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Although Flaviviruses such as dengue (DENV) and zika (ZIKV) virus are important
human pathogens, an effective vaccine or antiviral treatment against them is not
available. Hence, the search for new strategies to control flavivirus infections is essential.
Several studies have shown that the host lipid metabolism could be an antiviral target
because cholesterol and other lipids are required during the replicative cycle of different
Flaviviridae family members. FDA-approved drugs with hypolipidemic effects could be
an alternative for treating flavivirus infections. However, a better understanding of the
regulation between host lipid metabolism and signaling pathways triggered during these
infections is required. The metabolic pathways related to lipid metabolism modified
during DENV and ZIKV infection are analyzed in this review. Additionally, the role of
lipid-lowering drugs as safe host-targeted antivirals is discussed.

Keywords: lipids, flavivirus, antivirals, cholesterol, fatty acids, statins, metformin

INTRODUCTION

Flaviviruses are a neglected group of human pathogens that cause medically relevant diseases. For
example, Zika (ZIKV) and dengue viruses (DENV) are currently relevant health threats in Latin
America (San Martín et al., 2010; Ferguson et al., 2016).

After the ZIKV outbreak in the Americas, which left a dramatic increase of microcephaly and
brain malformations in newborns, ZIKV disease became an international public health emergency
(Ferguson et al., 2016; Schuler-Faccini et al., 2016). Besides the consequences in pregnant women
and newborns, the virus also caused an increase in neurological disorders, such as Guillain-Barré
syndrome in adults (Cao-Lormeau et al., 2016). Similarly, a considerable rise in DENV cases has
been reported in the Americas in recent decades (San Martín et al., 2010). It is estimated that DENV
causes 390 million infections per year (Bhatt et al., 2013). Even though many DENV infections
resolve without complications, severe dengue is a significant cause of illness and death in some
countries in Asia and Latin America (San Martín et al., 2010).

Despite the importance of these pathogens, no specific therapies against DENV or ZIKV are
available, and efforts by the scientific community to develop a vaccine or drug for the different
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flavivirus infections continue (Arredondo-García et al., 2018;
Poland et al., 2019). Currently, there is no specific licensed drug to
control these viruses, and in most cases, the treatment is palliative
with no antiviral effect (Kok, 2016). Therefore, the search for
new strategies to help to combat the infections caused by these
viruses is essential.

It has recently been documented that the viral cycle of
flaviviruses is intimately linked to lipid metabolism (Martín-
Acebes et al., 2016b). Specifically, molecules such as cholesterol,
which is indispensable during the replication cycle of flaviviruses,
are a promising antiviral target (Osuna-Ramos et al., 2018b).
Therefore, drugs with hypolipidemic (Lipid-lowering) effects
have been proposed as antiviral candidates to treat ZIKV and
DENV infections (Osuna-Ramos et al., 2018b; Martín-Acebes
et al., 2019). In this review, the metabolic pathways related to lipid
metabolism modified during Flavivirus infections are analyzed.
Additionally, the role of lipid-lowering drugs as safe host-targeted
antivirals is discussed.

LIPIDS AND THE REPLICATIVE CYCLE
OF FLAVIVIRUSES

Flaviviruses are enveloped viruses of 40–60 nanometers in
diameter that belong to the Flaviviridae family. This genus
includes more than 50 species of viruses with positive polarity
single-stranded RNA of approximately 11,000 nucleotides in
length (Barrows et al., 2018).

Flaviviruses depend on lipid metabolism to complete their
replication cycle as follows: (a) first, during the viral entry
process, the flavivirus envelope lipid bilayers obtained from
the endoplasmic reticulum (ER) membrane participate in
the viral attachment, binding, and fusion (section “Viral
Membrane Composition” and “Flavivirus Entry”); (b) second,
an increase in cholesterol and fatty acid synthesis leads to
the formation of invaginations of the ER membrane called
replicative complexes (RCs) where the viral translation and
replication occur (section “Flavivirus Replication”); (c) in the
next step, an efficient combination of the cholesterol-rich RCs
used as a scaffold and the accumulation of protein C on lipid
droplets (LDs) for the viral genome packaging and nucleocapsid
formation, contribute to the assembly of the flavivirus progeny
(section “Flavivirus Assembly”). Finally, the nucleocapsid buds
through the ER membrane completing the virions assembly.
The virions are transported through the exocytic pathway
to the Golgi complex for its maturation and release from
the infected cell.

Viral Membrane Composition
Although lipids are the most abundant component of the
flaviviral particle, with approximately ∼8,000 lipid molecules
(Reddy and Sansom, 2016), the composition and biochemistry
of the viral envelope have been poorly explored compared
to the other components. In general, the membranes of
enveloped viruses show a different composition than other
cell membranes (Brügger et al., 2006; Kalvodova et al., 2009;
Merz et al., 2011; Gerl et al., 2012). Currently, there are

no lipidomic analyses of the viral envelope of ZIKV and
DENV; however, most of the evidence about the membrane
composition of flaviviruses comes from West Nile Virus
(WNV) (Martín-Acebes et al., 2014). The WNV envelope has
a significant increase in the content of glycerophospholipids
(phosphatidylcholine, plasmalogens, and lysophospholipids) and
sphingolipids (ceramide, dihydroceramide, and sphingomyelin).
Other viruses of the same family, such as hepatitis C virus (HCV)
and bovine viral diarrhea virus (BVDV), also showed membranes
enriched in sphingolipid and cholesterol (Aizaki et al., 2008; Merz
et al., 2011; Callens et al., 2016).

Considering that flaviviruses acquire their membrane by
sequestering modified fragments of the ER, Reddy and Sansom
(2016) analyzed the viral envelope of DENV by computational
modeling using lipidomic data from DENV-infected C6/36
cells (Perera et al., 2012; Reddy and Sansom, 2016). This
study revealed that the glycerophospholipids, sphingolipids,
and fatty acyls are key components of the DENV envelope
which could confer stability and robustness to the virion
(Reddy and Sansom, 2016). It has been described that
specific membrane-enriched lipids (phosphatidylserine and
phosphatidylethanolamine) are involved in viral binding, entry,
and fusion processes (Figures 1A,B; Meertens et al., 2012;
Martín-Acebes et al., 2014; Richard et al., 2015). However, the
role of sterols in the viral envelope was not analyzed in the cited
studies. The evidence that cholesterol is a component of the
flavivirus envelope comes from functional assays (Meertens et al.,
2012; Carro and Damonte, 2013; Richard et al., 2015). It has been
documented that the amount of sterols in DENV virions is critical
since reduction (Carro and Damonte, 2013) and saturation (Lee
C. J. et al., 2008) of the cholesterol content in the viral membrane
results in loss of infectivity, similar to that reported with the
influenza virus (Sun and Whittaker, 2003).

Flavivirus Entry
Viral Binding and Internalization
The first step in the viral replicative cycle is the binding of
the virion to the cell surface through one or more receptors
that have been proposed for flaviviruses (Cordero-Rivera et al.,
2021). Some receptors can interact with lipids and promote
viral entry by different mechanisms (van der Schaar et al., 2008;
Jemielity et al., 2013; Amara and Mercer, 2015; Cruz-Oliveira
et al., 2015; Agrelli et al., 2019). The TIM (1, 3, and 4) (Meertens
et al., 2012; Jemielity et al., 2013; Hamel et al., 2015; Richard
et al., 2015), TAM (Axl and Tyro3) (Meertens et al., 2012;
Bhattacharyya et al., 2013; Hamel et al., 2015), and CD300a
receptors (Carnec et al., 2015) can bind to phosphatidylserine and
phosphatidylethanolamine on the viral envelope of flaviviruses
and contribute to viral internalization (Figure 1A). TIM and
TAM receptors could mediate viral internalization by recognizing
phosphatidylserine (PS) and phosphatidylethanolamine (PE) on
the surface of virions, promoting their entry as apoptotic bodies
in a process known as apoptotic mimetics (Meertens et al., 2012;
Amara and Mercer, 2015). Interestingly, it has been suggested
that the unbalance of calcium during DENV (Dionicio et al.,
2018) and YFV (Nour et al., 2013) infection could activate
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FIGURE 1 | Lipids and the replicative cycle of flavivirus. Flaviviruses depend on lipid metabolism to complete their replication cycle. (A) The membranes of
Flaviviruses show a different composition than other cell membranes. Lipidomic, computational and functional studies suggest that flavivirus membranes are
enriched with glycerophospholipids, sphingolipids, fatty acids, and cholesterol, all of which confer stability and robustness to the virion. During viral entry, contact
with receptors allows internalization of the virion into the cell. These cellular receptors are usually coupled to lipid rafts in membranes with well-defined cholesterol
concentrations and other membrane-stabilizing elements. (B) The viral genome release occurs in late endosomes using compartment-specific lipids. Lipids such as
phosphatidylserine and phosphatidylethanolamine are involved in viral binding, entry, and fusion processes. (C) The viral RNA is translated into a polyprotein in the
ER, which functions as a viral translation, replication, and morphogenesis platform. Infection-induced metabolic reprogramming leads to the accumulation of lipids
required for viral replication. Lipid requirements are virus-dependent and cell-dependent; however, cholesterol and fatty acids appear necessary for the flavivirus
cycle. (D) The involvement of lipid droplets (LDs) has been reported during viral replication and assembly. The co-localization and interaction of protein C with LDs
have also been described during WNV, DENV, JEV, and ZIKV infections. (E) Finally, immature viral particles travel through the Golgi apparatus to complete their
maturation process.

calcium-dependent scramblases that expose PS, to the outer
plasma membrane (Figure 1C; Morizono and Chen, 2014).

