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In this work, a memristive spike-based computing in memory (CIM) system with adaptive
neuron (MSPAN) is proposed to realize energy-efficient remote arrhythmia detection with
high accuracy in edge devices by software and hardware co-design. A multi-layer deep
integrative spiking neural network (DiSNN) is first designed with an accuracy of 93.6%
in 4-class ECG classification tasks. Then a memristor-based CIM architecture and the
corresponding mapping method are proposed to deploy the DiSNN. By evaluation, the
overall system achieves an accuracy of over 92.25% on the MIT-BIH dataset while
the area is 3.438 mm2 and the power consumption is 0.178 µJ per heartbeat at a
clock frequency of 500 MHz. These results reveal that the proposed MSPAN system is
promising for arrhythmia detection in edge devices.
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INTRODUCTION

Recently, remote healthcare monitoring has received increasing attention for biomedical
applications in edge devices. Driven by the increasing performance of artificial intelligence (AI),
especially deep learning (DL), the healthcare monitoring applications has spread to various aspects
including early warning, diagnosis, treatment, and prognosis (Sodhro et al., 2018; Alam et al., 2019;
Patan et al., 2020; Pustokhina et al., 2020). Because such applications are usually deployed in edge
devices where computing and memory resources are extremely limited, energy-efficient DL systems
are highly required with corresponding software and hardware implementations.

One of the most valuable edge biomedical applications is remote monitoring of cardiovascular
disease, which has become one of the most serious threats of human health nowadays (Wilkins
et al., 2017; Zhou et al., 2018; Mehra et al., 2020). Evidence shows that the occurrence of cardiac
accidents can be predicted by interpreting the ECG signal in advance, so as to provide valuable time
for the intervention of emergency means (Ince et al., 2009; Purushothaman et al., 2014; Vafaie et al.,
2014; Rajpurkar et al., 2017; Zhang et al., 2018; Attia et al., 2019; Hannun et al., 2019). Compared
with the bedside ECG monitoring devices, the wearable ones are more suitable for remote long-
term and real-time monitoring owing to convenient setup, thus attracting extensive research. In
the scene of home monitoring, the monitoring device needs to collect the ECG signal constantly
without medical staff at side (Clark et al., 2018; Ozkan et al., 2019). Therefore, the main challenge
to design such systems is to make the detection of abnormal ECG signals automatic, low-power,
and real-time (Yasin et al., 2017; Ai et al., 2018).
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The biologically inspired spiking neural network (SNN) has
proven to be powerful in computing with low hardware costs,
providing a promising solution to the challenges mentioned
above. However, the existing SNN training algorithms such
as tempotron (Iyer and Chua, 2020), spiking-time dependent
plasticity (STDP) (Pu and Cook, 2015), remote supervised
method (ReSuMe) (Ponulak and Kasiński, 2010), and SpikeProp
(Bohte et al., 2000) suffered from remarkable computation cost
and performance loss compared with deep neural networks
(DNNs). To achieve a balance between the computation cost
and the training complexity, a spiking convolutional neural
network (Spiking-CNN) was proposed (Tian et al., 2021) to
deal with EEG signals. A traditional CNN was first trained and
then transformed to SNN with the trained weights. However,
Spiking-CNN separated the training and the inferring procedures
of SNN, and this may bring an uncertain degradation of the
network performance. To design a spike-based training method,
Wu et al. (2018) proposed the back propagation for spiking
networks in both spatial and temporal domain, but this method
failed to improve both the performance and the energy efficiency.
Therefore, novel techniques using intrinsically spiking-based
algorithms are still pursued to develop a hardware-friendly and
high-performance SNN.

Recently, the progress of resistive random-access memory
(RRAM), which is a two-terminal device applying memristors
to realize resistive switching, provides potentials for energy-
efficient neural network deployment (Guo et al., 2019). Due to
the energy-efficient features of memristors, attempts utilizing
memristors to build synapses (Wang et al., 2017) and neurons
(Wang et al., 2018) have been made, and achieved great progress.
The conductance of RRAM can be modulated by electrical pulses
either through a variably conductive filament or through the
migration of oxygen vacancies (Milo, 2020; Xiao et al., 2020). In
addition, RRAM has attractive features, such as high scalability,
low consumption power, fast write/read speed, stable storage, and
multi-value tune ability. Moreover, RRAM can be applied to in-
memory computing for neural network deployment and provides
appreciable potential to break the memory wall encountered by
conventional von-Neumann architecture.

