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Abstract

Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel
formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix
proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the
characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper
enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to
mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we
asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse
enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened,
and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly
mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly,
p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a
secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing
teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling.
These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing
the attachment and detachment of the secretory stage ameloblasts as they move in rows.
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Introduction

Dental enamel development progresses through defined stages

that can be observed by the changing morphology of the enamel

organ that covers the developing murine tooth. The ameloblasts of

the enamel organ are a single layer of tall, columnar cells that are

responsible for enamel development at their apical cell surface and

attach to the stratum intermedium of the enamel organ at their

basal end. During the secretory stage of enamel development,

enamel matrix proteins are secreted and long thin crystallites form

normal to the secretory surface of the ameloblasts. These crystallites

will eventually span the distance between the dentin and the enamel

surface. The crystallites are bundled into rods, each rod is the

mineralized trail left by one ameloblast [1,2]. Rows of ameloblasts

will move past each other to form the decussating enamel rod

pattern that is characteristic of rodent dental enamel [3,4,5].

Once the enamel layer reaches its full thickness, the ameloblasts

transition (transition stage) into shortened maturation stage cells. It

is during the maturation stage that ameloblasts actively remove the

previously secreted proteins from the enamel matrix as the enamel

crystallites grow in width and thickness [reviewed in [6,7]]. As

ameloblasts proceed through the stages of enamel development,

the enamel matures from a soft cheese-like substance into its final

hardened form. Mature enamel is the hardest substance in the

body. Its hardness is intermediate between that of iron and carbon

steel, but has higher elasticity [8]. Once the enamel is fully mature,

ameloblasts regress and become part of the reduced enamel organ

that covers and protects the completed enamel surface until the

tooth erupts [9]. Therefore, ameloblasts progress through defined

developmental stages that require intercellular contact and

communication. A benefit of studying tooth development in

rodents is that their incisors continuously erupt. Thus, rodent

incisors continuously progress through all developmental stages of

tooth development and are excellent models to study the necessary

cellular interactions as development progresses.

Adherens junctions perform multiple functions including:

initiation and stabilization of cell-cell adhesion, regulation of the

actin cytoskeleton, intracellular signaling and transcriptional

regulation. The adherens junction is composed of several classes

of protein including cadherins and catenins. Cadherins are

transmembrane proteins with extracellular domains that provide

important adhesive contacts between neighboring cells. The
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extracellular domains connect through homotypic trans-pairing

between cadherins on adjacent cells and the intracellular domains

of cadherins are linked to the actin cytoskeleton by the catenins.

The functional activity of the adherens junction is mediated in part

by cadherin and catenin family members including E- and N-

cadherins and p120-catenin [reviewed in [10]].

p120-catenin binds to an intracellular cadherin domain near the

cell membrane termed the ‘‘juxtamembrane domain’’ (JMD).

Mutation of the E-cadherin JMD demonstrated that p120-E-

cadherin interaction was required for high level cell adhesiveness

[11,12] and it was also shown that binding of p120 to the JMD

prevents cadherins from becoming internalized and degraded

[13,14,15,16]. Previously, we demonstrated that E-cadherin, b-

catenin and p120-catenin are expressed in ameloblasts during

dental enamel development [17]. Additionally, adherens junctions

were previously identified along the possible sliding interface of

adjacent secretory stage ameloblast rows [18]. Therefore,

adherens junctions may be important for enamel formation and

we sought to determine if p120 ablation adversely affected dental

enamel development.

Here we directly examine the in vivo consequences of p120

ablation on tooth development. Conventional p120 knockout in

mice is embryonic lethal [19,20], but conditional knockout (cKO)

mice containing floxed p120 and the Cre recombinase linked to

the keratin-14 promoter (K14-Cre p120-cKO) survive [21]. The

K14 promoter directs Cre expression to ectodermally derived

tissues, including the enamel organ [22,23]. Dental enamel in

K14-Cre p120-cKO mice was severely malformed. The enamel

on the erupted teeth was rough, grainy and not well mineralized.