The participation of cholesterol during viral entry has been
related to lipid rafts and microdomains (Figure 1A). Lipid rafts

are molecular microdomains located on the plasma membrane,
consisting of stable associations between sphingolipids,
glycolipids, and cholesterol. They play a crucial role in cellular
processes such as signal transduction and membrane protein
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trafficking (Regen, 2020). These microdomains provide a suitable
environment for clustering flavivirus receptors on the host cell
and function as platforms for cellular signal transduction (Lee
et al., 2005; Reyes-del Valle et al., 2005; Puerta-Guardo et al.,
2010; Diwaker et al., 2015). Curiously, cholesterol requirements
for lipid raft and microdomain formation appear to be cell-
dependent during DENV infection (Lee C. J. et al., 2008; Mosso
et al., 2008; Acosta et al., 2009; Rothwell et al., 2009; Carro and
Damonte, 2013; Soto-Acosta et al., 2013). Overall, lipid rafts are
essential during DENV (Lee C. J. et al., 2008; Puerta-Guardo
et al., 2010; Soto-Acosta et al., 2013; García Cordero et al., 2014;
Diwaker et al., 2015) and WNV (Medigeshi et al., 2008) entry,
while for ZIKV, their relevance is unknown.

Membrane Fusion
Following attachment and internalization of the particle, the
genome must be released into the cytoplasm by fusion of the viral
membrane with that of the late endosomes induced by the low pH
of the endosomes (Kaufmann and Rossmann, 2011). It has been
documented that DENV ensures its fusion in late endosomes
using compartment-specific lipids (Zaitseva et al., 2010), such as
other flaviviruses (Figure 1B; Stiasny and Heinz, 2004; Tani et al.,
2010; Zaitseva et al., 2010).

Due to the complexity of the process, artificial membranes
have been a fundamental tool for studying the importance of
lipid composition during the fusion process. For example, Gollins
and Porterfield (1986) demonstrated that the lipid composition
of liposomes influences both the pH optimum for fusion and the
maximum degree of fusion (Gollins and Porterfield, 1986).

It has also been shown that viral fusion can occur
even with receptor-free artificial membranes consisting of
phosphatidylcholine and phosphatidylethanolamine, and
removal of these lipids, including cholesterol, reduces viral
fusion (Gollins and Porterfield, 1986; Martín-Acebes et al., 2014).

Regarding the role of cholesterol in membrane fusion, some
authors point out that fusion is strongly induced by the presence
of cholesterol in the target membrane (Stiasny et al., 2003;
Moesker et al., 2010), and others suggest that this molecule is not
relevant during this process, and on the contrary, the addition
of cholesterol to cells may even reduce flavivirus infection (Lee
C. J. et al., 2008; Umashankar et al., 2008). Although more studies
are needed to determine the role of cholesterol during the fusion
process, it is clear that the lipid composition of the cell and viral
membranes are relevant to viral entry and fusion processes.

Flavivirus Replication
Structural Rearrangements of the Endoplasmic
Reticulum
Once the viral RNA is released into the host cell cytoplasm,
it acts as an mRNA within the infected cell encoding a single
open reading frame translated into a polyprotein that undergoes
proteolytic cleavage by viral and host proteases. This event
produces ten mature proteins, three structural proteins, C
(capsid), M (membrane), and E (envelope), and seven non-
structural proteins, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and
NS5 (Barrows et al., 2018). Although the localization of viral
proteins among different cellular compartments is observed

during infection (Hannemann et al., 2013; Reyes-Ruiz et al.,
2018; Palacios-Rápalo et al., 2021; Zhao et al., 2021), their
accumulation is predominant in the ER, the center of lipid
synthesis in the cell, which functions as a platform for viral
translation, replication, and morphogenesis (Murray et al., 2008).
The recently synthesized proteins are anchored to the ER
through their transmembrane domain (Barrows et al., 2018),
and the interaction between viral proteins and cellular lipids is
essential for forming the RCs (Chotiwan et al., 2018). However,
membranes remodeling has been mainly associated with the
expression of NS2B, NS4A, and NS4B (Figure 1C; Miller et al.,
2007; León-Juárez et al., 2016; Leier et al., 2020).

Consequently, while translation and viral replication occur,
the ER membrane is remodeled and undergoes considerable
enlargement with the appearance of organelle-like structures.
These structures function as viral replication factories (Welsch
et al., 2009; Peña and Harris, 2012; Junjhon et al., 2014; Hanners
et al., 2016; Cortese et al., 2017). Some of these membrane
rearrangements may change between flaviviruses and between
cell types (Welsch et al., 2009; Junjhon et al., 2014; Hanners
et al., 2016; Offerdahl et al., 2017). However, there is a remarkable
similarity in the remodeling of intracellular membranes caused
by flaviviruses. In this regard, the main structures of the
RCs are membrane bundles (Vp), double-membrane vesicles
(Ve), tubular structures (T), and convoluted membranes (CM).
The localization of NS1, NS3, NS5 proteins, and the dsRNA
molecule in Ve suggests that RNA replication occurs in
these compartments (Welsch et al., 2009; Junjhon et al., 2014;
Cortese et al., 2017).

Disturbances in the Lipid Composition of the
Endoplasmic Reticulum
Membrane structures resulting from viral replication exhibit
a specific lipid composition responsible for the membrane
topology in the RCs. Lipid analyses show that certain cellular
lipids are modified in flavivirus-infected cells compared to
uninfected cells (Figure 1C; Perera et al., 2012; Melo et al., 2016;
Chotiwan et al., 2018; Chen et al., 2020; Leier et al., 2020). For
example, DENV infection alters approximately 15% of cellular
lipids in both C6/36 mosquito cells and the midgut of DENV-
infected mosquitoes (Perera et al., 2012; Chotiwan et al., 2018).
These modifications are concentrated in the membrane fractions
associated with replication, where 85% of the lipid species were
significantly modified compared to membranes of uninfected
cells (Perera et al., 2012).

The lipidomes of C6/36 cells (Melo et al., 2016), fetal placental
cells (Chen et al., 2020), and different human cell lines (Leier
et al., 2020) are also changed by ZIKV infection. Similar to
DENV, ZIKV perturbed the phospholipid profile and induced
increased phosphatidylcholines, phosphatidylethanolamines, and
phosphatidylserines in mosquito cells (Perera et al., 2012; Melo
et al., 2016). Such alterations were also maintained in placental
cells, where phosphatidylinositol was also increased (Chen et al.,
2020). In addition, elevated levels of sphingolipids were found
in infected C6/36 cells (Melo et al., 2016) and human cell lines
(Leier et al., 2020).
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Notably, the enrichment of glycerophospholipids and
sphingolipids persists in DENV (Chotiwan et al., 2018) and
WNV (Martín-Acebes et al., 2014), suggesting that these
changes could be maintained in flavivirus infections. However,
comparative analyses of ZIKV-infected placentas revealed no
alterations in ceramide or sphingolipid subspecies (Chen et al.,
2020). Therefore, sphingolipid requirements during ZIKV
infection could be variable depending on the cell type.

Regarding cholesterol, a lipidomic study of the intestines
of DENV-infected mosquitoes showed that out of 111 sterol
molecules detected, 25 showed different levels of abundance
compared to controls. Of these, 21 molecules increased, and four
molecules decreased during infection. Most of the changes (10
molecules) occurred on day three post-infection, during early
infection, and on day seven post-infection (14 molecules), a
period of high replication activity in the mosquito middle gut.
Only one molecule showed significant changes (decreased) on
day 11 post-infection, a period when there is high replication
activity in salivary glands and other tissues compared to the
middle gut (Chotiwan et al., 2018). Considering that sterols in the
mosquito come from the diet, it would be interesting to compare
the enrichment of sterols in the lipidome of human and mosquito
cells at different times of DENV infection. Unfortunately, there
are no other lipidomic studies with DENV and ZIKV where
sterols content and related metabolites are analyzed. However,
increased cholesterol in Huh-7 cells caused by DENV infection
compared to uninfected cells has been reported (Soto-Acosta
et al., 2013). The enrichment was concentrated at DENV
replication sites, and it was also evident in the first hours of
infection. Therefore, it has been suggested that cholesterol is
necessary for early stages and during viral replication in vitro
(Soto-Acosta et al., 2013) and in the in vivo mosquito model
(Chotiwan et al., 2018).

