perturbation of BAX, CUL2, CASP9, and CASP3 (these last two of
which are in the GRN) (Supplemental Fig. S7A) confer resistance
to venetoclax (Supplemental Fig. S7E). We also confirmed that
CASP9 knockouts in SEM cells reproduced the enhanced resistance
to venetoclax (Supplemental Fig. S8A,B). The knockout clones
showed variable RUNX1 protein and mRNA levels, but this did
not correlate with CASP9 status and is likely a result of clonal ex-
pansion (Supplemental Fig. S8C,D).

Using our GRN to predict regulation of CASP9we identified a
repressive cascade mediated by several candidate TFs, including
RUNX1 (Fig. 5B; Supplemental Fig. S8E,F). To clarify the relative
contribution of KMT2A-AFF1 and RUNX1 on CASP9 expression,
we reduced the KMT2A-AFF1 KD duration to 48 h, which reduced
RUNX1 mRNA but not protein levels (Fig. 5C). This showed
that CASP9 expression is unaffected by KMT2A-AFF1 KD alone
(P =0.64) (Fig. 5D). After 48 h of RUNX1 KD there was a loss of
RUNX1 RNA as well as protein, and CASP9 expression increased
significantly (Fig. 5E,F). This result was also reproduced in
RS4;11 cells (Supplemental Fig. S8G). Together, these data validate
the KMT2A-AFF1:RUNX1:CASP9 motif and argue that KMT2A-
AFF1 does not directly repress CASP9, but instead acts via
RUNX1 (and other TFs) in a cascade (Fig. 5B).

BCL2 and MYC are regulated by multiple TFs in FFLs

In the venetoclax CRISPR screen, sgRNAs targeting core TFs of the
KMT2A-AFF1 GRN, including RUNX1, MYB, and MYC, are deplet-
ed (Fig. 5A). This suggests that the core of the network has a role in
cell survival and apoptosis. MYC is particularly important in rela-
tion to regulating growth and apoptosis, and overexpression is
commonly paired with BCL2 up-regulation (McMahon 2014). To
better understand how core GRN TFs may contribute to cell sur-
vival, we explored the cooperative regulation of both BCL2 and
MYC as mediated by TFs in the GRN.

Under the KMT2A-AFF1 GRN, BCL2 andMYC are regulated as
FFLs controlled by KMT2A-AFF1 and several predicted TFs (Fig. 5G,
H). This TF cooperationmay contribute to the high expression ob-
served in KMT2A-AFF1 leukemias (Robinson et al. 2008; Benito
et al. 2015). Although perturbation of KMT2A-AFF1 itself dysregu-
lates BCL2 andMYC, it is unclear howmuch of this effect is attrib-
utable to these intermediary TFs, because they are also regulated by
KMT2A-AFF1. RUNX1, MAZ, and MYB are predicted to regulate
both BCL2 and MYC and are bound at promoters and enhancers
of these loci (Supplemental Fig. S8H). We performed KDs of each
TF alone or in combination with RUNX1 (Supplemental Fig. S8I–
L) and assayedMYC and BCL2 expression (Fig. 5I,J). Using intronic
primers to assay BCL2 pre-mRNA (Crump et al. 2021), RUNX1 KD
alone significantly reduced BCL2 expression, but not MYC. MAZ
KD significantly reduced MYC expression and borderline reduced
BCL2 levels (P= 0.055), whereas MYB KD showed no effect.
Combined RUNX1 andMYB KD causedMYC and BCL2 expression

to trend toward greater down-regulation, albeit not reaching sig-
nificance (MYC P=0.09; BCL2 P=0.063), whereas RUNX1 and
MAZ KD showed no additional effect. These results suggest that
RUNX1 and MAZ function independently at these loci, whereas
RUNX1 and MYB have some level of combinatorial regulation.