The enamel eroded off the occlusal surfaces with time,

presumably from the stress of normal mastication. Interestingly,

the teeth appeared to develop normally until the secretory stage

of enamel development. Thus, the epithelial-mesenchymal

interactions necessary for early tooth development were largely

unaffected by p120 ablation. However, once the ameloblasts

reached the secretory stage, they detached from the dentin and/

or stratum intermedium. The cells then became disorganized,

flattened, and lost their polarity. This loss of ameloblast

organization is consistent with the resulting rough, grainy and

hypo-mineralized dental enamel. p120 appeared to stabilize both

E- and N-cadherin on ameloblasts so cadherin loss likely plays a

role in the observed ameloblast detachment. Importantly, mice

mosaic for p120 ablation did have teeth with areas of well-formed

healthy enamel, demonstrating that the loss of p120 directly

affects tooth development and that the observed enamel defects

were not a secondary effect of p120 ablation. These observations

indicate an essential role for p120 in stabilizing ameloblast

intercellular interactions during the secretory stage of dental

enamel development.

Results

Cadherins and p120 Are Expressed in the Enamel Organ
During Dental Enamel Development

To confirm that cadherins are expressed in tissues responsible for

the developing mouse first molar, qPCR analysis was performed on

first molar enamel organs (EO) at two specific stages of

development. The results demonstrated that E-, and N-cadherins

are each expressed during the secretory (P5-7) and maturation stage

(P9-11) of enamel development (Fig. 1). Because p120 stabilizes cell

Figure 1. Secretory and maturation stage enamel organ express E- and N-cadherins, p120 catenin and Arvcf. qPCR was performed to
identify the expression levels of adherens junction proteins in enamel organs responsible for dental enamel development. Expression was assessed in
first molar enamel organs from mice at the indicated age. At days 5–7, enamel organs are predominantly at the secretory stage and at days 9–11,
enamel organs are predominantly at the maturation stage of enamel development. Note that p120 is expressed at constant levels across these
development stages. Arvcf is highly homologous to p120 and this is the first demonstration of its expression in the mammalian enamel organ. Each
time point was performed in duplicate with RNA from six different enamel organs. *, P,0.05; **, P,0.01; ***, P,0.001.
doi:10.1371/journal.pone.0012703.g001

p120 and Enamel Development
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surface cadherins, we also confirmed that p120-catenin was

expressed in the developing enamel organ. p120 was expressed at

a constant level from the secretory through the maturation stages of

dental enamel development (Fig. 1). This suggests that cell surface

cadherin stabilization is important during enamel formation.

Because Arvcf is highly homologous to p120, we asked if Arvcf

was also expressed in the mouse enamel organ. Expression of Arvcf

was also observed in the first molar enamel organ during the

secretory and maturation stages of development (Fig. 1).

Conditional p120 Ablation Results in a Severe Enamel
Phenotype

Conditional knockout (cKO) mice were generated by crossing

mice containing floxed p120 with mice containing the keratin-14

promoter (K14) linked to Cre recombinase (K14-Cre p120-cKO) as

previously described [21]. Keratin-14 is expressed in skin and in

the enamel organ and the K14 promoter directs expression to

these tissues [22]. The floxed region was purposefully extended so

that Cre would not always recognize both floxed sites. This

sometimes resulted in a mosaic distribution of normal cells with

intact p120 and cells with ablated p120 in the same animal tissue.

Scanning electron microscopy of molar teeth revealed severely

malformed enamel in the K14-Cre p120-cKO mice (Fig. 2B, C, E,

F). The surface layer of the cKO teeth (Fig. 2E, F) did not

resemble normal enamel (Fig. 2D). High surface SEM magnifi-

cation revealed spherical structures of about 1.0 mm in diameter.

They were fused to form rows of what appear to be mineral

deposits (Fig. 2E). The rows of fused spheres were composed of

smaller spheres, about 0.1 mmin diameter (Fig. 2F). The spherical

deposits on the tooth surface resembled amorphous calcium

phosphate. Note that the general shape of the teeth was not

affected (Fig. 2B). The cusps and fissures of the molar teeth were

discernible. However, the surface material was not resistant to

wear, as is normal enamel, and the teeth were rapidly abraded to

reveal the pulp cavity (Fig. 2C).