The ZIKV infection also causes several adaptations in
placental lipid metabolism, including increased neutral lipids:
cholesterol, diacylglycerols, and triacylglycerols. Metabolic
reprogramming consequently triggered the biogenesis of
cholesterol-enriched lipid droplets and the intracellular
membrane reorganization for viral replication (Chen et al.,
2020). This evidence suggests that enrichment of cholesterol
and other lipids in infected cells is required during flavivirus
infections (Mackenzie et al., 2007; Rothwell et al., 2009; Soto-
Acosta et al., 2013); however, how each lipid contributes to viral
replication is still being studied (Villareal et al., 2015).

Enrichment of sphingolipids, such as ceramide, during
flavivirus infections, is thought to be important for membrane
topology (Castro et al., 2014; Villareal et al., 2015), viral budding
(Zha et al., 1998; Holopainen et al., 2000; Trajkovic et al., 2008;
Hurley et al., 2010), and virion architecture (Martín-Acebes
et al., 2014; Reddy and Sansom, 2016). Phospholipids could
be involved in membrane fluency and curvature (Roux et al.,
2005; Martinez-Seara et al., 2008). Cholesterol in conjunction
with ceramide could lead to the formation of microdomains
in replication-associated membranes in the ER (Silvius, 2003;
Marsh, 2009; Staneva et al., 2009; García-Arribas et al.,
2016), working as platforms for viral proteins such as NS3
(García Cordero et al., 2014). Therefore, flaviviruses require a

favorable microenvironment with the resources to create their
replication platforms and acquire their viral envelope with unique
composition and properties.

Flavivirus Assembly
The viral replication processes and viral assembly are intimately
linked; viral particles are produced by budding of nucleocapsids
(outgoing genomic RNA-associated protein C) associated with
ER-derived membranes containing prM and E proteins. The
principal viral proteins involved in virion assembly are NS2A and
Capsid (C) protein (Samsa et al., 2009; Teoh et al., 2014; Xie et al.,
2019; Zhang et al., 2019; Tan et al., 2020). As mentioned, the viral
membrane is derived from modified portions of the ER. Once
the membrane is acquired, immature viruses are mobilized along
the secretory pathway through the Golgi complex, where prM is
processed by the furin protease for maturation and subsequent
release from the cell (Barrows et al., 2018).

The involvement of lipid droplets (LDs) has been reported
during viral replication and assembly (Figure 1D; Samsa
et al., 2009). LDs are cellular organelles that serve as a
reservoir of cholesterol and other lipids for membrane formation
and maintenance (Walther and Farese, 2012; Olzmann and
Carvalho, 2019). These organelles are composed of a neutral
lipid core surrounded by a phospholipid monolayer; therefore,
they can prevent cellular lipotoxicity by converting excess
fatty acids into neutral lipids for storage (Tauchi-Sato et al.,
2002). Other functions of LDs have recently emerged, such as
avoiding mitochondrial damage during autophagy (Nguyen and
Olzmann, 2017) and their involvement in immune responses
(Monson et al., 2021).

During flavivirus infection, they function as sites of
recruitment of both cellular and viral proteins. For example, it
has been described that the NS3 protein of DENV interacts with
the Rab18 protein, a small GTPase involved in vesicle trafficking,
in LDs to recruit the enzyme fatty acid synthase (FASN) to DENV
replication sites and promote fatty acid biosynthesis (Figure 1C;
Tang et al., 2014).

The co-localization and interaction of protein C with LDs
has also been described during WNV, DENV, JEV, and ZIKV
infection (Figure 1D; Samsa et al., 2009; Carvalho et al., 2012;
Martins et al., 2012, 2019; Teoh et al., 2014; Shang et al., 2018;
Ishida et al., 2019; Saumya et al., 2020). In this regard, dissociation
of protein C from LDs inhibits the production of infectious
DENV particles, but not RNA replication (Carvalho et al., 2012);
therefore, it has been suggested that LDs function as scaffolds for
viral genome encapsidation (Samsa et al., 2009).

Furthermore, flaviviruses can use lipids from LDs through
lipophagy (Heaton and Randall, 2010) and reabsorption of these
organelles (Peña and Harris, 2012). Viruses such as DENV
(Samsa et al., 2009; Barletta et al., 2016), ZIKV (Chen et al., 2020),
and HCV (Miyanari et al., 2007) manipulate LDs biogenesis
to promote viral genome replication and virion production
(Cloherty et al., 2020).

Regarding ZIKV, there are different positions; this virus
induces large amounts of LDs in infected cells, and these LDs
are tangled and accumulate around infected focal sites within
infected placental villi to promote viral genome replication
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(Chen et al., 2020). In contrast, a decrease in the number and
volume of LDs in ZIKV-infected Huh-7 cells has also been
reported (García et al., 2020). Therefore, the role of LDs during
ZIKV infection should be further studied.

METABOLIC PATHWAYS AS
THERAPEUTIC TARGETS

Fatty Acid Biosynthesis
The fatty acid biogenesis appears to be an important therapeutic
target against flaviviruses, as it is necessary to synthesize complex
lipids such as those enriched during viral infections (Perera et al.,
2012; Martín-Acebes et al., 2014; Melo et al., 2016; Chotiwan
et al., 2018; Chen et al., 2020; Leier et al., 2020).

There are two key enzymes for fatty acid generation,
acetyl-CoA carboxylase (ACC), the limiting enzyme in lipid
biosynthesis, and fatty acid synthase (FASN). ACC initially
catalyzes the carboxylation of acetyl-Coenzyme A to malonyl-
CoA (Tong and Harwood, 2006). In later steps, FASN catalyzes
the synthesis of acetyl-CoA palmitate and malonyl-CoA into
long-chain saturated fatty acids (Smith et al., 2003).

It has been documented that DENV positively regulates fatty
acid synthesis through the interaction of the viral NS3 protein
with the FASN enzyme to redirect it to sites of viral replication
and stimulate its function (Figure 1C; Heaton et al., 2010).

The ZIKV also increases the expression of the FASN,
the fatty acid translocase (FAT/CD36), and the diacylglycerol
acyltransferase 1 (DGAT1) (Chen et al., 2020). The transporter
FAT/CD36 assists in fatty acids uptake from the exogenous
environment, and the ER-resident DGAT1, an essential enzyme
for LD biogenesis, catalyzes the final step in triglyceride
biosynthesis. Conversely, the inhibition of ACC (Merino-Ramos
et al., 2016) or FASN (Heaton et al., 2010; Martín-Acebes
et al., 2011; Perera et al., 2012; Poh et al., 2012) reduces
flavivirus infection.

In addition to fatty acids, the synthesis of complex lipids, such
as sphingolipids, is also required during ZIKV, DENV, and WNV
infections (Martín-Acebes et al., 2014, 2016a; Melo et al., 2016;
Chotiwan et al., 2018; Leier et al., 2020). Sphingolipid metabolism
consists of a complex network of numerous enzymes that are
interconnected and regulated at different levels. Nevertheless, at
the center of sphingolipid metabolism reside ceramide synthases
(CerSs), a group of enzymes that catalyze the formation of
ceramides, the precursors of sphingolipids (Mullen et al., 2012).

During ZIKV infection, a marked increase in ceramide levels
has been documented by multiple pathways, which redistributes
to sites of replication and sensitizes cells for infection (Leier
et al., 2020). In contrast, the reduction of ceramide biosynthesis
by inhibition of CerS, and the enzyme downstream serine
palmitoyltransferase (SPTLC), can inhibit ZIKV and WNV
infection (Aktepe et al., 2015; Leier et al., 2020). However,
the ZIKV-infected placentas did not reveal any alterations in
ceramide or sphingolipid subspecies (Chen et al., 2020), which
might suggest that ceramide requirements during ZIKV infection
could vary in different cell types.

Ceramides are also enriched in DENV replication-associated
membranes (Perera et al., 2012). However, it has been
reported that DENV is insensitive to ceramide disruption
(Fraser et al., 2014; Carocci et al., 2015); on the contrary,
inhibition of CerS and SPTLC enzymes enhances DENV
replication (Aktepe et al., 2015). These observations suggest that
different flaviviruses have a differential ceramide requirement for
replication (Aktepe et al., 2015).

Catabolism of more complex sphingolipids probably
contributes to the lipid increase; however, the evidence suggests
that flavivirus infections increase the Novo biosynthesis of
sphingolipids (Perera et al., 2012; Martín-Acebes et al., 2014;
Leier et al., 2020). Therefore, the inhibition of fatty acid
biosynthesis could be advantageous over inhibition of complex
lipids necessary for viral replication, as described in WNV
infections (Martín-Acebes et al., 2011), since the latter also
contain fatty acids as part of their structure.

Cholesterol Biosynthesis
The biosynthesis of cholesterol occurs in the ER, but the sterol
content in this organelle is low due to the complex regulation of
cellular synthesis and transport (Luo J. et al., 2020).

