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Clinical Validation of
Automatable Gaussian
Normalized CBV in Brain Tumor
Analysis: Superior
Reproducibility and Slightly

Better Association with Survival
than Current Standard Manual
Normal Appearing White Matter
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®

Gheck for
updates'

Abstract

PURPOSE: To validate Gaussian normalized cerebral blood volume (GN-nCBV) by association with overall survival (OS) in
newly diagnosed glioblastoma patients and compare this association with current standard white matter normalized cerebral
blood volume (WN-nCBV). METHODS. We retrieved spin-echo echo-planar dynamic susceptibility contrast MRI acquired
after maximal resection and prior to radiation therapy between 2006 and 2011 in 51 adult patients (28 male, 23 female; age
23-87 years) with newly diagnosed glioblastoma. Software code was developed in house to perform Gaussian normalization
of CBV to the standard deviation of the whole brain CBV. Three expert readers manually selected regions of interest in tumor
and normal-appearing white matter on CBV maps. Receiver operating characteristics (ROC) curves associating nCBV with 15-
month OS were calculated for both GN-nCBV and WN-nCBV. Reproducibility and interoperator variability were compared
using within-subject coefficient of variation (wCV) and intraclass correlation coefficients (ICCs). RESULTS. GN-nCBV ICC
(=0.82) and WCV (<21%) were superior to WN-nCBV ICC (0.54-0.55) and wCV (=46%). The area under the ROC curve
analysis demonstrated both GN-nCBV and WN-nCBV to be good predictors of OS, but GN-nCBV was consistently superior,
although the difference was not statistically significant. CONCLUSION: GN-nCBV has a slightly better association with clinical
gold standard OS than conventional WM-nCBV in our glioblastoma patient cohort. This equivalent or superior validity,
combined with the advantages of higher reproducibility, lower interoperator variability, and easier automation, makes GN-
nCBV superior to WM-nCBV for clinical and research use in glioma patients. WWe recommend widespread adoption and
incorporation of GN-nCBV into commercial dynamic susceptibility contrast processing software.
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Introduction

Dynamic susceptibility contrast (DSC) MRI estimates of brain tumor
cerebral blood volume (CBV) reflect tumor vascularity and
neoangiogenesis [1], are predictive of glioma grade and survival
[2-9], and aid in assessment of treatment response [10,11] and
differentiation of pseudoprogression from true tumor progression
[12,13]. DSC detects the transient decrease in signal intensity (ASI
(1)) on continuously acquired echo-planar T2 or T2*-weighted
images caused by passage of bolus gadolinium contrast through the
brain capillaries. Integrating the area under the transverse relaxation
rate (AR2 or AR2*) curve derived from the ASI curve yields the CBV
for each voxel [14].

In addition to the number, size, and distribution of vessels within
each voxel, CBV estimates vary with intravascular concentration,
dispersion, delay, flow rate, choice of acquisition parameters [gradient
vs spin-echo, repetition time (TR), echo time (TE), flip angle,
contrast agent, contrast dose, leakage-reduction preload etc.] and
choice of postprocessing algorithm that may or may not include
gamma-variate fitting [15], baseline subtraction [16], and leakage
correction [10,17]. To compensate, white matter normalization
(WN) is typically performed whereby tumor CBV is divided by the
mean CBV in a region of interest (ROI) selected manually in the
contralateral normal-appearing white matter (NAWM), yielding a
unitless “normalized CBV” (nCBV) ratio [14,17-20].

The few published studies suggest substantial coefficient of
variation (CV) in NAWM ROI CBV measurements including test-
retest CV of 12%-14% in healthy volunteers [21] and an interscanner
CV 0f 25%-30% in glioma patients [22]. The roughly 20% variation
in NAWM measurements is likely responsible for a substantial part of
the intra- and interobserver CV of 30%-41% reported in white
matter normalized brain lesion nCBV [18]. Methods proposed to
reduce this variation in CBV estimates include standardization [23],
Z-score normalization [22], and Gaussian normalization (GN) [22].
In GN, the tumor ROI CBYV is normalized to the standard deviation
(SD) of CBV throughout the whole brain rather than ROI measurements
of NAWM CBV. GN eliminates completely the subjectivity of NAWM
ROl selection, reduces operator time, makes automation simpler, and has
been reported to provide the lowest CV in NAWM and the highest
tumor contrast for glioblastoma (GBM) [21].