Multiplication and accumulation (MAC) operation, which
is the major computation type in neural network processing,
usually dominates the energy consumption and the latency in
a hardware system. Computing in memory (CIM) embeds the
MAC calculation in memory array (Verma et al., 2019) with
a mixed-signal computing paradigm, which is promising to
address the computational energy and performance bottlenecks
encountered by conventional von-Neumann architecture.
Besides, the MAC operations can be performed with high
parallelism. The input vector activates multiple rows at a time
and the dot product is the sum of column currents weighted by
the conductance of memory cells (Strukov et al., 2009; Hu et al.,
2017). However, large analog-to-digital converters (ADCs) are
always required at the side of the array, which may bring huge
overheads in area and energy.

Memristor has shown excellent performance in simulating
both spike-based neurons and synapses in hardware, and the
use of SNN is expected to further reduce the computational

power consumption. However, there have been few studies
on RRAM-based SNN. Compared with RRAM-based artificial
neural network (ANN), the RRAM-based SNN proposed by
Tang et al. (2015) requires only 1/7 power consumption with a
slight accuracy degradation (∼2%). However, it fails to consider
the non-ideal circuit conditions such as interconnection effects
and non-linear effects, and the coding mechanism of SNN also
has not been properly explored. For the first time (Valentian
et al., 2019), integrated the spike neural network by combining
analog neurons and RRAM-based synapses to implement a
perceptron design. However, the simple hardware structure can
only accommodate a single fully connected layer, which has a
poor classification accuracy of 84% on MNIST. Zhang et al.
(2020) implemented a temporal coding SNN to recognize the
Olivetti face patterns and achieved a better energy efficiency.
However, the hardware scale is too small to store enough weights,
making it difficult to accomplish complex tasks. To sum up, the
works mentioned above are all based on the traditional image
recognition database and may not perform well for healthcare
applications like arrhythmia detection.

In this work, to overcome the above-mentioned problems,
a memristive spike-based computing engine with adaptive
neuron – MSPAN is proposed by software and hardware co-
design to realize an energy-efficient approach for biomedical
application in edge devices. Our contributions lie in the following
aspects:

(1) An energy-efficient deep integrative spiking neural
network (DiSNN) is proposed as well as the training and
inferring strategies. The computation complexity can be
largely reduced compared to CNN-based methods while
keeping high performance.

(2) A memristor based ADC-free CIM architecture is
proposed for inference with threshold adaptive leaky
integrate and fire (LIF) neuron module to mimic the
function of human brains.

(3) The 4-bit signed mapping method and the corresponding
weighted current mirror addition (WCMA) circuit are
proposed for the proposed DiSNN to further reduce the
area and power consumption overheads.

(4) The proposed memristive system is applied to dealing with
biomedical signals in edge devices and achieves both high
accuracy and energy efficiency in ECG-based arrhythmia
detection tasks.

The remaining sections of this paper are organized as
following. Section “Materials and Methods” introduces the key
theories and modules of the proposed system. Experimental
results and discussions are described in section “Results and
Discussion.” Section “Conclusion” concludes this paper.

MATERIALS AND METHODS

In this section, the key modules and the corresponding theories
of the proposed MSPAN are described in detail, including the
spike encoder design, adaptive LIF neuron model, the structure
of DiSNN as well as its computing strategy, the memristor based
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CIM architecture design, the memristor based neural dendrites,
the signed weight mapping scheme with corresponding circuits
and the threshold-adaptive neuron circuit design.

Poisson Spike Encoder Design
A spike encoder transforms the input data to the spike sequences
that can be processed by SNNs. In this study, a Poisson spike
encoder is designed based on the Poisson random number
generation. The encoding process can be presented as

δi =

{
1, Xi < Ii
0, Xi = Ii

(1)

where the subscription i stands for the i-th element in tensor I
and X. I is the input tensor, and X is a randomly generated tensor,
whose values of elements distributes uniformly in the range of
(0, 1). For each time step t in the time window T, the encoder
would generate a spike tensor δt . According to the definition of
Poisson distribution, the total number of spikes at one position
in the whole time window would follow Poisson distribution
approximately when time window T is large enough. That is the
reason why this encoder was named Poisson encoder.