Despite the regulatory mechanisms, active biogenesis and
cholesterol accumulation in DENV RCs have been documented
(Figure 1C; Mackenzie et al., 2007; Rothwell et al., 2009; Perera
et al., 2012; Soto-Acosta et al., 2013). The increase of cholesterol
in liver cells and in the mid-intestine of mosquitoes at different
time points of DENV infection suggests a dynamic interaction
between host cell lipid metabolism and viral replication (Soto-
Acosta et al., 2013, 2017; Chotiwan et al., 2018). It has
been described that 3-hydroxy-3-methyl-glutaryl-CoA reductase
(HMGCR), a key enzyme in the mevalonate pathway that
controls the rate of cholesterol biosynthesis, relocalizes to viral
replication-associated membranes and is overactivated during
DENV and WNV infection (Mackenzie et al., 2007; Soto-Acosta
et al., 2013). In addition, positive up-regulation of mevalonate
diphosphodecarboxylase (MVD), an enzyme involved in the
intermediate steps of the mevalonate pathway, has been reported
during DENV infection (Rothwell et al., 2009).

Furthermore, the Novo biosynthesis of this lipid is not the
only source of sterols; DENV also promotes the uptake of
exogenous cholesterol by increasing the expression of the low-
density lipoprotein (LDL) receptor (Soto-Acosta et al., 2013)
and Niemann-Pick C1-Like 1 receptor (NPC1L1) (Osuna-Ramos
et al., 2018a) on the surface of infected liver cells. In mosquito
cells, DENV modifies the expression of the LRP-1 protein
to prevent cellular cholesterol efflux and thus promote the
accumulation of intracellular cholesterol (Tree et al., 2019).
Therefore, inhibition of enzymes involved in the mevalonate
pathway, such as HMGCR, MVD, squalene synthase (SQS), or
7-dehydrocholesterol reductase (DHCR-7), can reduce flavivirus
multiplication (Mackenzie et al., 2007; Rothwell et al., 2009;
Martínez-Gutierrez et al., 2011; Peña and Harris, 2012; Soto-
Acosta et al., 2013; Españo et al., 2019; Leier et al., 2020).
In addition, inhibition of cholesterol import and intracellular
trafficking has also been shown to be effective in inhibiting DENV
infection (Soto-Acosta et al., 2013; Osuna-Ramos et al., 2018a).
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Overall, this evidence demonstrates that the mevalonate pathway
offers a wide range of potential host-directed therapeutic targets
for treating flavivirus infections.

Autophagy
In addition to anabolic processes, catabolic processes such
as autophagy may also contribute to the lipid requirements
necessary for viral replication (Lee Y. R. et al., 2008). Autophagy
is a cellular homeostatic process involving the formation of
autophagosomes for the recycling of damaged cellular proteins
and organelles. It should be noted that this mechanism also
plays an essential role in the degradation of labeled intracellular
pathogens and in the induction of the antiviral response (Lee
and Iwasaki, 2008; Deretic et al., 2013). Even though autophagy
restricts WNV replication (Shoji-Kawata et al., 2013; Kobayashi
et al., 2014), viruses such as DENV and ZIKV have successfully
subverted this process to enhance their replication (Lee Y. R.
et al., 2008; Chu et al., 2014; Liang et al., 2016; Sahoo et al., 2020).

Autophagy contributes to ZIKV and DENV replication during
the early steps of infection by inhibiting apoptosis, evading innate
immunity, and altering lipid metabolism for viral replication
(Blázquez et al., 2014; Gratton et al., 2019). DENV uses autophagy
to degrade LDs and triglycerides to release fatty acids for ATP
generation by β-oxidation (Figure 2A; Heaton and Randall, 2010;
Heaton et al., 2010). The above is based on a type of selective
autophagy called “lipophagy,” in which autophagosomes can
target LDs to generate energy for the cell (Singh et al., 2009).
In addition, whether DENV can replicate in autophagosomes
and double-membrane compartments that are induced during
infection remains a controversial question (Khakpoor et al., 2009;
Panyasrivanit et al., 2009; Chu et al., 2014).

Although it is not entirely understood how autophagy
contributes to viral replication, evidence suggests that autophagy
is required during ZIKV and DENV infection. In this regard,
autophagy inducers can enhance ZIKV and DENV replication
(Hamel et al., 2015; Metz et al., 2015; Liang et al., 2016), while
autophagy inhibitors reduce it (McLean et al., 2011; Hamel et al.,
2015; Cao et al., 2017). Interestingly, ZIKV-induced autophagy
activation has been associated with the early stages of infection.
Sahoo et al. (2020) reported that ZIKV induces autophagy
early and transiently, and subsequently, the virus can reverse
this activation to allow viral protein accumulation and virus
replication in neuronal and glial cells; therefore, suppression of
autophagy at late times of ZIKV infection is suggested necessary
for its replication (Sahoo et al., 2020). Similarly, Metz et al. (2015)
reported a biphasic autophagy response to DENV infection, in
which DENV infection initially activates it and then, later on,
inhibits autophagy (Metz et al., 2015, p. 62).

Although the mechanism is unclear, the evidence suggests that
flaviviruses can dynamically modulate autophagy throughout
infection. In this sense, it has been demonstrated that ZIKV
can induce changes in the activity of the mTORC1 protein
(mammalian target of rapamycin complex 1), the master
regulator of the autophagic pathway (Sahoo et al., 2020); in
turn, mTORC1 can regulate lipogenesis mediated by SREBPs
(sterol responsive element binding protein), the transcription
factors that regulate cholesterol and fatty acid synthesis

(Porstmann et al., 2008; Düvel et al., 2010, p. 1; Li et al., 2010;
Peterson et al., 2011, p. 1). Therefore, it cannot be ruled out
that ZIKV-induced changes in mTORC1 activity contribute to the
switch between lipid catabolism and lipid biogenesis.

Activation of mTORC1 can prevent autophagy following
upstream activation of the PI3K/Akt pathway by tyrosine kinase
receptors and G protein-coupled receptors in response to their
ligands, such as growth factors (LoPiccolo et al., 2008). It has
been described that expression of DENV-NS4A can induce PI3K-
dependent autophagy and protect epithelial cells against death
(McLean et al., 2011); similar, NS4A and NS4B of ZIKV suppress
the Akt-mTOR pathway inducing aberrant autophagy in human
fetal neural stem cells (fNSCs), leading to defective neurogenesis
(Liang et al., 2016). Interestingly, pharmacological inactivation
of Akt can also inhibit ZIKV in Vero cells (Albentosa-González
et al., 2021, p. 5). Therefore, further studies are required
to investigate the therapeutic worth of the PI3K/Akt/mTOR
pathway to treat DENV and ZIKV.

LIPID-LOWERING DRUGS AS
ANTIVIRALS CANDIDATES

The lack of a vaccine or drug for treating flavivirus diseases
has led to an exhaustive search for drugs with anti-flavivirus
effects by the scientific community. There are two types of
antiviral drugs: the antivirals directed to viral components; and
host-targeted antivirals that inhibit key cellular molecules that
contribute to the replicative cycle of the viruses (Acosta and
Bartenschlager, 2016; Boldescu et al., 2017; Saiz et al., 2018).
The drugs that interfere in different metabolic pathways for
lipid synthesis belong to the latter group and effectively inhibit
flavivirus infections. For instance, drugs that inhibit the enzyme
that catalyzes the conversion of sphingomyelin to ceramide, as
GW4869, can inhibit the ZIKV infection (Huang et al., 2018);
small molecule inhibitors of ACC (PF-05175157, PF-05206574,
and PF-06256254) can counteract ZIKV, DENV, and WNV
infection (Jiménez de Oya et al., 2019); and the inhibitors of
cholesterol synthesis, uptake and transport also have an anti-
flavivirus effect (Osuna-Ramos et al., 2018b). Interestingly, this
latter group includes FDA-approved drugs such as imipramine
(IMI), ezetimibe (EZE), and statins (STAs). The imipramine, an
antidepressant, inhibits ZIKV, DENV, and WNV by interfering
with intracellular cholesterol transport (Wichit et al., 2017);
the EZE inhibits DENV infection by blocking the cholesterol
transporter NPC1L1 (Osuna-Ramos et al., 2018a), and STAs
have been demonstrated to have a broad anti-flavivirus spectrum
by directly inhibiting the HMGCR enzyme responsible for de
Novo cholesterol synthesis (section “Statins and Ezetimibe for the
Treatment of Dengue Viruses and Zika”).

In addition, the drugs that can interfere with both fatty acids
and cholesterol synthesis can strongly inhibit flavivirus infection.
The SREBP inhibitors, such as Nordihydroguaiaretic Acid and
Its derivative Tetra-O-Methyl Nordihydroguaiaretic can inhibit
the multiplication of DENV, ZIKV, and WNV, in addition
to HCV, suggesting that the SREBP pathway is a therapeutic
target (Syed and Siddiqui, 2011; Soto-Acosta et al., 2014;
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FIGURE 2 | STAs and MET for the treatment of DENV and ZIKV infections. (A) STAs and MET inhibit DENV infection in hepatocytes. STAs interfere with cholesterol
biosynthesis pathways through competitive inhibition of HMGCR, affecting viral replication, morphogenesis, and progeny during infections in liver cells. STAs
enhance the innate immune response by inhibiting isoprenoid synthesis. MET activates the AMPK pathway, which has many downstream targets. MET reduces
cholesterol and fatty acid synthesis directly (enzyme inactivation) and via the SREBP pathway. MET also induces the interferon-mediated response via AMPK. Both
drugs enhance the innate immune response by connecting the mevalonate pathway and the interferon response in specific cell types. (B) MET and
neuropathogenesis in the brain of ZIKV-infected mice. It has been suggested that ZIKV can up-or down-regulate cell type-dependent AMPK activity. Activation of
AMPK by MET could have a dual effect: counteracting infection in tissues where the virus down-regulates AMPK activity and contributing to the pathology and cell
death of tissues where AMPK activation favors viral replication. It has been hypothesized that MET could contribute to apoptosis in neuronal cells.