Wehypothesized that this functional interactionmay extend
to leukemogenesis. We used colony formation assays to assess
growth following combinatorial TF KD (Fig. 5K). We used a lower
concentration of RUNX1 siRNA than in previous work (Wilkinson
et al. 2013), so our RUNX1 KD samples did not completely reduce
RUNX1 RNAor protein (Supplemental Fig. S8I,L), resulting inmin-
imal and variable impact on growth (Fig. 5K). However, this re-
duced RUNX1 KD allowed us to look for possible cooperative
interactions with other factors. MAZ KD on its own slightly re-
duced colony forming potential (P=0.075), although RUNX1
KD did not enhance this. MYB KD significantly impacted
growth, and when combined with RUNX1 KD disrupted growth
to a greater extent than RUNX1 alone, although not reaching sig-
nificance (P=0.091). These results suggest that the combinatorial
effects of RUNX1 and MYB not only regulate MYC and BCL2 ex-
pression but also promote leukemogenesis. Integrating these re-
sults together, we can begin to form a picture of the upstream
regulation of MYC and BCL2, and this provides a template for fur-
ther studies as well as possibilities for future drug combinations.

Discussion

KMT2A-AFF1 KD results in both up- and down-regulation of tran-
scription, and unexpectedly, themajority of these DEGs do not in-
volve direct KMT2A-FP binding. This observation caused us to pose
a question: If KMT2A-AFF1 predominantly functions directly
through promoting transcription, by what mechanisms can it reg-
ulate gene expression in a wider network?

In this study we created a GRN that probes the relationship
between KMT2A-AFF1, the primary driver of leukemic transforma-
tion (Bardini et al. 2010, 2011; Andersson et al. 2015), and the
downstream transcriptional network. Our systematic approach
to explain indirect KMT2A-AFF1 interactions led to the prediction
of regulatory network motifs and identified a set of core factors.
These core GRN factors are present in both AML and ALL leuke-
mias and are targeted by both KMT2A-AFF1 and -MLLT3 fusion
proteins. Although we focused our analysis on RUNX1, whose
role in KMT2A-FP leukemias has been observed previously (Wil-
kinson et al. 2013; Prange et al. 2017), placing RUNX1 in the con-
text of the KMT2A-AFF1GRN allows us to capture complex aspects
of the KMT2A-AFF1:RUNX1 regulatory axis. This is highlighted by
the shared regulatory logic of RUNX1 and KMT2A-AFF1 at the ma-
jority of gene targets.

Core network factors and motifs function as hypotheses

for the upstream regulatory logic of key leukemic genes

We used this GRN to make predictions about how cell behavior is
regulated through KMT2A-AFF1:TF driven motifs. We initially
asked how these motifs may associate with venetoclax resistance
mechanisms, and in doing so highlighted a number of core TFs
that impact cell survival. How these factors mediate venetoclax
sensitivity and cell survival is likely to be multifaceted, but we ex-
plored key pathways that influence apoptosis or growth. We iden-
tified a KMT2A-AFF1:RUNX1:CASP9 cascade,where RUNX1 acts as
an intermediate repressor ofCASP9. AlthoughCASP9 is mostly reg-
ulated on the protein level, subtle impacts on the expression of the
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CASP9 gene could influence leukemia
survival over the longer term. Other key
factors important for leukemia survival
include MYC and BCL2, particularly in
relation to venetoclax treatment. Our
analyses identify upstream combinatori-
al regulation of these genes via FFL mo-
tifs, where the core TFs RUNX1 and
MYB appear to synergistically regulate
these and likely other key gene targets
(Fig. 6). Our data implies an interplay be-
tween different types of regulatory mo-
tifs, because the KMT2A-AFF1:TF:CASP9
repressive cascades identified here may
cooperate with FFLs activating BCL2
and MYC to prevent cell death (Fig. 6).
This provides a potentially useful para-
digm inwhich simple patterns of cascade
and FFL motifs can cooperate in regulat-
ing complex pathways.