The mean value of spikes generated at position i can be
obtained through

λ = TIi (2)

Adaptive Leaky Integrate and Fire
Neuron Model
Leaky Integrate and Fire model is often used to emulate neuronal
behaviors (Lapique, 1907). Inspired by natural behavior patterns
of biological neurons, the proposed adaptive LIF neuron model
in this work can avoid from being constantly active or inactive.
Otherwise, the network performance may be hugely degraded.
Besides, a self-modulated function is employed in this work
to ensure that the pre-synaptic stimulus of each neuron be
constantly non-negative, thus making the model more biological
plausible and perform better. Mathematically, the self-modulated
function can be expressed by Eqs 3–7 as below:

τ
du
dt
= −u+ IR0, u < Vth (3)

u = 0, u ≥ Vth (4)

o =
{

1, u ≥ Vth
0, u < Vth

(5)

I0LIF =

l∑
j=1

wjo
prev
j (6)

I =
{

I0LIF , I0LIF ≥ 0
0, I0LIF < 0

(7)

where u denotes the membrane potential of the neuron, R0 the
unit resistance (equals 1 in value), τ the time constant, I0LIF the

weighted sum of all the spike inputs which stand for original pre-
synaptic stimuli from the previous layer at the current time step,
l the length of the last layer, I the modified pre-synaptic stimulus,
and o, oprev the output spike of the current layer and the previous
layer, respectively. Vth is the threshold voltage that is adaptive
for neurons in every layer of the proposed SNN structure, as
discussed in the next section. Whenever the membrane potential
of a neuron exceeds the threshold voltage, it will generate a spike,
and then reset its membrane potential to the reset voltage, as
shown in Figure 1.

The equations above give the differential form of the function
of a LIF neuron model. To train the network iteratively, the model
needs to be transformed into an iterative form. From Eq. 3, using
Euler method, we can obtain that

ut+1 =

(
1−

dt
τ

)
ut + IR0 (8)

where ut1 − ut = du, and the subscript denotes the time step t.
Define

kτ = 1−
dt
τ

(9)

as the decay constant, and the iterative form can be expressed as
below:

ut+1 = kτut + IR0. (10)

Deep Integrative Spiking Neural Network
Figure 2B gives the model structure of the proposed DiSNN
topology. The DiSNN topology consists of an input layer, five
spike-based convolution (SConv) layers, two spike-based fully
connected (FC) layers and an output layer. Two max-pooling
layers are inserted between the SConv layer and the following
one in the second and the fifth layers, respectively. To provide
convenience for hardware design, single-dimension (1-D) kernels
are employed to extract features from the raw ECG data.

Figure 2A shows the computing strategy of DiSNN. The
features of the input ECG sample are interpreted as spike
sequences at each time step by the spike encoder. Each SConv
or FC block of DiSNN has an integrate unit (IU) and an
adaptive unit (AU). The IU integrates the information from the
former block while the AU adapts the information to extract
the true features against the noise. The update of membrane
potential in the LIF neuron is realized jointly by IU and AU
at every time step. Figure 3 shows the weight distribution of
the five SConv blocks of DiSNN, which is expressed in the
format of SConv− number of the block, output channel× input
channel× kernel height× kernel width.

At every time step, the output neurons of DiSNN may be
activated as needed. A spike counter records the activation
number of all the output neurons over all time steps and
the one with the highest average activating frequency tells the
results of classification. All the data transferred between DiSNN
blocks is in single-bit (0 or 1) form, which only requires
accumulation operations to accomplish the computing process.
The elimination of multiplication operations can significantly
reduce computation complexity and potential hardware costs.
Therefore, the proposed DiSNN is more hardware-friendly,
promising for low-cost edge applications.
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FIGURE 1 | (A) Leaky integrate and fire neuron model and (B) its function. One neuron receives spikes from the former layer which are integrated inside the neuron
membrane. The membrane voltage leaks when no spike comes. When the membrane voltage reaches the threshold voltage, the neuron outputs a spike to the next
layer.