Merino-Ramos et al., 2017). Likewise, the AMP-activated protein
kinase (AMPK) activators such as PF-06409577 and AICAR,
and Metformin (MET) are effective against DENV, ZIKV, and
WNV (Soto-Acosta et al., 2017; Cheng et al., 2018, p. 14–22;
Jiménez de Oya et al., 2018). Among the latter group of drugs,
MET is another FDA-approved drug with a broad and promising
anti-flavivirus spectrum (section “Metformin for the Treatment
of Dengue Viruses and Zika”).

FDA-approved drugs with antiviral properties have the
advantage of being safe for use in humans (Barrows et al., 2016);
this reduces the processes involved in drug development and
the administrative and bureaucratic procedures for approval.
Therefore, FDA-approved drugs with lipid-lowering effects, such
as STAs, EZE, and MET, have been considered as candidate host-
directed therapies to treat flavivirus infections (Figure 1; Martín-
Acebes et al., 2016b, 2019; Osuna-Ramos et al., 2018b). Although
MET is mainly known for its hypoglycemic effects, this drug also

can reduce total cholesterol levels and LDL levels in the blood
and interfere with fatty acid synthesis (Solymár et al., 2018);
therefore, in this article, it is also considered as a candidate
lipid-lowering drug to treat flavivirus infection.

Statins and Ezetimibe for the Treatment
of Dengue Viruses and Zika
Cellular cholesterol has emerged as a common denominator
among the lipid requirements for flavivirus replication (Osuna-
Ramos et al., 2018b). Therefore, inhibition of enzymes that
catalyze isoprenoid and cholesterol biosynthesis is effective
against DENV (Rothwell et al., 2009; Soto-Acosta et al., 2017).
STAs are the drugs of choice for interfering with the cholesterol
biosynthetic pathway (Krukemyer and Talbert, 1987). These
drugs are structural analogs of HMG-CoA, an intermediate
metabolite in the mevalonate pathway, therefore competitively
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inhibit the HMGCR, the limiting enzyme of this pathway, with
an affinity approximately 1,000–10,000 times greater than the
natural substrate (Vaziri and Liang, 2004).

Currently, new properties have been revealed in STAs, and
a broad spectrum activity to treat diverse human diseases
(Pahan, 2006), including viral infections (Gorabi et al., 2020;
Wani et al., 2020). In vitro assays have shown that DENV is
highly susceptible to STAs treatment, which counteracts the over-
activation of HMGCR caused by infection (Soto-Acosta et al.,
2013). It has been demonstrated that this drug has a strong impact
on RCs formation, affecting replication, morphogenesis, and viral
yield (Figure 2A; Rothwell et al., 2009; Martínez-Gutierrez et al.,
2011; Soto-Acosta et al., 2013; Bryan-Marrugo et al., 2016). In the
AG129 immunodeficient mouse model, permissive to flavivirus
infection, lovastatin treatment was able to delay mortality of
DENV-infected mice by 2 days compared to untreated infected
mice (Martinez-Gutierrez et al., 2014).

Currently, only two clinical studies have studied the role
of STAs as an antiviral agent for DENV infections. However,
no evidence of a beneficial effect on any of the clinical
manifestations of DENV or on viremia in adult patients treated
with STAs has been found (Whitehorn et al., 2016; Chia
et al., 2018). The inability of STAs to inhibit infection is
probably related to the concentration needed in liver cells to
counteract infection in vivo, which is not yet determined. In
addition, the reduction of hepatic cellular cholesterol by STAs
could be rapidly compensated by LDL-mediated cholesterol
import (LDL-Cholesterol) since STAs also positively regulate
the LDL receptor and indirectly reduce plasma cholesterol
levels (Vaziri and Liang, 2004). Interestingly, there is a
correlation between in vitro assays, where DENV-infected
hepatocytes show an increase of the LDL receptor on the cell
surface, and clinical assays, where reduced LDL-cholesterol and
total serum cholesterol levels are associated with subsequent
risk of developing dengue hemorrhagic fever/dengue shock
syndrome (Soto-Acosta et al., 2013; Biswas et al., 2015;
Durán et al., 2015). This evidence suggests that exogenous
cholesterol uptake plays an important role in DENV replication
and pathogenesis.

Therefore, combined pharmacological treatment to inhibit
cholesterol biosynthesis and import could be a safe and effective
alternative to treat DENV infections.

Drugs such as EZE that selectively inhibit the absorption of
cholesterol have also been found effective against DENV in vitro
infection (Osuna-Ramos et al., 2018a). The target of EZE is the
NPC1L1 receptor (Garcia-Calvo et al., 2005); therefore, it acts by
blocking the sterol-induced internalization of NPC1L1 (Figure 1;
Ge et al., 2008). EZE is usually taken in combination with other
lipid-lowering drugs, potentiating the cholesterol-lowering effect
(Montecucco et al., 2009; Bach et al., 2019). The combination
therapy of STAs with EZE could have a synergistic anti-DENV
effect, in addition to the fact that EZE could counteract STAs-
induced cholesterol absorption. However, there are currently no
studies with combination treatments for flavivirus infections.

Regarding ZIKV, the in vitro assays have demonstrated that
different STAs effectively inhibit ZIKV replication (Españo et al.,
2019; Farfan-Morales et al., 2021). Interestingly only lipophilic

STAs showed anti-ZIKV effects, suggesting that lipophilicity is
a crucial antiviral property (Españo et al., 2019). In this regard,
there is evidence that the lipophilicity of STAs is related to the
specificity, efficacy, and pleiotropic effects of these drugs because
it allows interaction with lipid membranes (Murphy et al., 2020).
However, the role of structure and biophysical properties on the
antiviral effects of STAs has been understudied, and there are not
in vivo studies to confirm that the antiviral properties of these
drugs are restricted to lipophilic STAs.

It should be noted that STAs also have several non-cholesterol
effects, such as anti-inflammatory and immunomodulatory
properties (Gorabi et al., 2020). By inhibiting HMGCR, STAs can
inhibit the biosynthesis of isoprenoids that are associated with
inflammatory signaling pathways (Ulivieri and Baldari, 2014) and
reduce the availability of geranylgeranyl pyrophosphate (GGP)
and farnesylpyrophosphate isoprenoids, which are necessary
for the prenylation of small G proteins such as Rho and Ras
GTPases (Pahan, 2006); these proteins have different functions
in intracellular signaling pathways, and some of them participate
during the viral replicative cycle (Zamudio-Meza et al., 2009;
Wang et al., 2010; Tang et al., 2014; Cuartas-López et al., 2018;
Fan et al., 2020).

Furthermore, it has been demonstrated that STAs can also
affect the AMPK pathway. As will be described later, AMPK is
a therapeutic target for treating flavivirus infections; therefore,
the STAs-associated AMPK activation could contribute to its
antiviral properties (Dehnavi et al., 2021). In this regard, the effect
of STAs on AMPK during flavivirus infections in vitro and in vivo
remains to be elucidated.

Finally, cholesterol metabolism has been linked to the
innate and adaptive immune response (Reboldi and Dang,
2018). Studies in macrophages have shown a circuit connecting
the cholesterol biosynthetic pathway with the innate immune
response (York et al., 2015; Robertson et al., 2016). This
suggests that the limitation of cholesterol synthesis and inhibition
of the mevalonate pathway by STAs could enhance the
immune response in specific cell types. Moreover, inhibition
of isoprenoid synthesis and consequent inactivation of small
G proteins improves antigen presentation and T cell activation
since prenylation of these proteins is required in antigen-
presenting cells. In this regard, the decrease lipidation of
Rab5 results in arrested endosomal maturation, prolonged
antigen retention, enhanced antigen presentation, and T cell
activation (Xia et al., 2018). Therefore, the use of STAs
as adjuvants has been suggested to increase the efficacy
of vaccines against infectious and non-infectious diseases
(Xia et al., 2018).

Interestingly, evidence shows that inhibition of the AVM
pathway by drugs such as STAs results in immunosuppressive
effects (Pahan, 2006). For instance, it has been described
that STAs have an inhibitory effect on the proliferation and
activation of lymphocytes (Chakrabarti and Engleman, 1991;
Shimabukuro-Vornhagen et al., 2014; Wang et al., 2016; Yang
et al., 2016). It is probable that the effects of STAs on the immune
response depend on the cellular context. However, a great
deal remains to be understood about cholesterol metabolism
and its connection with the innate and adaptive immune
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response to understand the antiviral mechanisms underlying
STAs (Gorabi et al., 2020).