Regulatory interactions that describe the

GRN model may function as the basis

for understanding leukemic

behavior

A concept briefly discussed in a review from the Pimanda laborato-
ry (Thoms et al. 2019) is that AML is caused by dysregulation of an
entire transcriptional network. Thiswould explainwhyweobserve
such a wide range of chromatin/transcription-associated driver
mutations thatmay function through disruption of the same tran-
scriptional motifs. Our study reinforces this concept as we see that
the core GRN is expressed across different ALL and AML patients,
which we consider core TFs attributable to general KMT2A-FP
behavior. This may also help to explain why KMT2A-AFF1 is suffi-
cient to drive leukemogenesis in the absence of other cooperating
mutations, because these core factors impact a range of biological
systems. The development of a cancer cell requires the disruption
of multiple processes, usually necessitating multiple mutations
(Hanahan and Weinberg 2011). However, this core KMT2A-AFF1
networkmay be able to co-optmultiple pathways to achieve a sim-
ilar result. Considering KMT2Ar ALLs are known to switch to an
AML lineage (Dorantes-Acosta and Pelayo 2012; Gardner et al.
2016), one would expect these core factors to be conserved be-
tween these leukemias, because they could represent common reg-
ulatory wiring that enables an oncogenic transcription program.
Because the core of the GRN is active across multiple leukemia
data sets, this further implies that our core KMT2Ar driven TFs at-
tribute to multiple types of leukemia.

Methods

Cell line culture

SEM cells, a KMT2A-AFF1 B cell ALL line (Greil et al. 1994), were
purchased fromDSMZ (https://www.dsmz.de). SEM cells were cul-
tured in Iscove’s modified Dulbecco’s medium (IMDM) with 10%
fetal bovine serum (FBS) and 1× GlutaMAX, with cell density
maintained between 5×105/mL and 2×106/mL. RS4;11 and
THP-1 cells were purchased from ATCC (https://www.atcc.org).
RS4;11 and THP-1 cells were cultured in RPMI-1640 with
10% FBS and 1× GlutaMAX, with cell densitymaintained between

5×105/mL and 1.5 ×106/mL. Cells were confirmed to be free of
mycoplasma.

Patient samples

KMT2A-AFF1 patient sample 1 is described in Kerry et al. (2017).
KMT2A-AFF1 patient sample 2 is a primary diagnostic bone mar-
row sample from a 6-yr-old child with ALL, obtained from the
Bloodwise Childhood Leukaemia Cell Bank, UK (REC: 16/SW/
0219). Samples were anonymized at source, assigned a unique
study number, and linked.

siRNA knockdowns

siRNA KDs were performed as previously described (Kerry et al.
2017). For 96 h KD cells were retransfected 48 h after initial trans-
fection. The following siRNA were used: SEM KMT2A-AFF1
siRNA (siMA6), RS4;11 KMT2A-AFF1 siRNA (siMARS), and scram-
bled control (siMM) (Thomas et al. 2005); RUNX1 (Dharmacon
ON-TARGETplus single siRNA, J-003926-05); MAZ (Ambion
Silencer Select, s8543); MYB (Ambion Silencer Select, s9110);
non-targeting controls (Dharmacon ON-TARGETplus non-target-
ing pool, D-001810-10-20).

Western blots

Proteins were extracted using BC300 lysis buffer with protease in-
hibitors. Western blotting was performed as previously described
(Wilkinson et al. 2013). Antibodies used were all raised in rabbit
and are detailed in Supplemental Table S1.

qRT-PCR

Total RNA was extracted using the RNeasy Mini kit (Qiagen) after
48 or 96 h KD. cDNA was generated using SuperScript III Reverse
Transcriptase (Invitrogen) with random hexamer primers. qRT-
PCR analysis was performed using TaqMan or SYBR probes and an-
alyzed with the ΔΔCt method normalizing to the housekeeping
gene GAPDH. Primers used are detailed in Supplemental Table
S2. Statistical analyses were performed using two-sided student’s
t-test.