Although GN decreases CV in NAWM, its effect on tumor nCBV
estimates has not been studied in detail. Whether glioma GN-nCBV
is as valid as current standard WM-nCBV remains to be established
[24]. To address this, we compared GN-nCBV association with OS
to the known strong OS association of WN-nCBV in a well-
characterized cohort of newly diagnosed GBM.

Methods

Human Subjects

The study was in compliance with the Health Insurance
Portability and Accountability Act and approved by our institutional
review board. Informed consent was waived for this retrospective
study.

For this study, 51 patients were retrieved from a database of adult
glioma patients newly diagnosed between 2006 and 2011 (28 men,
23 women; age mean: 56.6 years and range: 23-87 years). All patients
had WHO grade IV glioblastoma, known survival, and SE-EPI DSC
acquired after maximal surgical resection and before radiation

therapy.
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Data Acquisition

Thirty-five patients underwent 1.5-T MRI and 16 patents
underwent 3-T MRI on whole body MRI scanners (GE Medical
Systems, Milwaukee, W1). Axial DSC was performed utilizing a series
of SE-EPI images (scan parameters: 1900-2000 milliseconds TR/80
milliseconds TE, 128*128 matrix size; 10-mm slice thickness; 40
time points) acquired 10 seconds prior to, during, and after
intravenous administration of gadopentetate dimeglumine (Magne-
vist, Bayer Healthcare) with a power injector at a rate of 4 ml/s,
followed by 20-ml saline flush. Double-dose (0.2 mmol/kg) contrast
was used if acquisition was performed with 1.5 T, while one and half
dose (0.15 mmol/kg) was used for 3 T, with a maximum 30 ml.

Image Analysis

The dynamic source images were visually inspected for to exclude
datasets with substantial patient motion. No substantially motion-
degraded scans were detected. DSC analysis was performed using the
Functool software package on Advantage Window workstation (GE
Medical Systems). A lower threshold was manually adjusted to
remove the background noise. All pixels with lower intensity than the
threshold were removed. The remaining pixels define the brain
volume used to calculate whole brain SD for GN. The beginning and
end of the bolus passage were defined on the time-intensity curve to
set the integration range for calculation of CBV maps.

Three readers (clinical radiologists with 15, 5, and 5 years of
experience, respectively) independently selected tumor and NAWM
ROIs directly on the resulting CBV maps. Each reader picked three
tumor ROIs on the high CBV spots and another three ROIs on the
contralateral NAWM. The radius of these ROIs was 1-2 image pixels
(2-4 mm). Because it has been previously shown that the maximum
or mean CBV of several tumor ROIs generates better intra- and
interobserver reproducibility than a single ROI and that the
maximum is slightly better than the mean [18], we calculated both
the maximum and the mean of the three tumor ROIs. For NAWM,
the mean of the three ROIs was calculated and used for normalization
of the measured tumor CBV values.

To assess the influence of variation in ROI size on NAWM
estimates, one of the three readers (reader 2) picked one large ROI
(radius = 10 mm) on NAWM for each patient, and the mean CBV
inside the ROI was recorded for normalization. This second
evaluation was performed more than 2 months later than the first
evaluation to avoid recall bias. A fourth reader (with clinical
experience of 14 years) picked a single large ROI in the NAWM
using the same radius independently.

GN was performed using Matlab (Mathworks, Natick, MA) code
produced in-house [22]. The SD of the whole brain CBV map,

ocsv,,, .. > was calculated and used for normalization:

CBV

nCBVqg=——"—"—
O CBV whote Brain

(1)

Conventional NAWM ROIs are selected to exclude tumor, but
whole brain SD used in GN includes tumor. To examine whether the
presence of variable amounts of tumor introduces significant variation
between patients in whole brain SD, we selected 10 patients with the
largest volume of enhancing tumor in this cohort. One investigator
manually contoured the ROIs slice by slice on both contrast-
enhanced pGd-T1WI and fluid-attenuated inversion recovery T2W1I