Faxitron analysis of wild-type and K14-Cre p120-cKO mouse

skulls revealed that the cKO mouse teeth had poorly mineralized

enamel as observed by a decrease in x-ray opacity on the negative

when compared to the wild-type teeth (Fig. 3, Top panel). This

observation was confirmed by micro-CT analysis (Fig. 3, Bottom

panels). In wild-type mice, a clear distinction was observed

between the tooth enamel and dentin. The enamel covering the

tooth surface was significantly more dense than the underlying

dentin. In contrast, the cKO mice displayed very little difference in

density between the enamel and dentin, indicating that the enamel

had not properly mineralized. On close inspection, small white

dots, indicative of spotty enamel mineralization, can be seen on

the surface of the cKO molars (Fig. 3, Middle panel). These

mineralized spots were consistent with the mineral spheres that

were observed by SEM analysis of cKO surface enamel (Fig. 2E).

These data demonstrated faulty enamel development in the K14-

Cre p120-cKO mice, prompting further characterization.

Enamel Organ Morphology is Dysplastic in K14-Cre p120-
cKO Mice

Histological analysis of cKO molar enamel organs revealed that

the enamel space was greatly reduced (Fig. 4B) when compared to

wild-type controls (Fig. 4A). As shown in Figure 4B, a large blood-

filled sinusoid was present between the first two molars (M2 and M1)

in the cKO mouse section. These sinusoids were common around the

developing molars of the cKO mice, but their exact location varied.

Figure 2. Enamel from K14-Cre p120-cKO mice is dysplastic. Scanning electron microscopy (SEM) of molars and enamel from wild-type (A, D)
and K14-Cre p120-cKO mice (B, C, E, F). Note that the general shape of the cusps and fissures in the cKO mice is not altered. The dysplastic enamel on
the cKO mouse molars (B) does not protect the teeth from abrasion as does normal highly mineralized enamel. The first molar from a six week old
mouse (panel C, left) shows pulp chamber exposure due to excessive attrition. The tooth surface of the K14-Cre p120-cKO (E) consists of an unusual
alignment of modular structures into distinct rows. Higher magnification shows the rows are composed of spherical structures of about 0.1 to 0.2 mm
in diameter. The wild-type surface enamel is very smooth (D).
doi:10.1371/journal.pone.0012703.g002
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Note that abnormal vacuoles were sometimes present where tissues of

the enamel organ had separated from one another (Fig. 4C, D).

The Ameloblast Layer of the K14-Cre p120-cKO Enamel
Organ Become Disrupted near the Start of the Secretory
Stage of Enamel Development

Morphological assessment of the wild-type continuously erupt-

ing mouse incisor (Fig. 5A) demonstrated that the initial stages of

tooth development in cKO mice appeared unaffected (Fig. 5B, C).

The cKO enamel organ had pre-ameloblasts that induced

odontoblast differentiation. The odontoblasts secreted dentin

matrix which then mineralized into dentin. However the

ameloblasts changed shape beginning at the secretory stage where

enamel matrix was expected. The ameloblasts became flattened

and separated from the surrounding tissues (Fig. 5C). Therefore,

the absence of p120 did not significantly disrupt incisor formation

until the incisor reached the secretory stage of enamel develop-

ment. This is when the ameloblasts move in rows and secrete

enamel matrix to initiate enamel mineralization.

Secretory Stage Ameloblasts Require p120-Catenin to
Maintain Intercellular Adhesion

Only secretory stage ameloblasts express appreciable levels of

the enamel matrix protein amelogenin. Therefore, incisors from

cKO mice were extracted, paraffin embedded and processed for

amelogenin immunostaining (Fig. 6). This served to definitively

label ameloblasts so that their developmental progression could be

more easily observed during the secretory stage of enamel

development. Figure 6, panels A–D show the sequential

progression of ameloblast development, starting with pre-secretory

stage ameloblasts that do not express amelogenin (Fig. 6A), and

ending with secretory stage ameloblasts that have detached from

the adjacent stratum intermedium (Fig. 6D). Note that vacuoles

(areas of detachment) appeared between the stratum intermedium

and ameloblasts during the presecretory stage (Fig. 6A) and that

these vacuoles became progressively larger as development

proceeded (Fig. 6B–D). The vacuoles did not contain amelogenin

and the adjacent ameloblasts had basal nuclei. Therefore the

ameoblasts were still polarized during the early secretory stage.