Training and Inferring Method
In the proposed DiSNN, the data flows simultaneously in both
temporal and spatial forms. A back propagation algorithm has
been given to train spiking neural networks in both domains
(Wu et al., 2018). To take both time domain (TD) and spatial
domain (SD) into account, the training framework is provided
in the following steps.

Assuming function L as the loss function, the gradient descent
of each layer is determined as follows. L is presented in Eq. 11:

L =
1

2M

M∑
m=1

∣∣∣∣∣ym −
1
T

T∑
t=1

om,t

∣∣∣∣∣
2

(11)

where the subscript m denotes the mth sample, and t the tth
time step. M is the number of samples in one batch, and o, y the
output spikes and corresponding labels, respectively. By utilizing
the chain rule in nth layer and tth time step, the gradients can be
obtained through Eqs 12, 13

∂L
∂ui,t,n

=
∂L

∂oi,t,n

∂oi,t,n

∂ui,t,n
+

∂L
∂oi,t+1,n

∂oi,t+1,n

∂ui,t,n
(12)

∂L
∂oi,t,n

=
∑ln+1

j=1
∂L

∂oi,t,n+1

∂oj,t,n+1
∂oi,t,n

∂L
∂oi,t+1,n

∂oi,t+1,n
∂oi,t,n

(13)

where ln+1 denotes the total number of neurons in the n + 1th
layer. Note that the mathematical form of a spike is a singularity
function, i.e., the Dirac function, and cannot be differentiated.
To make the partial difference of an output spike computable on
hardware, a rectangular pulse function in Eq. 14

h (u) =


a, |u− Vth| ≤

a
2

0, |u− Vth| >
a
2

(14)

is used to replace the Dirac function, and the length of pulse
a stands for a hyper-parameter. Applying the functions of LIF
neuron models described in section “Adaptive Leaky Integrate

and Fire Neuron Model” to Eqs 7, 8, the gradient of weights can
be expressed in Eq. 15

∂L
∂wn
=

T∑
t=1

∂L
∂ut,n

ot,n−1 (15)

It is worth noting the fact that a decline in accuracy might occur
because of the “Spiking Stall,” which means some neurons keep
constantly active through all the time steps and lose the ability
to send information to the next layer. In DiSNN, a hardware-
friendly method is proposed to solve this problem, i.e., the AUs.

Parallel neuron layers named auxiliary inhibitory layers are
assumed for the main structure of the network as shown in
Figure 2. Each of the auxiliary inhibitory layers has the same
feature with the corresponding active layer and can also be
trained. When updating the membrane potential, the weighted
sum of all the spike inputs of the original pre-synaptic stimulus
I0LIF is shown in Eq. 16

I0LIF =

l∑
j=1

(
wjo

prev
j − βwa

j oprev
j

)
(16)

where β is a hyper parameter controlling the intensity of the
negative feedback. By constructing the auxiliary inhibitory layers,
even if the previous layer sends out an intense stimulus, the rise
of the membrane potential will remain within a reasonable range,
solving the problem of “Spiking Stall.”

As for the inferring process, the membrane potentials of
adaptive LIF neurons of each layer is calculated at every time step
and the neuron fires a spike when reaching the threshold. The
output neuron accumulates the output spikes over all the time
steps. The classification result is given by the index of the output
neuron with the highest activation frequency on average.

Computation in Memory Architecture
The overall hardware architecture of the proposed MSPAN
system for inference consists of the CIM structure and the
neuromorphic circuits, as shown in Figure 4. Compared with
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FIGURE 2 | The theory of the proposed DiSNN. (A) The computing strategies of DiSNN; (B) the model structure of proposed in this work, where “SConv” is
spike-based convolution layer, “MP” is max-pooling layer, and “C” stands for channel.

conventional architectures, CIM structure is well known to
perform the MAC operations with high energy efficiency and low
area consumption (Chi et al., 2016; Shafiee et al., 2016).