Metformin for the Treatment of Dengue
Viruses and Zika
MET, a biguanide derivative, has been the most widely used drug
to treat type II diabetes for almost a century (Bailey, 2017). In
addition to its hypoglycemic effect (Takashima et al., 2010; An
et al., 2020), MET can reduce lipid synthesis by activating AMP-
activated protein kinase (AMPK), the master regulator of cellular
metabolism (Figure 2A; Zhou et al., 2001; Solymár et al., 2018).

The molecular mechanism of action of MET remains in
part unknown; however, it has been suggested that being
a cation, it accumulates in the mitochondria due to the
electrical gradient of the inner membrane, inhibiting complex
I of the mitochondrial respiratory chain (Owen et al., 2000;
Fontaine, 2018). MET, therefore, inhibits mitochondrial ATP
synthesis and consequently causes indirect activation of AMPK,
which is sensitive to ATP depletion (Zhou et al., 2001).
AMPK activation gives this drug unique properties so that
in recent years, many additional functions have been found
for MET. Studies have demonstrated a strong effect of MET
on numerous cancers, cardiovascular diseases, liver diseases,
obesity, and neurodegenerative diseases (Lv and Guo, 2020).
The excellent safety profile and lipid-lowering properties have
suggested this drug can treat DENV and ZIKV infection
(Figure 2A; Soto-Acosta et al., 2017; Martín-Acebes et al., 2019;
Farfan-Morales et al., 2021).

It has been described that DENV infection (Soto-Acosta
et al., 2017) can inactivate the AMPK kinase, decreasing its
active form, phosphorylated to Thr-172 (pAMPK). The complete
repercussions of this alteration are unknown, but it has been
suggested that it causes profound metabolic changes to provide
a favorable host lipid environment for replication, as the over-
activation of the HMGCR enzyme (Soto-Acosta et al., 2017). In
contrast, activation of AMPK protein by MET can counteract the
cholesterol increase and metabolic changes induced by DENV
infection (Soto-Acosta et al., 2017).

The anti-DENV effect of MET has been documented in both
in vitro and in vivo assays (Soto-Acosta et al., 2017; Farfan-
Morales et al., 2021). MET treatment significantly increased
(2 days) the average survival rate in DENV-infected and treated
AG129 mice compared to untreated mice and reduced the severe
signs of the disease (Farfan-Morales et al., 2021). It has also
been reported an association between the use of MET in diabetic
patients and the lower risk of suffering a severe disease caused by
DENV (Htun et al., 2018), suggesting that MET treatment could
attenuate and/or prevent severe forms of DENV infection. Due to
the anti-DENV potential of this drug, it is currently being tested
as adjunctive therapy for dengue in overweight and obese patients
(Nguyen et al., 2020).

On the other hand, MET treatment effectively inhibits
ZIKV replication in different cell lines (Farfan-Morales et al.,
2021); MET affected the synthesis and distribution of viral
proteins in the RCs and reduced viral progeny and double-
membrane structures associated with viral replication. However,

the treatment fails to counteract the negative signs of the disease
or increase the half-life of ZIKV-infected AG129 mice (Farfan-
Morales et al., 2021). This could be explained by the fact that the
well-established target tissue of MET is the liver, and therefore,
the drug appears to be more effective in inhibiting DENV and
not ZIKV infection (Gormsen et al., 2016; Jensen et al., 2016).
In addition, MET is not metabolized; instead, it is secreted
by the kidneys; its short half-life (1.7–7.3 h) and distribution
(1.12 ± 0.08 L/kg) suggests a low accumulation in other tissues
compared to the liver (Pentikäinen et al., 1979; Scheen, 1996;
Shu et al., 2008).

Another explanation could derive from the up-or down-
regulation of AMPK activity during ZIKV infection. The
evidence suggests that ZIKV may differentially modulate AMPK
activity in specific cell types. Specifically, MET could have a
dual effect: counteracting infection in tissues where the virus
down-regulates AMPK activity and contributing to the pathology
and cell death of tissues where AMPK activation favors viral
replication (Figure 2B; Thaker et al., 2019). It should be noted
that the consequences of AMPK activation in neuronal tissue
remain controversial (Ronnett et al., 2009). It has been suggested
that excessive and sustained activation of neuronal AMPK under
conditions of metabolic stress may lead to neuronal death
(Garcia-Gil et al., 2003; McCullough et al., 2005; Chen et al., 2009;
Ronnett et al., 2009). Likewise, although MET prevents oxidative
stress-induced cell death, it can also induce cell death under
certain conditions (Fontaine, 2018). Therefore, considering the
increase of pAMPK in brain tissue of Infar1−/− mice and the
aggravation of neurological signs in ZIKV-infected female AG129
mice during MET treatment (Farfan-Morales et al., 2021), it
cannot be ruled out the possibility that MET may contribute to
cell death in specific tissues, as suggested by Thaker et al. (2019).

On the other hand, it is unknown whether autophagy
induction and ZIKV-induced AMPK activation in neuronal
tissue (Thaker et al., 2019) are co-dependent events. Therefore,
despite the pleiotropic effects offered by MET through AMPK
activation, the use of this drug to treat ZIKV infections could
be disadvantageous due to the multiple target organs it infects.
However, it remains to be determined whether the modulation
of AMPK by ZIKV is cell-dependent and if there is a causal
association between AMPK activity and ZIKV-induced pathology
in neuronal lineage cells (Figure 2B).

In contrast, the pleiotropic effects of MET through AMPK
can provide a robust response against DENV. In this context,
MET, in addition, to directly inactivating key enzymes of different
metabolic pathways, such as HMGR and ACC, can also inhibit
the different isoforms of SREBPs and, therefore, the expression
of genes related to the biogenesis of cholesterol, fatty acids, and
triglycerides (Figure 2A; Ha et al., 1994; Zhou et al., 2001).
Moreover, it is well known that there is a close connection
between AMPK and mTORC1 (Kim et al., 2011); therefore,
further studies are required to elucidate the relationship between
autophagy and AMPK during flavivirus infections to determine
the role of MET during these processes.

Finally, MET may contribute to a more robust immune
response through the inflammatory circuitry that joins the
regulation of the sterol pathway with the antiviral interferons
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(IFNs) defense responses (Blanc et al., 2011; York et al.,
2015). MET can also enhance the innate immune response
through AMPK activation and consequently induce the
expression of type I interferon genes in human endothelial
cells and hepatocarcinoma cells during ZIKV and HCV
infection, respectively (Prantner et al., 2017; Tsai et al.,
2017; Singh et al., 2020). Moreover, it has been reported
that MET activates the STING/IRF3/IFN-β pathway by
inhibiting AKT phosphorylation in pancreatic cancer (Ren
et al., 2020). Therefore, in addition to limiting energy and lipid
resources, this drug could enhance the innate immune response
mediated by type I IFNs.

Lipid-Lowering Drugs for Other Viral
Infections
As described so far, reprogramming of cellular lipid metabolism
is virus-dependent; consequently, the susceptibility to lipid-
lowering drugs will depend on the requirements for each virus.
Although viral lipidomes and the role of lipids in the viral
cycle remain underexplored areas, functional studies have shown
that many enveloped viruses are susceptible to lipid-lowering
drugs (Table 1), such as STAs, which have been suggested
to treat infections caused by HCV, Japanese encephalitis virus
(JEV), Influenza A virus (IAV), and the Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (Castiglione et al., 2020;
Gorabi et al., 2020; Wani et al., 2020).

The use of STAs has been associated with a lower risk of
mortality among people with COVID-19 (Zhang et al., 2020;
Torres-Peña et al., 2021) and Influenza virus (Kwong et al.,
2009); this effect has been related to their immunomodulatory
properties (Fedson, 2013; Gorabi et al., 2020). However, its
use to treat these diseases remains controversial (Hui et al.,
2018; Atamna et al., 2019; Lima Martínez et al., 2020; Subir
et al., 2020; Zhao and Peng, 2021). The importance of lipids
during coronavirus infection is poorly explored; however, a
remodeling of lipid metabolism has been described during the
characterization of the lipidomic profile of human coronavirus-
infected cells (Yan et al., 2019). It also has been described
that aberrant lipid metabolism in morbidly obese individuals
adversely affects the COVID-19 immune response and increases
disease severity (Kindrachuk et al., 2015). This evidence suggests
that lipids play an essential role in the pathogenesis and viral
cycle of SARS-CoV-2.

Similar to DENV, it has been reported that cholesterol is
required for stability and infectivity of IAV and respiratory
syncytial virus (RSV). Therefore, cholesterol depletion by STAs
decreases both viruses’ infectivity and viral production (Gower
and Graham, 2001; San-Juan-Vergara et al., 2012; Bajimaya
et al., 2017). Interestingly, RSV replication is restored by
mevalonolactone, which salvages the cholesterol biosynthetic
pathway, indicating that the effect of STAs on RSV replication is
mediated by the products of this pathway and not by alternative
mechanisms (Gower and Graham, 2001).