Depolarization occurred later when the ameloblasts also detached

from the dentin surface and from each other (Fig. 6E, F). The

ameloblasts in these last two panels appear to have lost most but

not all intercellular adhesion. They appear loosely connected to

from a randomly oriented meshwork that stretches between the

dentin surface and the stratum intermedium. In contrast, wild-type

secretory stage-ameloblasts maintain a highly oriented, tall,

columnar morphology (Fig. 5A). We therefore asked if p120

ablation affected ameloblast cell surface cadherin localization.

The Presence of Appreciable N-Cadherin in Ameloblasts
Requires p120 Expression

The mouse molars shown in Figure 7 are postnatal day 3 (P3).

At this age ameloblasts from second molars are at the pre-

Figure 3. Enamel from K14-Cre p120-cKO mice does not mineralize properly. Faxitron analysis of wild-type and cKO mouse skulls reveals
either absence of enamel or a thin layer of poorly mineralized enamel that is indistinguishable from the underlying dentin (Top). This assessment was
corroborated by micro-CT analysis of molar and incisor teeth (Bottom). The wild-type molars had clearly defined opaque enamel layers whereas
molars from the cKO mice did not (bracket identifies molars lacking a highly mineralized enamel layer). Note that small spots of more highly
mineralized enamel are present on the cKO mouse molars. These data indicate that the globular material observed on the tooth surface by SEM is
poorly mineralized. The cKO incisor tooth (bottom) had a thin layer of mineralized enamel covering a small portion of the labial tooth surface whereas
the wild-type incisor had thick enamel covering the entire labial surface of the dentin.
doi:10.1371/journal.pone.0012703.g003

p120 and Enamel Development
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Figure 4. Molar enamel organs from K14-Cre p120-cKO mice are dysplastic and are adjacent to blood filled sinusoids. Wild-type
mouse molars with identified tissue structures are presented (A) as a comparison to the molars from the cKO mice (B–D). Note that the enamel space
(resulting from the demineralization of enamel) in the cKO mouse molars was greatly reduced in width (B) when compared to wild-type molars.
Unusual large, blood-filled sinusoids were present, such as the one between the first (M1) and second (M2) molars in this section. The enamel organ
morphology became dysplastic in the p120 ablated mice (C) and a high magnification (D) of an enamel organ between two cusp tips (CT) revealed
the presence of clear vacuoles (Vac) where tissues were separated. With few exceptions, the ameloblasts, stratum intermedium, and stellate reticulum
layers could not be definitively identified. A thick normal appearing layer of dentin was present in the cKO mouse molar teeth. PO, pulp organ.
doi:10.1371/journal.pone.0012703.g004
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secretory stage and ameloblasts from first molars are predomi-

nantly at the secretory stage of enamel development (Fig. 7A, B).

Immunohistochemical analysis of molar teeth demonstrated that

N-cadherin was expressed in ameloblasts and odontoblasts but

not in other odontogenic cells (Fig. 7C). N-cadherin expression

was initiated after pre-odontoblasts and pre-ameloblasts had fully

differentiated and were producing their respective matrices

(Fig. 7B, C). However in cKO mice, N-cadherin was detected

in odontoblasts, but not in ameloblasts present in the first molar

cusp tip (Fig. 7D). This result suggests that p120 plays a role in

cadherin cell surface stabilization within ameloblasts of the

developing enamel organ.

Incomplete p120 flox Region Removal Causes a Mosaic
Pattern of Adjacent Normal and Malformed Ameloblasts
and Associated Enamel

Mosaic mice were generated as a control to evaluate the effect of

presence and absence of p120 within the same tissue. As

mentioned above, this was accomplished by placing an extended

floxed region within the p120 gene so that the Cre recombinase

would not always remove the floxed DNA, resulting in sporadic

normal p120 expression. Morphological analysis of a mouse

incisor enamel organ revealed a malformed array of stacked

ameloblasts beside normal columnar ameloblasts located in a

single row (Fig. 8, Top panel). Analysis of a single mosaic mouse

incisor by SEM revealed a normal smooth appearing enamel

surface located next to rough dysplastic enamel which in turn was

located adjacent to an area of missing enamel (Fig. 8, Bottom

panel). These data (Figs. 8, 9) demonstrate that localized deletion

of p120 caused cadherin loss, dysplastic ameloblasts, and

malformed enamel in mice that were otherwise capable of proper

dental enamel formation.