1400

Table 1. Summary Statistics of Tumor CBV™*", Tumor CBV™, and NAWM CBV™"
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Reader ROI Size Tumor CBV™" Tumor CBV™ NAWM CBV™<"

1 Small (2-4 mm) 125.19 + 85.04 P=.002° 146.61 + 102.22 P<.001°% 31.41 + 11.38 P=.04°
2" 135.95 + 83.92 160.39 + 100.39 30.93 + 12.62

3 140.87 + 86.48 172.00 + 100.85 27.95 + 14.95

(12" -10.76 + 3.59° P =.004 ~13.78 + 4.28° P =.002 0.48 + 1.12 P=.67
(1-3)" -15.68 + 4.88° P=.002 -25.39 + 6.44° P<.001 3.45 + 1.67° P = .044
2-3)7 491 + 4.84 P=31 -11.61 + 6.86 P=.10 2.98 + 1.64 P=.075
2°F Large (10 mm) N/A N/A 31.26 + 12.14

4 N/A N/A 36.37 + 13.70

%4t N/A N/A -5.11 + 1.23° P<.001

" Data are represented as mean + SD.
Data are represented as mean + SE.
Data from reader 2 in big ROIs.

+
3
S The measurements from the two readers differed statistically (paired # tests).
9

Differences among three readers were assessed by mixed-effects models.

(FLAIR-T?2). The volume of enhancing and nonenhancing tumor in
these ROIs was calculated as a percentage of whole brain volume.
After the two sets of ROIs were copied to the aligned CBV maps, the
whole brain SD was calculated after first excluding contrast-
s o A0 then after excluding both

). The

enhanCIDg and nOHenhanClng tumor (UCBVW/M/( Brain - FLAIR nonenhancin,
percentage change in SD resulting from exclusion of the tumor ROI

enhancing tumor (ocsy,, ,

was calculated as:

SD change _ (GCBVW}mle Brain-enhancing O CBV Wiole Brain ) « 100%
O CBV whote Brain

(24)

Or

SD change — (GCB V Whole Brain-FLAIR nonenhancing ™9 CBV whole Bmm) % 100%
S CBY whote Brain

(2B)

Because the ROI size subanalysis demonstrated that the small
NAWM ROI mean CBV was similar to the large NAWM
ROI CBYV (see results section), only small ROl NAWM estimates

were used for nCBV normalization. Twelve nCBVs in
tumor CBV™™

. mean __ . mean
total were generated: ~ nCBV ™" = oo apymm cvT nCBV &

__ tumor CBV]"™ maz __ tumor CBV"™" max __
=—~———and nCBV" = omrepymm cpvT™ nCBV " =

SCBY Whole Brain
tumor CB VTW'

: , where i = reader 1,2,3.
SCBY Whole Brain

Statistical Analysis

Tumor CBV{™*", Tumor CBV™, NAWM CBV"**"inside the
selected ROIs, nCBV{"**" and nCBV{"*, nCBV&™" and nCBV&™
measurements were summarized by means and SDs for 7 = reader
1,2,3. Pairwise comparisons among readers in these outcome
measurements were summarized by mean differences and corre-
sponding standard errors (SEs) and assessed by paired # tests,
separately. For reader 2 who selected both NAWM large ROIs and
small RO, a paired # test was also used to evaluate the effect of ROI
size. Mixed-effects models were built for each outcome variable with
readers as fixed effects to evaluate differences among the three readers
and subjects as random effects to account for correlation among
measurements from the three readers on the same subject. Only the
small ROI measurements were used in building mixed-effects models.

The between-subject standard deviation (bSD), within-subject
standard deviation (wSD), repeatability coefficient (RC), within-
subject coefficient of variation (wCV), intraclass correlation coeffi-
cient (ICC), and concordance correlation coefficient (CCC) were
calculated based on variance components of the aforementioned
mixed-effects models [25] to compare repeatability across readers..