Cooperating TFs
KMT2A-AFF1

Target gene
Cooperative
regulation

MAZ MYB RUNX1

CASP9MYC BCL2

KMT2A-AFF1

FFL motif FFL motif Cascade motif

Figure 6. A model of KMT2A-AFF1-driven FFL and cascade network motifs that interface with MYC,
BCL2, and CASP9 genes. MYC and BCL2 are regulated through many different TFs along with KMT2A-
AFF1. MYB and RUNX1 act in combination at these loci, where combined disruption appears to enhance
MYC dysregulation. CASP9 is regulated in a cascade motif, with RUNX1 acting as an intermediate node,
where disruption induces CASP9 up-regulation.
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Nascent RNA-seq

Nascent RNA-seq was performed as previously described (Kerry
et al. 2017), after 96 h RUNX1 (SEM) or KMT2A-AFF1 (RS4;11)
KD. Briefly, 1 × 108 SEM cells were treated with 500 μM 4-thiouri-
dine (4-SU) for 1 h. Cells were lysed with TRIzol (Invitrogen),
and total RNAwas precipitated andDNase I-treated. 4-SU-incorpo-
rated RNA was purified by biotinylation and streptavidin bead
pulldown. DNA libraries were prepared using the Ultra II Direc-
tional RNA library prep kit (NEB, E7765) and sequenced by
paired-end sequencing using a NextSeq 500 (Illumina).

RNA-seq analysis

FASTQ files were quality checked using FastQC (v0.11.4) and reads
trimmed using Trim Galore! (v0.4.1) (Martin 2011). Paired-end
reads were mapped to hg19 using STAR (v2.4.2) (Dobin et al.
2013). Wemapped to hg19 for compatibility with previously pub-
lished data sets. Blacklisted regions were removed, and uniquely
mapped reads were used for processing. Therefore, our choice of
hg19 over GRCh38 should not significantly affect results. PCR du-
plicates were removed using Picard-tools MarkDuplicates (v1.83).
Mapped reads over exons were quantified using subread feature-
Counts (v1.6.2) (Liao et al. 2014). Statistical analysis was per-
formed in R (R Core Team 2021) using the edgeR package
(Robinson et al. 2010). DEGs were defined as FDR<0.05. Enriched
GO terms and reactome pathways were determined using PAN-
THER (v. 15) (Thomas et al. 2003). Published expression data was
sourced from NCBI Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) accessions GSE85988, GSE83671,
and GSE139437 (Supplemental Table S3).

Chromatin Immunoprecipitation (ChIP)

The cells (1 × 107–8) were fixed and sonicated using a Covaris
ME220 according to the manufacturer’s recommendations. Ab:
chromatin complexes were isolated using magnetic Protein A and
Protein G Dynabeads (Invitrogen) and washed three times with
50 mM HEPES-KOH, pH 7.6, 500 mM LiCl, 1 mM EDTA, 1% NP-
40, and 0.7%Na deoxycholate. Antibodies used are in Supplemen-
tal Table S1. Samples were washed with Tris-EDTA, eluted, and
treated with RNase A and Proteinase K. DNA was purified with a
Qiagen PCR purification kit. Samples were analyzed by ChIP
qPCR or ChIP-sequencing. Reference normalization (Orlando
et al. 2014) was performed by adding fixedDrosophila melanogaster
S2 cells before sonication in a 1:5 ratio. Primers used for qPCR anal-
ysis are listed inSupplemental Table S2. Librarieswere generatedus-
ing Ultra II DNA library preparation kit for Illumina (NEB) and
sequenced using a NextSeq 500 (Illumina).