To show that p120 is responsible for maintaining the presence

of E-cadherin in ameloblasts, E-cadherin expression was

examined in a mouse incisor that was mosaic for p120.

Immunohistochemical staining of adjacent incisor cross sections

for E-cadherin or p120 demonstrated colocalization of these

proteins in tall, columnar ameloblasts that appear normal (Fig. 9).

However, in flattened, malformed ameloblasts where p120 was

ablated, immunostaining for E-cadherin was undetectable. This

demonstrates, within the same mosaic incisor, that the presence

of E-cadherin in ameloblasts is dependent on p120 expression.

These data are supportive of p120 playing an important

regulatory role in intercellular adhesion during the secretory

stage of enamel development when rows of ameloblasts slide by

one another.

Discussion

We have used conditional p120 ablation in mouse epithelial

tissues to examine the loss of p120 on tooth and dental enamel

development. The results reveal that p120 is essential for normal

dental enamel formation. Ablation of p120 results in striking

defects in cell-cell adhesion and ameloblast morphology. Remark-

ably, p120 ablation did not significantly affect the ameloblasts

responsible for dental enamel formation until the ameloblasts

reached the secretory stage of development. This was surprising

because during early tooth development reciprocal epithelial and

mesenchymal signaling is required for teeth to continue develop-

ment as the overall shape of the tooth is defined [24,25,26].

Although the dentin from the cKO mice was mildly dysplastic

(Fig. 7D), the overall shape of the teeth was normal (Figs. 2, 3)

indicating that p120 is dispensable in epithelium during early

tooth development.

Figure 5. Incisor tooth development in K14-p120-cKO mice appears normal until the secretory stage of development when the
ameloblasts flatten and become dysmorphic. A wild-type mouse incisor with identified tissue structures is presented (A) as a comparison for
the incisor from the cKO mice (B, C). The p120 ablated incisor ameloblasts separate from the dentin surface prior to mineral formation (B). Panel C is a
higher magnification of the boxed area in panel B. The p120 null ameloblasts (Am) abruptly alter their morphology soon after they enter the secretory
stage of enamel development and become short flattened cells (C). The odontoblast (Od) and pulp organ (PO) appear normal in these teeth (C).
doi:10.1371/journal.pone.0012703.g005
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Another striking feature of the cKO mouse teeth was that the

pre-ameloblasts began separating from the stratum intermedium

and this separation grew more prominent as development

progressed to the secretory stage (Fig. 6 A–D). In specific instances

during the secretory stage, the ameloblasts separated from both the

dentin surface and the stratum intermedium, but remained loosely

attached to each other. This resulted in a random meshwork

pattern of cells that spanned between the enamel and stratum

intermedium (Fig. 6E, F). It is during the secretory stage that

ameloblasts start moving in rows relative to one another to begin

forming the decussating rod pattern that is characteristic of rodent

enamel [3,4,5]. Therefore, cell attachments must be fine-tuned to

maintain the moving ameloblast row while simultaneously

allowing an adjacent row to detach and move in a different

direction. It is notable that adherens junctions were identified

along the possible sliding interface of adjacent ameloblast rows

[18]. We speculate that p120 plays an important role in directing

this elegant process and that in the absence of p120, ameloblast

cell-cell attachment and detachment becomes disorganized

resulting in the loss of ameloblast organization as a tall columnar

cell layer. This concept is consistent with the observed thin layer of

poorly formed nodular-looking dental enamel that forms on the

p120 ablated mouse molars (Fig. 2). The disorganized ameloblasts

would be expected to form a disorganized enamel layer. Because

p120 was previously demonstrated to stabilize cell surface

cadherins [13,14,16,20,27] and lack of p120 may be responsible

for ameloblast detachment, we investigated the possibility that

p120 ablated ameloblasts have reduced cadherin protein levels.

Three cadherin genes (CDH) were previously demonstrated as

expressed in the developing enamel organ [17,28,29,30,31,32].