Bland-Altman plots provided an intuitive methodology using the
concept of limits of agreement for assessing agreement between two
readers. Lastly, we calculated the receiver operating characteristics
(ROC) curves to associate nCBV measurements with 15-month
overall survival (OS) based on the reported 12-15 month median
post-operative OS in GBM patients [26,27]. We evaluated the
strength of association by the estimated area under the ROC curve
(AUC). A P < .05 was considered to be statistically significant.
Statistics were computed using Stata (Stata v14, StataCorp., College
Station, TX), with the exception that CCC was calculated in R-
package [28].

Results

Summary statistics of reader-specific Tumor CBV™", Tumor CBV ™,
and NAWM CBV™*" measurements are listed in Table 1 and plotted in
Figure 1. All three measured parameters using small ROIs showed

80

|

o f

” 1T -

P
Reader 1 [ Reader2
[ Reader3 Reader? Large RO|
[ ] Readerd Large ROl [0 Gaussian

Figure 1. Box plots of NAWM mean CBV measurements among
different readers, varying ROl radius size, and the SDs of the brains
used for normalization in GN.
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FLAIR-T2WI

Figure 2. Conventional images and perfusion imaging CBV map demonstrating ROls manually contoured on contrast-enhanced T1WI and

FLAIR-T2WI, respectively, and copied to CBV map.
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Figure 3. Change (%) in SD of the whole brain CBV as a function of the excluded volume of contrast-enhancing tumor (A) and enhancing

and nonenhancing tumor (B).

statistically significant differences among readers. The differences came
largely from reader 1 in Tumor CBV™" and Tumor CBV™, and
between readers 1 and 3 in NAWM CBV™“", The NAWM
measurements using large ROI also showed a significant difference
between readers 2 and 4. The variations in NAWM mean measurements
were similar regardless of ROl size (Table 1). This is illustrated by the data
from reader 2 who performed measurements using both small and large
ROIs while achieving comparable means and SDs (P=.80). This suggests

Table 2. Comparison of nCBV Measurements Derived from NAWM Normalization (WN) Versus
GN

Reader nCBy™e nCBV™

WN 1° 4.04 + 2.26 P<.001° 4.69 + 2.62 P<.001°
WN 2~ 4.70 + 3.09 5.58 + 3.55

WN 3" 6.53 + 4.95 7.85 + 5.67

WN (1-2) -0.66 + 0.33 P=.051 -0.88 + 0.37% =.02
WN (1-3) " -2.50 + 0.54F P<.001 -3.16 + 0.6 P<.001
WN (2-3) " -1.83 + 0.56* P=.002 -2.27 +0.63* P<.001
GN1’ 3.65 + 1.93 P=.004° 426 %227 P<.001°
GN 2’ 3.99 + 1.94 473 +2.31

GN 3’ 412 +1.92 5.06 + 2.33

GN (1-2)F -0.34 + 0.12° P =.005 -0.46 + 0.15% P=.003
GN (1-3) " -0.47 £ 0.15 P=.004 -0.80 + 0.21% P<.001
GN (2-3)° -0.13 £ 0.16 P = 40 -0.34 + 0.22 P=.14

" Data are represented as mean + SD.
 Data are represented as mean + SE.
# nCBV measurements between two readers were significantly different (paired # tests).

S Differences among three readers were assessed by mixed-effects models.

thata larger ROI radius does not offer better precision. Therefore, in order
to reduce the overall number of comparisons, when calculating nCBV for
testing the effects of normalization, we only used the NAWM CBV ™"
measured from the small ROI measurements.

The substantially smaller variation among patients resulting from
ocsv,,, .. used in GN compared to manually selected NAWM
CBV™“used in WN is illustrated in Figure 1.

Figure 2 shows an example of ROIs selected on T'1 and FLAIR images,
and the same ROIs copied onto the CBV map. These two ROIs were
excluded to calculate SD change (%) using Eq. (2A or B). Figure 3 shows
the SD change when enhancing and nonenhancing lesions were excluded
in the 10 selected patients. The x-axis of Figure 3 is the tumor volume
percentage in the whole brain. The SD variation was less than 1% for all

Table 3. ICC, CCC, wCV, bSD, wSD, and RC for Tumor CBV™*", Tumor CBV™, and
NAWM CBV™*" and nCBV Measurements Among Three Independent Readers