ChIP-seq analysis

Alignment, PCR duplicate filtering, and blacklisted region filtering
was performed using the NGseqBasic pipeline (Telenius et al.
2018). Briefly, FASTQ files were quality checked using FastQC
(v0.11.4) and mapped using Bowtie (v1.0.0) (Langmead 2010)
against hg19. Unmapped reads were trimmed with Trim Galore!
(v0.3.1) (Martin 2011) and remapped. Short unmapped reads
were combined using FLASH (v1.2.8) (Magoč and Salzberg 2011)
and remapped. PCR duplicates were removed using SAMtools
rmdup (v0.1.19) (Li et al. 2009). Readsmapping toDuke blacklisted
regions (UCSC) were removed using BEDtools (v2.17.0) (Quinlan
andHall 2010).We used hg19 to preserve compatibility with older
data sets. We tested whether peak-promoter annotations would be
significantly changed using GRCh38 and found >99% of annota-
tions are preserved. For reference normalization, input and IP reads

were mapped to hg19 and dm3 genome builds, and hg19 read
counts adjusted based on the ratio of dm3:hg19 reads in input
and IP control/treatment samples. ChIP-seq tag (read) directories
and bigWigs were made using HOMER (v4.7) (Heinz et al. 2010),
normalizing tag counts to tags per 10 million tags. KMT2A-N and
AFF1-C peaks were called using SeqMonk (v0.24.1), and TF peaks
were called using HOMER findPeaks (-style factor), with input
tracks for background correction. KMT2A-AFF1 peaks were defined
as overlapping KMT2A-N and AFF1-C peaks, with at least a 1-bp
overlay. Peaks were annotated to the nearest promoter using
HOMER annotatePeaks.pl (v4.8). Heatmaps and scatter plots were
made using deepTools2 (v3.0.1) (Ramírez et al. 2016). Published
data were sourced from NCBI GEO accessions GSE74812,
GSE42075, GSE117865, and GSE83671 (Supplemental Table S3).

GRN creation and analysis

GRNs were created on the basis of a central node: KMT2A-AFF1 or
RUNX1. Construction involved four steps (Fig. 1D). (1) DEGs from
nascent RNA-seq data after 96 h KMT2A-AFF1 KD (Kerry et al.
2017), 96 h RUNX1KD, 7 d EPZ-5676 (DOT1L inhibition) (Godfrey
et al. 2019), or 1.5 h IBET-151 (BRD4 inhibition) (Crump et al.
2021) were considered the regulatory scope. (2) Direct interactions
were established usingChIP-seq data for the corresponding central
node (H3K79me3 for DOT1L) with promoter-peak annotations.
Only RUNX1 peaks overlapping enhancers (H3K27ac overlapped
with H3K4me1) were used. At least 1-bp overlap was considered
sufficient to filter out nonregulatory RUNX1 binding and avoid er-
roneous removal of regulatory binding. (3) Indirect interactions
were integrated with the R package GeneNetworkBuilder
(v1.26.1) using TF interaction data from the FANTOM consortium
(The FANTOM Consortium and the Riken Omics Science Center
2009). TF interactions that do not explain connectivity between
the central node and downstream targets were excluded. (4) Nodes
of the network were annotated using ALL and AML patient RNA-
seq (Methods) and CRISPR screens (Tzelepis et al. 2016; Behan
et al. 2019). Degree and stress centralities were calculated using
the R packages igraph (v1.2.4.1) and sna (v2.4).

Patient subnetwork creation and analysis

We used published RNA-seq data to create subgraphs of the
KMT2A-AFF1 GRN. Data include KMT2Ar ALL patients (raw data
available at NCBI BioProject database; https://www.ncbi.nlm.nih
.gov/bioproject/ under accession number PRJEB23605) (Agraz-
Doblas et al. 2019), AML patients with a range of chromosomal ab-
normalities (expression tables available from Genomic Data
Commons [GDC] of the National Cancer Institute; https://gdc
.cancer.gov/about-data/publications/laml_2012) (The Cancer
Genome Atlas Research Network 2013), and normal FBM (n=3
samples; raw data available at NCBI GEO accession GSE122982)
(O’Byrne et al. 2019). Subnetworks were derived by filtering the
KMT2A-AFF1 KD RNA-seq for genes expressed in each RNA-seq
sample and reprocessing the GRN workflow. Expressed genes are
defined as greater than mean log2 TPM, calculated for each data
set separately (Supplemental Fig. S3A). Node presence across all
subnetworks were converted into a binary matrix, and UMAP
dimensionality and k-means clustering was performed using
R (R Core Team 2021).