These three cadherin genes encode E-cadherin (Cdh1), N-cadherin

(Cdh2), and P-cadherin (Cdh3). Here we demonstrate that both E-

Figure 6. The p120 null ameloblasts detach from the incisor dentin surface, the stratum intermedium, and from each other.
Secretory ameloblasts (Am) are identified by positive immunostaining for amelogenin. Panels A–D represent sequential sections of an incisor from a
cKO mouse. Pre-secretory ameloblasts do not express amelogenin (A) whereas secretory stage ameloblasts do express amelogenin (B–D). Note the
vacuoles above the ameloblasts in the stratum intermedium (SI) that grow progressively larger as development progresses. The right side of panel D
shows ameloblasts that have completely lost contact with the stratum intermedium. However, the ameloblasts also lose contact with the dentin
surface and with each other (E, F). The ameloblasts in panels E and F are disorganized and appear to have lost most but not all cell adhesion
properties so they appear stretched between the stratum intermedium and dentin. Od, odontoblast; SR, stellate reticulum.
doi:10.1371/journal.pone.0012703.g006

p120 and Enamel Development
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and N-cadherins are reduced in ameloblasts with p120 ablation

(Figs. 7, 8). These data are consistent with a role for p120 in

stabilizing the cell surface localization of these cadherins as was

demonstrated previously for E- and P-cadherins in mouse salivary

gland [19] and epidermis [21]. Arvcf had not previously been

identified in the enamel organ (Fig. 1). Its expression was of

interest because it is highly homologous to p120 and in vitro it can

rescue cadherin stability in p120 deficient cell lines [13]. However,

although Arvcf may have supported early tooth development in

the cKO mice, it did not adequately substitute for p120 function in

secretory-stage ameloblasts. Our results suggest that cadherins are

important for secretory stage ameloblast cell layer organization

and enamel development.

An additional unexpected feature of the p120 ablated mouse

was the abnormal presence of sinusoids located at various positions

adjacent to the developing teeth (Fig. 4B). The sinusoids are not

merely separated tissues. They have a defined endothelial cell

lining and contain red blood cells. How these sinusoids arise within

the enamel organ is unknown. However, in addition to stabilizing

cadherins, p120 can also regulate cell signaling by interacting with

the POZ family transcription factor, Kaiso [33,34,35] and by

influencing the activity of Rho GTPases [36,37,38]. In addition,

p120/Kaiso was demonstrated to play a functional role in

canonical and noncanonical Wnt signaling [34,39]. Perhaps, the

absence of p120 alters cell signaling in such a way as to promote

the formation of sinusoids in the enamel organ. This would

implicate p120 in a previously unknown function.

Five other studies have assessed conditional knockout of p120 in

mouse tissues. These studies demonstrated that p120 mediated

inflammatory responses in the skin [21], that salivary gland

development was dysmorphic and that acinar cell development

was blocked [19], that spine and synapse densities along dendrites

were dramatically reduced [20], that p120 regulates keratinocyte

mitosis and its absence promotes tumor formation [27], and that

p120 enhances endothelial proliferation and periocyte coverage of

developing microvessels [40]. In concordance with our results,

each study showed markedly reduced levels of cadherins in their

respective tissues. Although a marked reduction in adherens

junction components were observed in the skin, this did not appear

to grossly alter the desmosomes, tight junctions, or the sealing of

intercellular membranes within the epidermis [21]. This is

consistent with our results since tooth development progressed

with normal tissue differentiation up until the secretory stage of

enamel development and supportive intercellular interactions are

required for this to occur [41].

In wild-type mice, the normal submandibular gland consists

mostly of secretory acini, which are responsible for making saliva.