ICC CCC RC wCV bSD wSD
Tumor CBV™*" 0.93 0.92 62.60 16.87% 82.10 22.60
Tumor CBV™ 0.91 0.90 83.43 18.86% 96.57 30.12
NAWM CBV™" 0.66 0.66 20.94 25.11% 10.66 7.56
nCBV™<" 0.54 0.48 6.82 48.39% 2.64 2.46
nCBV™ 0.55 0.48 7.74 46.28% 3.06 2.80
nCBVE™" 0.86 0.85 1.99 18.49% 1.79 0.72
nCBVg™ 0.82 0.79 2.74 21.10% 2.08 0.99

A value <0.40 was considered poor, values between 0.40 and 0.59 were considered fair, values
between 0.60 and 0.74 were considered good, and values >0.75 was considered excellent.
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Figure 4. Bland-Altman scatter plots of tumor and NAWM mean CBV. The dotted lines show the 95% confidence interval. Y-axis is the

difference between the two readers' measurements.

but 1 of the 10 patients analyzed. In the outlying patient with tumor
occupying 12% of the brain, the SD changed by only 2.5%-3%. This
analysis shows that variation in tumor volume has minimal effect on SD
even in the worst case where tumor involves a very large fraction of brain.

Table 2 summarizes the statistical analysis of the GN-nCBV and
WM-nCBYV estimates. Both nCBV ™" and nCBV"™* measurements
obtained from WN differed significantly among the three indepen-
dent readers (?<.001). The difference is largely attributable to reader
3 whose measurements were significantly higher than readers 1 and 2.
GN of nCBV measurements did not resolve the significant differences
among the three readers for either nCBV™*" or nCBV™*

nCBV Reader 1 vs 2

nCBV Reader 1 vs 3

measurements (P = .004 and P < .001, respectively) but did
substantially decrease the SEs of each pairwise comparison.
Reproducibility metrics obtained for Tumor CBV™*", Tumor
CBV™, and NAWM CBV™*" and nCBV measurements among
the three readers are listed in Table 3. Tumor CBV™*", Tumor CBV™,
and nCBV measurements derived from GN all had an excellent ICC
value (20.82) and CCC (20.79). NAWM CBV™*" measurements had
good ICC and CCC values both of 0.66. On the other hand, nCBV
measurements derived from WN had a fair ICC value between 0.54 and
0.55 and CCC of 0.48. The RC of the absolute measured values on CBV
maps was relatively high, with Tumor CBV™RC of 83.43 and NAWM

nCBV Reader 2 vs 3
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Figure 5. Bland-Altman scatter plots of manual ROl normalized and Gaussian normalized nCBV between readers. The dotted lines show
the 95% confidence interval. Y-axis is the difference between the two readers' measurements.


Image of &INS id=
Image of Figure 5

Translational Oncology Vol. 11, No. 6, 2018

Table 4. AUC Correlating nCBV with 15-Month OS

Reader AUC (SE)
nCBV™e" nCBV™
WN GN WN GN

1 0.60 (0.08) 0.67 (0.08) 0.62 (0.08) 0.69 (0.08)
P=.25 P=.03 P=.16 P=.01

2 0.67 (0.08) 0.74 (0.08) 0.67 (0.08) 0.71 (0.07)
P=.03 P =.002 P=.02 P=.004

3 0.70 (0.07) 0.71 (0.07) 0.72 (0.07) 0.75 (0.07)
P =.008 P =.003 P =.003 P =.001

Mean 0.68 (0.08) 0.73 (0.07) 0.70 (0.07) 0.73 (0.07)
P=.02 P=.002 P =.007 P=.001

P values evaluate the differences of the estimated AUC to 0.5.

CBV™* RC of 20.94. But because RC measures the within-subject
variance, it is expected to be relatively high for high mean values. The RC
of normalized nCBV was smaller using GN compared to WN,
demonstrating a better reproducibility of using GN. The wCV, already
scaled by the mean, can be used to compare across all measurement types.
The Tumor CBV™*", Tumor CBV™, and wCV were less than 20%,
but NAWM CBV™* wCV was higher than 25%, suggesting that
readers were more consistent in placing hot spot ROI in tumor than in
NAWM. Using WN, the wCV of nCBV was >46%. GN reduced the
wCV to 18.5% and 21.1% for nCBVE“"and nCBVG™, respectively.