STAs can also significantly reduce levels of proinflammatory
cytokines in RSV-infected cells (Ravi et al., 2013). For the IAV, the
benefits of treatment are strongly linked to immunoregulatory

effects and not to impact on viral replication (Liu et al., 2009;
Peng et al., 2014; Hui et al., 2018).

It has also been documented that human immunodeficiency
virus type 1 (HIV-1) and HCV are sensitive to statin-mediated
cholesterol-lowering, which affects viral entry, fusion, and
replication processes (Mañes et al., 2000; Liao et al., 2003; del
Real et al., 2004; Bley et al., 2020). STAs decreased viral load
and increased CD4 + cell counts in acute infection models
and in chronically HIV-1-infected patients; this effect was
blocked by adding l-mevalonate or GGP, but not by cholesterol
(del Real et al., 2004). Additionally, STAs can also interfere
with the prenylation of proteins required for HIV and RSV
(Gower and Graham, 2001; del Real et al., 2004).

STAs were also suggested as a possible adjunctive therapy for
Ebola virus disease (EVD) to counteract the inflammation and
immune system dysregulation caused by the Ebola virus (EBOV)
(Fedson et al., 2015). In vitro assays have shown that STAs
can decrease infection and reduce the infectivity of the EBOV
(Shrivastava-Ranjan et al., 2018). Interestingly, when different
inhibitors of the mevalonate pathway were tested, no antiviral
effect was observed when inhibiting HMGCR, but it was observed
when inhibiting FPPS, Farnesyl pyrophosphate synthase, and
OSC, 2,3 oxidosqualene cyclase (Shoemaker et al., 2013). Lipids,
such as phosphatidylserine, are critical for the EBOV replicative
cycle (Soni and Stahelin, 2014), but the role of cholesterol
during EBOV infection is still being studied. The existence of
cholesterol-dependent interactions between EBOV glycoproteins
(GPs) suggests that cholesterol is critical for viral assembly and
the pathology caused by EBOV (Hacke et al., 2015). In this
regard, STAs can suppress EBOV infectivity by interfering with
glycoprotein processing, and this inhibition can be reversed by
the exogenous mevalonate (Shrivastava-Ranjan et al., 2018).

Interestingly, as occurred with EBOV, STAs inhibited hepatitis
B virus (HBV), and the addition of mevalonate abolished the anti-
HBV effect, suggesting that the mevalonate pathway could be a
therapeutic target for all enveloped viruses (Bader and Korba,
2010). However, it should be noted that only a few studies have
tested the antiviral effect of STAs against DNA viruses, and the
evidence is inconsistent (Potena et al., 2004; Bader and Korba,
2010; Wu, 2013). On the other hand, although the antiviral
effect of statins against enveloped RNA viruses is apparently
a common factor, it is clear that their efficacy will depend
directly on the characteristics of each virus and the pathology it
causes in the host.

The EZE is another cholesterol-lowering drug that, unlike
STAs, has been little studied for its antiviral effect. There is only
one report showing the cholesterol-dependent anti-DENV effect
of this drug to our knowledge (Osuna-Ramos et al., 2018a).
Although it has been shown that this drug can counteract HCV,
HBV, and EBOV infection, this effect seems to be related to the
blockade of the viral entry receptor and not to the hypolipidemic
effect of this drug (Carette et al., 2011; Sainz et al., 2012; Lucifora
et al., 2013; Herbert et al., 2015). Therefore, further studies are
required to elucidate the antiviral effects of EZE.

Finally, metformin, which in 1940 was used to treat influenza
(Bailey, 2017), is another drug with lipid-lowering effects that
has gained interest in recent decades due to its pleiotropic effects
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TABLE 1 | Study of the antiviral effect of FDA-approved drugs, STAs, EZE, and MET.

Lipid-lowering drug Virus Study type Effect References

LOV and FLV DENV In vitro: Human Peripheral
blood mononuclear cells
(PBMC) and A459 cells.

Inhibition of viral replication. Rothwell et al., 2009

LOV DENV In vitro: Human endothelial cell
line HMEC and Vero cells

Inhibition of viral assembly. Martínez-Gutierrez
et al., 2011

LOV and PRV DENV In vitro: Huh-7 cells Reduction of virus yield and viral RNA
transcripts.

Soto-Acosta et al.,
2013

LOV DENV In vivo: AG129 Mice Delayed infection and increased survival
rate.

Martinez-Gutierrez
et al., 2014

FLV, ATV, LOV, PRV and
SIM

DENV In vitro: Huh-7 cells Reduction of viral yield by modulation of
the cellular antiviral profile.

Bryan-Marrugo et al.,
2016

LOV DENV Randomized, Double-Blind,
Placebo-Controlled Trial: 300
Vietnamese adults with a
positive dengue NS1.

No evidence of a beneficial effect of
statins on any of the clinical
manifestations or on dengue viremia.

Whitehorn et al., 2016

LOV DENV In vitro: Huh-7 cells Disruption in the formation of replicative
complexes.

Soto-Acosta et al.,
2017

SIM, LOV, RSV, and PRV DENV Retrospective cohort study:
257 adult dengue patients with
hyperlipidemia.

Statin use was not associated with a
lower risk of FHD/DSS.

Chia et al., 2018

ATV, CRV, FLV, LOV, MEV,
and SIM

ZIKV In vitro: Vero cells Reduction of virus yield. Españo et al., 2019

LOV ZIKV In vitro: Huh-7 cells Reduction of infected cells. Farfan-Morales et al.,
2021

ATV JEV In vitro: Neurosphere culture
from SVZ region from BALB/c
mouse pup brains
In vivo: BALB/c mouse

In vitro: reduction of cell death.
In vivo: Reduction of viral load in the
SVZ. Inhibition of microglial activation
and proinflammatory cyto/chemokine
production.

Wani et al., 2020

LOV RSV In vitro: HEp-2 cells
In vivo: C57BL/6 or BALB/c
mice

In vitro: Reduction of viral replication.
In vivo: Reduction of viral replication
and virus-induced illness score in mice.

Gower and Graham,
2001

LOV RSV In vitro: murine RAW 264.7
(RAW) macrophage cell line and
primary murine lung
macrophages.

Treatment mitigates the
pro-inflammatory cytokine response.
Lovastatin treatment did not inhibit RSV
infection.

Ravi et al., 2013

FLV HCV Clinical Trials: Patients with
chronic HCV

Lower HCV RNA titers Bader et al., 2008;
Forde et al., 2009

MEV and PTV. HCV In vitro: Replicon system in
hepatocyte cells.

Reduction of replication Delang et al., 2009;
Moriguchi et al., 2010

PTV HCV Retrospective and prospective
randomized pilot study: HCV
Patients with genotype 1b.

Reduction of viral load and
enhancement of the SVR

Shimada et al., 2012;
Yokoyama et al., 2014

SIM HBV In vitro: HepG2.2.15 Inhibition of replication. Bader and Korba, 2010

ATV HBV Case Report Hepatitis B virus reactivation associated
with ATOR

Wu, 2013

FLV CMV In vitro: HUVECs Decreased viral DNA concentration,
viral particle concentration and
replication.

Potena et al., 2004.

LOV, FLV, SIM, ATV, RSV,
and PTV

EBOV In vitro: Primary human
monocyte-derived
macrophages and Huh-7 cell
line.

Decreased infection. Reduction of the
infectivity of the released viral particles.

Shrivastava-Ranjan
et al., 2018

SIM EBOV In vitro: transfected HeLa cells
with FLAG-GPs.

Reduction of EBOV
glycoprotein-mediated cytotoxicity.

Hacke et al., 2015.

FLV IAV (H1N1) In vitro: MDCK and A549 cells Reduction of viral RNA and proteins.
Protects host cells against
influenza-induced inflammation.

Peng et al., 2014

(Continued)
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TABLE 1 | (Continued)

Lipid-lowering drug Virus Study type Effect References

LOV/caffeine combination IAV (H5N1,H3N2 and H1N1) In vivo: BALB/c mice LOV/caffeine combination effectively
ameliorated lung damage and inhibited
viral replication

Liu et al., 2009

ATV, CRV, FLV, LOV, PRV,
and SIM

IAV (H1N1) Cohort study over 10 influenza
seasons (1996 to 2006) using
linked administrative databases
in Ontario, Canada.

Reduced risk of mortality Kwong et al., 2009

STAs (not specified) IAV and IBV (H1N1) Retrospective analysis: 526
hospitalized patients from Israel
with laboratory-confirmed
2017-2018 influenza.

Use of STAs was not associated with
mortality benefit.

Atamna et al., 2019

LOV HIV-1 In vivo: SCID mice grafted with
adult human PBMCs
Clinical trial: Patients in A1
disease stage

Reduction in viral load and increase in
CD4+ T-cell count

del Real et al., 2004

ATV, RSV, SIM, PRV, FLV
and PTV

SARS-CoV-2 Retrospective study: 13,981
patients with COVID-19 in
Hubei Province, China; 2921
patients COVID-19, who are
hospitalized in 150 Spanish
hospitals.

Reduced risk of mortality among
people with COVID-19

Zhang et al., 2020;
Torres-Peña et al.,
2021

EZE HCV In vitro: Huh-7 cells
In vivo: Chimeric mice,
uPA/SCID mice with human
hepatocytes.