The inference phase of the trained DiSNN network is deployed
to the above-mentioned architecture, where the 32-bit floating-
point (FP32) synaptic weights are quantized, mapped, and loaded
into 4 neighboring RRAM cell in a single row in advance. The
RRAM cells acting as biological synapses receive the spike-based
input data streams from the Spike Encoder based on Poisson
distribution as presynaptic input spikes.

In the RRAM-based synaptic array, the word line (WL) is
connected to the gate of corresponding transistor to control the
on and off of the transistor in a one-transistor-one-RRAM (1T1R)
cell as shown in Figure 4. The source line (SL) is connected
to the source of the transistor. The upper electrode of RRAM
is attached to the bit line (BL), while the lower electrode is

serially attached to the drain of the transistor. According to
the Kirchhoff’s Law, the output of synaptic array on each BL
represents the product of the input and the corresponding weight,
in the form of current. During operations, six rows are selected
by the WL/SL driver. The input 1-bit pulses are first applied
on the SLs and then weighed by the corresponding 4 parallel
1T1R cells. Each BL naturally adds the result of 6 dot products in
the form of current according to Kirchhoff’s current law (KCL).
The 1-bit inputs and 1-D SConv kernels make it more efficient
for network mapping and SConv operations in the proposed
CIM-based system. IBL represents the sum of the result of 6
dot products. Two adjacent groups of BLs (a group contains
4 columns, as defined in subsequent sections) are selected by
the column MUX module at one time, and then subtracted
in a weighted manner, mimicking the neuromorphic impact
of inhibitory neurons on active neurons. Then, the obtained
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FIGURE 3 | Weights of the five spike-based convolution blocks. (A) SConv1, 4*1*1*3; (B) SConv2, 16*4*1*3; (C) SConv3, 16*16*1*3; (D) SConv4, 16*16*1*2; and
(E) SConv5, 32*16*1*2.

FIGURE 4 | Structure of the proposed MSPAN system (“WL” stands for word line; “SL” stands for source line; “BL” stands for bit line; and “MUX” stands for
multiplexer).

pre-synaptic stimulus currents are applied to the corresponding
threshold-adaptive LIF neurons, whose membrane will sample
and integrate the input pulses non-linearly and then fire a spike
once the accumulated voltage surpasses Vthreshold. A set of latches
would record the output of each output neurons. Finally, A digital
counter adds up the number of pulses emitted by the output LIF
neurons through all the time steps and then the classification
result is determined by the neuron with the highest activating
frequency on average.

Memristor Based Neural Dendrites
The typical scheme for weight storage (Chi et al., 2016) use
two memory arrays to separately store the positive and negative

weights of neural networks, as shown in Figure 5. The matrix
multiplication operations are first performed separately in each
array and then the intermediate results are subtracted in
peripheral circuits for the final results. However, this scheme
leads to considerable cost in chip area and power consumption.
For example, for a signed weight of k bits, a total of 2× (k− 1)
memristors are required to represent the weight. When it comes
to high-precision weights, the overhead of the memristor on the
storage array will become tremendous.

In this work, we employ a sign bit to mark the polarity of
weights to reduce the area and energy consumption. Besides, the
weights are quantized from the FP32 precision to the 4-bit signed
fixed-point one which ranges from −8 to +8, to further reduce
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FIGURE 5 | Typical weight storage structure (left) for sign weights compared with the proposed structure (right).

the size of neural network and the overhead of weight storage.
Here, the base {−23, 22, 21, 20} is used to uniformly represent
the 4-bit signed numbers and the mapping scheme is shown in
Table 1. For example, the decimal (−5)10 equals to 1×

(
−23)

+

0× 22
+ 1× 21

+ 1× 20, thus it is converted to (1011)2.
The classical 1T1R cells are adopted in the proposed CIM

structure to simulate the biological dendrites and store the
weights in the form of the conductance of RRAM. Single level cell
(SLC) RRAMs are used to implement the network weights, where
the high-resistance state (HRS) of SLC RRAM is employed to
represent “0,” and the low-resistance state (LRS) for “1,” as shown
in Figure 6. Since the floating-point weights have been quantized
to a 4-bit signed one, four 1T1R cells are placed in parallel to store
one weight in advance during write operation. The 1-bit input
data is converted into different voltage levels, “0” for 0V while
“1” for Vread.