Figure 4 shows Bland-Altman scatter plots of Tumor CBV™*" and
NAWM CBV™*" measurements. No trend was observed in the
difference of Tumor CBV™“" (4-C) and NAWM CBV ™" (D-F)
between readers. Figure 5 reveals that, for all pairwise comparisons,
the nCBYV difference between readers increases with increasing WN-
nCBV measurements (4-C). On the contrary, no systematic trend is
observed in GN-nCBV measurements between readers (D-F). In
addition, the jy-axis scale is the same across the plots, clearly
illustrating that the GN-nCBV has a much smaller variation between
readers than the WN-nCBV. Note that the x-axis scale representing
the mean of two readers nCBYV is smaller for the GN-nCBV (0-8)
than WN-nCBV (0-16) plot.

Table 4 shows the AUC estimate to evaluate the association
between nCBV and 15-month OS in 51 subjects, where 46 deaths
were observed and the other 5 were still alive at the cutoff for this
analysis. Twenty of the 46 deaths occurred within 15 months
of follow-up and the other 26 after 15 months. We compared GN-
nCBV and WN-nCBV measurements among the three readers. As
reflected in Table 4, all nCBV measurements, except for reader 1
WN-nCBV, were significantly different from 0.5,
suggesting that both WN and GN are good predictors
of OS. The mean GN-nCBV among the three readers (ie.,

nCBVI“" =1/352  nCBV™™ ;  nCBV™ =1/3

m m

2?21 nCBV ™), was slightly better than the mean WN-nCBV
maps. This held true for both tumor mean nCBV (AUC of nCBV,,“”
0.68 vs nCBV" 0.73, P = .33) and tumor max nCBV (AUC of

nCBV,™ 0.70 vs nCBV,y 0.73, P = .54) measurements.

Discussion

Translation of novel quantitative, reproducible, validated imaging
biomarkers into clinical practice is an urgent need and the mission of
the Quantitative Imaging Network supported by the National Cancer
Institute [29]. For early detection of tumor response to treatment, the
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algorithm that generates the smallest measurement noise will perform
best [30]. DSC is widely available, but interoperator variation and
time needed for ROI measurement have limited clinical translation of
published semiquantitative nCBV analysis techniques.

GN, a promising automatable statistical method for producing
nCBV maps, has been demonstrated to be superior to other
calculation-based methods [22] but has not been validated in
comparison to clinical gold standard OS or compared to current
standard manual NAWM ROI normalization.

Validation

In our sample of newly diagnosed GBM patients, GN-nCBV had a
slightly stronger association with OS than expert reader WN-nCBV
(Table 4). WN and GN nCBV ™ and nCBV ™" were comparable,
with nCBV™ offering slightly higher AUC for prediction of
survival. GN-nCBV, the average of all readers’s WN-nCBV, and
individual reader 2 and reader 3 WN-nCBV were good predictors of
OS (Table 4), but reader 1 WN-nCBYV did not correlate with OS,
and reader 2 and reader 3 nCBV™*" differed significantly (Table 2).
These results both validate GN-nCBV and illustrate the importance
of such automatable methods to reduce interoperator variation in
clinical practice and research.

Reproducibilizy

Interobserver wCVs for tumor nCBV™ (46%) and nCBV™*®
(48%) in our sample were similar to previous literature when using
comparable statistical methods [18]. Applying the formula CV =
100*SD/mean to each lesion in our sample individually before
averaging across all patients, per Wetzel et al. [18], yields “average”
CV of 32% for both nCBV™ and nCBV ™", nearly identical to
their published “average” CV of 30% for nCBV™ and 35% for
nCBV™. For NAWM CBYV, our “average” CV of 23% accords
well with the 20% in that report.

As an operator-independent statistical method, GN is completely
reproducible within individual patients. The ocgy,, , , used for GN
is very robust and reliable (Figure 3). It has substantally smaller
interpatient variation than NAWM CBYV regardless of reader or
NAWM ROTI size (Figure 1), which may be an important advantage
for use in clinical trial grouped analyses.