Inhibition of Infection in vitro and in vivo
EZE potently blocks HCV uptake and
delays the establishment of HCV
genotype 1b infection in mice with
human liver grafts.

Sainz et al., 2012

EZE HBV In vitro: Differentiated HepaRG
cells.

EZE inhibits the establishment of
intrahepatic cccDNA and expression of
viral replication markers.

Lucifora et al., 2013

EZE DENV In vitro: Huh-7 cells. Decreased infected cells, viral yield, viral
RNA and protein synthesis.
Cholesterol-dependent antiviral effect.

Osuna-Ramos et al.,
2018a

MET DENV In vitro: Huh-7 cells. Disruption in the formation of replicative
complexes. Inhibition of viral yield,
protein, and cell infection.

Soto-Acosta et al.,
2017

MET DENV Retrospective cohort study:
223 DENV patients with
diabetes mellitus.

Lower risk of suffering a severe disease
caused by DENV.

Htun et al., 2018

MET DENV In vitro: Huh-7 cells
In vivo: AG129 mice

In vitro: Decreased viral yield, protein,
and percentage of infected cells.
In vivo: Reduced virus-induced illness
score in mice and increased survival
rate.

Farfan-Morales et al.,
2021

MET ZIKV In vitro: Huh-7 cells
In vivo: AG129 mice

In vitro: Decreased viral yield, protein,
and percentage of infected cells.
In vivo: No evidence of a beneficial
effect.

Farfan-Morales et al.,
2021

MET YFV In vitro: Huh-7 cells In vitro: Decreased viral yield, protein,
and percentage of infected cells.

Farfan-Morales et al.,
2021

MET HCV Randomized Controlled Trial:
98 patients with genotype 1
chronic hepatitis C and insulin
resistance

The combination of MET, peginterferon
alfa-2a, and ribavirin increased the SVR
rate of patients with hepatitis C
genotype 1, with a good safety profile.

Yu et al., 2012

MET HCV In vitro: OR6 cells and Huh
7.5.1 cells.

Activation of type I interferon signaling.
Reduction of replication via AMPK.

Tsai et al., 2017

MET + SIM combination HCV In vitro: Huh7.5 cells. Treatment with both drugs inhibited
Huh7.5 cell growth and HCV infection
via mTOR.

Del Campo et al., 2018

MET HBV In vitro: HepG2 and
HepG2.2.15 cell line

Moderate inhibition of HBV replication. Xun et al., 2014

(Continued)
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TABLE 1 | (Continued)

Lipid-lowering drug Virus Study type Effect References

MET CVB3 In vitro: Hela cells and primary
myocardial cells

Inhibition of replication by reducing lipid
accumulation through suppression of
lipid synthesis-associated gene
expression.

Xie et al., 2015

MET KSHV In vitro: primary human
umbilical vein endothelial cells
In vivo: BALB/c mice

In vitro: Inhibition of viral replication, viral
lytic gene expression and production of
infectious virions.
In vivo: Decreased viral replication and
increased survival rates.

Cheng et al., 2016

MET SARS-COV2 Retrospective studies:
283 Hospitalized diabetic
patients with confirmed
COVID-19 in the Tongji Hospital
of Wuhan, China.
1139 COVID-19 positive
patients in 8 states in
United States.
775 nursing Home Residents
Infected with SARS-CoV2 from
the Community Living Centers
(CLC), United States.

Antidiabetic treatment with metformin
was associated with lower
hospitalization and mortality.
Relative survival benefit in nursing home
residents on metformin.

Luo P. et al., 2020;
Ghany et al., 2021;
Lally et al., 2021

DENV, Dengue virus; ZIKV, Zika vírus; JEV, Japanese encephalitis virus; RSV, Respiratory Syncytial Virus; HCV, Hepatitis C virus; HBV, Hepatitis B virus; CMV,
cytomegalovirus; EBOV, Ebola virus; IAV, Influenza A virus; IBV Influenza B virus; HIV-1, Human immunodeficiency virus-1; SARS-CoV-2, Severe acute respiratory syndrome
coronavirus-2; YFV, Yellow fever virus; CVB3, Coxsackievirus B3; KSHV, Kaposi’s sarcoma-associated herpesvirus; STAs, statins; LOV, lovastatin; FLV, fluvastatin;
PRV, pravastatin; ATV, atorvastatin; SIM, simvastatin; RSV, rosuvastatin; CRV, cerivastatin; MEV, mevastatin; PTV, Pitavastatin; EZE, Ezetimibe; MET, metformin; SVZ,
Subventricular zone; SVR Sustained virological response; DHF, Dengue hemorrhagic fever; DSS, Shock syndrome; SD, Severe dengue; cccDNA, Circular covalently
closed DNA.

and its antiviral properties (Ibrahim et al., 2021). As described
above, some viruses can modulate AMPK protein activity during
infection to their advantage (Bhutta et al., 2021). The HCV
(Mankouri et al., 2010; Yu et al., 2013), Epstein-Bar virus (EBV)
(Lo et al., 2013), and DENV (Soto-Acosta et al., 2017) can
downregulate the active form of AMPK to obtain a favorable
lipid microenvironment and are therefore sensitive to AMPK
activators. However, besides DENV and ZIKV, few studies have
tested the antiviral effects of MET.

In vitro assays have shown that MET restricts coxsackievirus
B3 (CVB3) replication by inhibiting lipid accumulation. CVB3
manipulates and modifies cellular lipid metabolism to enhance
viral replication; therefore, activation of AMPK by MET restricts
infection by inhibiting lipid synthesis-associated gene expression
(Xie et al., 2015). It has also been described that activation of
AMPK by MET restricts Kaposi’s sarcoma-associated herpesvirus
(KSHV), a DNA virus, by inhibiting viral lytic gene expression
and the production of infectious virions (Cheng et al., 2016).
HCV is also sensitive to MET treatments, which enhance the
innate immune response in hepatocarcinoma cells (Tsai et al.,
2017). In addition, in patients with chronic hepatitis C, the use
of MET in combination with other antivirals has been associated
with a better sustained virological response (Yu et al., 2012).

It has also been suggested that the immunomodulatory
and immunometabolic effects of MET provide benefits in the
treatment of patients with type 2 diabetes and insulin resistance
during Covid-19 disease (Singh and Singh, 2020; Hashemi
and Pezeshki, 2021; O’Carroll and O’Neill, 2021). Retrospective
studies have suggested a relative survival benefit in SARS-CoV-2
infected elderly persons taking MET compared to those not

taking MET (Luo P. et al., 2020, p. 19; Ghany et al., 2021;
Lally et al., 2021, p. 2).

Although the antiviral mechanisms are unknown, this could
be attributed to its anti-inflammatory potential (O’Carroll and
O’Neill, 2021, p. 19). Because complex lipid membrane formation
and palmitoylation of coronavirus proteins are essential during
viral replication and assembly, it has been suggested that FASN
inhibition and AMPK activation could prevent coronavirus
replication. This is based on in vitro findings and clinical data
revealing that the FASN inhibitor, orlistat, and the AMPK
activator, MET, can inhibit coronavirus replication and reduce
systemic inflammation to restore immune homeostasis (Tanner
and Alfieri, 2021, p. 19). On the other hand, AMPK activation by
MET could act on the PI3K/AKT/mTOR pathway, an essential
pathway in MERS-CoV infection (Kindrachuk et al., 2015).

All the results described above indicate that the antiviral
effect of lipid-lowering drugs such as STAs and MET is
based on their lipid-lowering properties and the pleiotropic
properties they offer. Therefore they could be a viable alternative
for treating viral infections, specifically for viruses with
high lipid demand.

CONCLUSION

Evidence suggests that ZIKV and DENV have adapted to and
co-evolved with cellular lipid metabolism to enhance their
replication. Because of the close link between the viral cycle and
cell lipid metabolism, FDA-approved drugs with lipid-lowering
effects have been considered as potential host-directed therapies

Frontiers in Physiology | www.frontiersin.org 14 October 2021 | Volume 12 | Article 749770

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-749770 October 1, 2021 Time: 16:1 # 15

Farfan-Morales et al. Anti-flavivrus Drugs

to inhibit viral replication. In vitro assays have shown that STAs,
EZE, and MET effectively inhibit ZIKV and DENV. However,
there are limited in vivo and clinical trials demonstrating the
effectiveness of these drugs during flavivirus infections, so further
studies are needed to determine their antiviral effect. Overall, the
evidence suggests that AMPK protein is a therapeutic target for
DENV and not for ZIKV. Therefore, MET could be safe and
efficient for treating DENV infection.

In contrast, the use of STAs or drugs that directly inhibit
key enzymes of the mevalonate and/or fatty acid pathway might
be a better strategy for ZIKV. Furthermore, the combination
with EZE, which inhibits cholesterol uptake, could offer effective
therapy for inhibiting these flaviviruses. Hence, further studies
are essential to determine whether the use of lipid-lowering
drugs, either in single doses or in combination, is feasible for
treating DENV and ZIKV infection.
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