Acini are organized into lobules and are drained by ducts into the

oral cavity. The p120 ablated salivary glands had severe defects in

cell adhesion, cell polarity, and epithelial morphology. They

lacked acini and consisted entirely of misshapen occluded ducts

[19]. The secretory stage ameloblasts and submandibular acini are

both high volume protein secretory cells. However, in contrast to

the tooth, the abnormalities observed in the submandibular gland

Figure 7. N-cadherin is expressed in wild-type secretory stage ameloblasts, but not in p120 ablated ameloblasts. In the less mature
second molar (M2), N-cadherin was not expressed (A) in the enamel organ (EO) or pulp organ (PO) of three day-old mice. In the more mature first
molar (M1), N-cadherin was expressed (B, C). After dentin matrix deposition, odontoblasts (Od) and ameloblasts (Am) showed lateral membrane
immunostaining for N-cadherin, and the apical and basal terminal web apparatus of ameloblasts were also stained positively (B). After enamel matrix
deposition, the odontoblasts stain intensely (C). A developing cusp tip from the first molar of a P3 K14-Cre p120-cKO mouse stained for N-cadherin
(D). N-cadherin expression was detected in odontoblasts, but not in the ameloblasts from this molar. Note that the dentin appears rough and mildly
dysplastic.
doi:10.1371/journal.pone.0012703.g007
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coincided with p120 ablation and the acini never formed whereas

the ameloblasts did attain their tall columnar shape prior to

detachment from surrounding tissues.

Finally, it was significant that normal enamel could form in the

mosaic incisors (Fig. 9). Enamel formation is sensitive to

environmental influences. For example, persistent high fever will

result in enamel defects in the rat incisor [42]. However, because

the mosaic mouse was capable of forming normal enamel, we can

conclude that secondary effects were not the cause of the enamel

malformation observed in the K14-Cre p120-cKO mice.

Summary and Significance
Taken together, these data demonstrate that: p120 is dispens-

able in epithelium during early tooth development, p120 stabilizes

ameloblast cadherins, p120 may direct ameloblast cell movement

in rows, the absence of p120 may alter cell signaling in such a way

as to promote the formation of sinusoids, and that in vivo, p120

plays a critical role in maintaining the tall, columnar organization

of secretory stage ameloblasts.

Materials and Methods

Ethics Statement
All animals used in this study were housed in an Association for

Assessment and Accreditation of Laboratory Animal Care

(AAALAC) accredited facilities (animal welfare assurance number:

A3051-1) and were treated humanely, based on a protocol (08-

019) approved by the Institutional Animal Care and Use

Committee (IACUC) at The Forsyth Institute. Experimental

protocols were designed with institutional and National Institutes

of Health guidelines for the humane use of animals. The K14-Cre

p120-cKO mice were generated as described previously [21].

C57BL/6 mouse first molar enamel organs were extracted for

quantitative real-time PCR analysis.

Quantitative Real-time PCR (qPCR)
mRNA was extracted from 5-11 day-old first molar enamel

organs and reverse transcribed for qPCR analysis. PCR

temperature profile was 3 min 95uC initial melt then; 20 s 95uC,

30 s 62–64uC for 45 cycles then 30 s 95uC, for 1 cycle; 1 min

55uC followed by stepwise temperature increases from 55uC to

95uC to generate the melt curve. Standard curves were generated

with each primer set using control cDNA preparations and a 10-

fold dilution series ranging from 1000 ng/ml to 100 pg/ml. PCR

efficiencies and relative expression levels of experimental gene

expression as a function of Ef1a1, Actb (b-actin), and Gapdh control

gene expression were calculated as previously described [43]. Arvcf

(PrimerBank ID 15628021a1) and p120-catenin (PrimerBank ID

6671686a3) primers (Table 1) were designed by Primerbank

[44,45]. E-cadherin and N-cadherin were designed as listed in the

Roche Universal Probe Library Assay Design Center (http://qpcr.

probefinder.com/organism.jsp). Each time point represents dupli-

cate qPCR analysis of mRNA extracted from six different enamel

organs. Statistical significance was assessed by one-way ANOVA

followed by Tukey post-test.

X-ray Analysis and Scanning Electron microscopy (SEM)
For X-ray analysis, adult wild-type and K14-Cre p120-cKO

mouse heads were placed in a Hewlett Packard Faxitron 43855a

X-Ray system for 20 min at 40 kV using Kodak so-253 high speed

holographic film. For SEM, erupted molar and incisor teeth were

air-dried, fastened to stubs, sputter coated, and examined using a

JEOL 6400 scanning electron microscope.

MicroComputed Tomography (micro-CT)
First molar and incisor dental enamel was assessed for level of

mineralization by micro-CT performed on adult wild-type and

K14-Cre p120-cKO mice. Skulls were immersed in saline and

scanned (mCT-40; Scanco Medical) with the following settings

70 kV, 114 mA, and 0.012 mm isotropic voxels. After reconstruc-

tion, normal, highly mineralized enamel appeared more translu-

cent than the dentin and surrounding bone.