Sources of Variation

Tumor CBV measured by reader 1was significantly different from
reader 2 (P = .004) and reader 3 (P = .002) (Table 1). While neither
WN nor GN eliminated interreader variation completely (Table 2),
SD is much lower (1.9 vs 2.3-5.0) in the GN-nCBV data, suggesting
that the variation in NAWM ROI selection is responsible for a
substantial degree of interoperator variation in nCBV. Analysis of
ICC between readers supports this, revealing excellent Tumor
CBV™4" (0.93) and Tumor CBV™* (0.91) ICC (Table 3) but
relatively poor NAWM CBV™*" ICC (0.66.). WN markedly
decreases tumor CBV ICC from 0.93 to 0.54 for nCBV ™" and 0.91
to 0.55 for nCBV™. Normalization inevitably decreases ICC
somewhat by combining measurement error from the denominator
(NAWM CBV™*or ocpy,,, ,. ) with that of the numerator
(Tumor CBV™*" or Tumor CBV™), but this marked decrease
produced by WN contrasts with the relatively slight ICC decrease
(GN-nCBV™* 0.86 and GN-nCBV™ 0.82), providing further
evidence that NAWM ROI variability is the primary source of nCBV
variation (Table 3).
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Possible explanations for the observed lower reproducibility of
NAWM ROI measurements compared to tumor ROI measurements
include larger degree of freedom in selection of NAWM ROI compared
to tumor ROI and greater impact of intravoxel noise and partial volume
averaged blood vessels and gray matter on lower NAWM CBV estimates
compared with higher tumor CBV estimates. We varied the size of
NAWM ROI to test the effect of differences in partial volume averaging
and voxel SNR but detected no significant difference in NAWM mean or
SE between large and small ROI (Table 1).

Weaknesses

The major weakness of our analysis is that the nCBV ROC AUC in
our cohort is lower than previously reported AUC of 0.86 and 1.0 for
all gliomas and pure astrocytic tumors respectively [1]. In part, this
difference likely reflects the larger sample size and more heterogeneous
mix of tumor histologies and treatments in our patient group. As such, 0.7
may be a more realistic estimate of the diagnostic value of nCBV in a
typical mixed clinical practice. Also, we chose not to use leakage correction
methods for this analysis in order to avoid introducing additional
computational model complexity and/or sources of variation. This may
have contributed to the lower AUCs observed.

Genetic differences between tumors were not considered in this
study. Many known genetics tumor markers reflect differences in
tumor biology that affect the patient's OS, including IDH-1
mutation and MGMT methylation, among others. In addition,
although all subjects received standard of care consisting of maximal
resection followed by Stupp protocol temozolamide chemoradiation,
many subsequently underwent different experimental treatments on
trial. None of these experimental treatments has been proven to
improve OS, but it is possible that variations in therapy may have
affected survival in some patients. This genetic and treatment
heterogeneity in our dataset may have lowered the overall AUC for
nCBV association with OS in our dataset, but the observed
association with OS nevertheless remains substantial. Since our
analysis was designed to validate the newer more reproducible and
automatable GN method of CBV analysis and compare it to the
existing standard white matter normalization method, rather than to
investigate the absolute strength of nCBV association with OS per se,
this should not affect our conclusions. In other words, because the
same test population with the identical perfusion and survival data
was used for both the GN and conventional WN analyses, the
heterogeneity should not introduce any bias into our comparison
between these normalization methods. From a clinical translation
point of view, this heterogeneous population is advantageous. Since it
closely simulates a typical clinical population of patients with different
tumor genetics undergoing different treatments, our results suggest
that GN-nCBYV should perform robustly in the clinic.

Conclusion

Both brain tumor nCBV maps produced by GN and by current
standard manual NAWM ROI normalization correlate strongly with
15-month OS in our newly diagnosed GBM patients, but the GN-
nCBV had a consistently stronger association and far lower
interoperator and intersubject variability. This slightly better validity
and superior reproducibility, combined with computational simplic-
ity and potential for full automation, argue for implementation of
fully automated GN in DSC processing software and for clinical and
research use of the GN-nCBV maps produced. Implementation of
GN by MRI and postprocessing software vendors is needed to allow
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widespread use of this technique and can be expected to improve
patient care.
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