Annexin V/PI assay

Annexin V/PI assay was used to determine viability after veneto-
clax treatment, as described previously (Souers et al. 2013; Pan
et al. 2014). THP-1 cells were treated for 48 h with a range of ven-
etoclax concentrations. Cells were incubated in 50 μL annexin V
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binding buffer with FITC-conjugated annexin V (BioLegend) and
propidium iodide (PI, ChemoMetec) for 15 min on ice. Stained
cells were analyzed using an Attune NxT flow cytometer
(Thermo Fisher Scientific).

CRISPR screen generation

Lentiviral CRISPR knockout screening was conducted with the
TKOv3 genome-wide sgRNA library as described previously (Are-
gger et al. 2019) with the following modifications. HEK293T cells
were transfected with pooled library plasmid, pMD2.G, and
psPAX2 plasmids using PEI Pro (Polyplus Transfection). Harvests
were collected 48- and 72-h post transfection, and viral superna-
tants filtered through a 0.45 µM cellulose acetate filter. The sin-
gle-vector TKOv3-lentiCRISPRv2 library was a gift from Jason
Moffat (Addgene 90294) (Hart et al. 2017). Library representation
was maintained at a minimum of 250 cells/sgRNA. The screen
was performed in duplicate with THP-1 cells transduced with
TKOv3 lentivirus at MOI=0.3 (T-6). After 72 h, transduced cells
were selected with 2 μg/mL puromycin (T-3). After 72 h selection,
1.8 × 107 viable cells were harvested (T0). Cells were cultured with
7.4 μMvenetoclax (ABT-199, Stratech. IC50 in THP-1 cells) (Supple-
mental Fig. S7C) for 18 d (T18, six passages), and harvested. gDNA
was isolated with QIAamp DNA Blood Maxi Kit (Qiagen), and
sgRNA libraries were generated using two-step PCR and sequenced
by paired-end sequencing using a NextSeq 500 (Illumina).

CRISPR screen analysis

sgRNA reads were merged using BBMerge and aligned to the
TKOv3 library using CRISPressoCount (Canver et al. 2018) with
a quality score threshold of 30. sgRNA counts were analyzed
withMAGeCK-RRA (v0.5.7) (Li et al. 2014) using copynumber var-
iation (CNV) data for THP-1 cells from the Cancer Cell Line
Encyclopedia as previously described (Meyers et al. 2017). Robust
rank aggregation was performed with 10,000 permutations.

CellTiter-Glo for screen validations

To validate CRISPR screen hits, individual sgRNA sequences were
cloned into lentiCRISPRv2 (gifted by Feng Zhang) (Addgene
52961) and used to target SEM or THP-1 cells. CRISPR-Cas9 edited
SEM or THP-1 cells were treated for 48 h with 2.5 μMor 20 μMven-
etoclax, respectively. Viability was assayed using CellTiter-Glo
(CTG) luminescence assay. Cell suspensions weremixed at a 1:1 ra-
tio with CTG substrate, and luminescence was detected using a
BMG FLUOstar OPTIMA plate reader. Viability for THP-1 cells
were shown relative to AAVS1 targeting sgRNA (Sadelain et al.
2012) and statistical analysis was performed using two-sided stu-
dent’s t-test.

Colony-forming assay

Cells were transfected with siRNA, and 48 h later retransfected
with the same siRNA. Then 24 h later 500 cells were plated in
IMDM MethoCult media with 20% FCS (H4100 STEMCELL tech-
nologies) per dish, in triplicate. Colonies were incubated for 14 d
(37°C, 5% CO2) before counting.

Data access

Previously published sequencing data are available from GEO ac-
cession numbers reported in Methods and Supplemental Table
S3. All raw and processed sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-

ber GSE151390. CustomR scripts used in this study are available as
Supplemental Code and at GitHub (https://github.com/
JoeHarman/MLLAF4-GRN_paper_2021).
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