Histology
Heads were obtained from euthanized wild type and K14-Cre

p120-cKO mice at ages 3, 7, 9, and 15 days. The tissues were fixed

in 10% zinc formalin overnight, washed with PBS and, in order to

facilitate the sectioning of highly mineralized tissues, the jaws were

decalcified in a 1:1 solution of 20% sodium citrate and 10% formic

acid for 2 weeks. This and all subsequent incubations were

performed at ambient temperature. The tissues were dehydrated

in a graded series of ethanol washes and embedded in paraffin for

sectioning. Deparaffinized and rehydrated sections were stained

with haemotoxylin/eosin.

Immunohistochemistry
Dewaxed and rehydrated sections from mouse jaws were

subjected to heat activated antigen retrieval (55uC) in 10 mM

Figure 8. Mosaic phenotype of the K14-Cre p120-cKO mouse
incisor. A section through a mosaic cKO enamel organ (A) showing
normal ameloblasts (Am) in the middle and malformed ameloblasts to
the left (arrow). Es, enamel space. SEM analysis of the same cKO mosaic
incisor (B). The right side of the bracket touches normal enamel and the
left side touches an abnormal, enamel-free area. Between the two sides
of the bracket is the malformed dysplastic enamel. Note that the cKO
mouse is capable of forming normal enamel. Therefore, the observed
enamel dysplasia is not a secondary effect of conditional p120 ablation.
doi:10.1371/journal.pone.0012703.g008

p120 and Enamel Development

PLoS ONE | www.plosone.org 9 September 2010 | Volume 5 | Issue 9 | e12703



sodium citrate, pH 6. Endogenous peroxidase was quenched in

3% hydrogen peroxide in methanol. Sections were incubated

in blocking agent for 20 min followed by overnight incubation

in 1:10,000 diluted antisera specific for amelogenin (Abcam,

Cambridge, MA), N-cadherin (Invitrogen, Carlsbad, California),

or in 1:250 diluted p120-catenin antisera (BD Biosciences,

San Jose, CA). Staining was visualized by incubation in

Vectastain Elite ABC (Vector Laboratories, Burlingame, CA)

peroxidase-conjugated antibody and Sigma Fast 3,39-diamino-

benzidine substrate (Sigma,St. Louis, MO). Sections were

counterstained with 0.1% Fast Green and examined by light

microscopy. Negative control sections excluded the primary

antisera but were otherwise treated the same as experimental

sections.

Figure 9. E-cadherin is only expressed in ameloblasts capable of expressing p120. In the same K14-Cre p120-cKO mosaic incisor shown in
Figure 8, E-cadherin (top) and p120 catenin (bottom) was immunolocalized in adjacent cross-sections. E-cadherin is expressed exclusively in normal
appearing ameloblasts (brackets) that also express p120. However, in flattened, malformed ameloblasts where p120 was ablated, immunostaining for
E-cadherin was not detectable. EO, enamel organ; PO, pulp organ.
doi:10.1371/journal.pone.0012703.g009

Table 1. Primers used for quantitative real-time PCR (qPCR).

GenBank ID # 59 Primer 39 Primer uC

p120 NM_007615.4 GGGTCTCACCACAAG ATGCC TCCTGGGGTCCGTTGAGTTT 63

Arvcf NM_033474.2 GGCTGGGAGCTAGAGCCTAA GTTCCGCATGATGCACACAC 62

Cdh1(E-cad) NM_009864 CAGCCTTCTTTTCGGAAGACT GGTAGACAGCTCCCTATGACTG 62

Cdh2 (N-cad) NM_007664.4 CCAGCAGATTTCAAGGTGGAC TTACAGCTACCTGCCACTTTTC 62

Ef1a1 NM_010106 ATTCCGGCAAGTCCACCACAA CATCTCAGCAGCCTCCTTCTCAAAC 62

Actb NM_007393 TGACGGCCAGGTCATCACTATT ACCCAAGAAGGAAGGCTGGAAA 64

Gapdh NM_008084 GCAAAGTGGAGATTGTTGCCAT CCTTGACTGTGCCGTTGAATTT 62

doi:10.1371/journal.pone.0012703.t001
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