As shown in Figure 7, for SConv operation, the 1-D kernels
are first split in the input channel direction, then connected and
jointed into an array of slender bars, and finally stored in four
corresponding parallel columns of the RRAM array. The width of

TABLE 1 | Signed 4-bit RRAM weight mapping table.

W[3] W[2] W[1] W[0] Binary value Value

LRS(1) HRS(0) HRS(0) HRS(0) 1000 −8

LRS(1) HRS(0) HRS(0) LRS(1) 1001 −7

. . .

LRS(1) LRS(1) LRS(1) LRS(1) 1111 −1

HRS(0) HRS(0) HRS(0) HRS(0) 0000 0

. . .

HRS(0) LRS(1) LRS(1) HRS(0) 0110 6

HRS(0) LRS(1) LRS(1) LRS(1) 0111 7

each SConv kernel is set to be 1 to better simulate the biological
mechanism and reduce the computational overhead. Therefore,
the size of each mapped kernel in the RRAM array is equal to
4× (KH1×CIN1) which can be considered as a group. The odd-
numbered groups store the weights of integrative SConv kernels
(named as Ii, i = 1, 2, 3, ...K) (suppose K as the number of
output channels of the layer), while the adjacent even-numbered
groups store the corresponding adaptive SConv kernel weights
(named as Ai, i = 1, 2, 3, ...K). Group Ii and Group Ai are placed
closely together to facilitate the input voltage sharing scheme and
the subsequent weighted subtraction operations. For multiple
output channels in one SConv bank, different groups in the
RRAM array store the weights of different SConv kernels in
parallel, which are arranged as I1, A1, I2, A2,..., IK , AK in order.
As for FC layers with no SConv kernels, the weight matrixes can
be directly mapped to the synaptic array based on the proposed
4-bit signed weight mapping scheme.

Bit-Wise Weighted Current Mirror
Addition Circuit
According to the proposed weight mapping scheme, the sign bit
is 1 for the negative quantized weights and the corresponding
RRAM is in LRS. The current ILRS of the sign bit needs to be
multiplied by the basic weight−23 during bit-merging operation.
If the sign bit is 0, which indicates that the weight is positive, the
current IHRS of the sign bit does not need to be included. The
synaptic array structure implemented by the 1T1R cells makes
the BL currents flow in single direction, thus it requires special
processing of the BL current corresponding to the sign bit.

According to the SConv kernel size of DiSNN, the kernel
height is two or three. So, we take their least common multiple,
six, as the degree of parallelism. Considering that ILRS � IHRS [in
the simulated RRAM model (Jiang et al., 2016), the on/off ratio
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FIGURE 6 | The illustration of spike-based convolution operation with memristor crossbar, where the input data in timestep has been transformed into input voltage
and the weights in SConv kernels has been transformed into RRAM resistance states.

FIGURE 7 | Weight matrixes mapping method for spike-based convolutional layers where K, H, W, L, C, A, and I stand for kernel, height, width, length, channel,
adaptive, and integrative, respectively.

>100] and the RRAM synaptic array only processes six rows of
MAC operations in parallel at a time, if there exists IHRS in the
BL current for the sign bit, IHRS can be ignored compared to ILRS.
Therefore, there is no need to design different weighted addition
circuits for positive and negative weights, thus greatly reducing
the circuit costs.

If all of the weights processed in parallel are positive, the
sign bit IBL[3] of six sign bits “0” is equal to 6IHRS. Although
the current is relatively small, when it is directly passed to the
weighted current mirror circuit, it will be multiplied by the base
of −23 and cannot be ignored, possibly impairing the accuracy

of the CIM architecture to a certain extent. Here, a transmission
gate is employed to judge whether the IBL[3] of sign bit will be
connected to the WCMA circuit, as shown in Figure 8. A voltage
comparator compares the voltage between Vref and VBL formed
by the sampled IBL through a fixed value resistor, and then
produces voltage VTRANS connected to the gate of the NMOS in
the transmission gate. If the six weights processed in parallel are
all positive, the BL current of sign bit is supposed to be 6IHRS,
which is far from turning on the transmission gate, so 6IHRS
will not be brought into subsequent calculations. However, once
there exists a negative number in the six weights, then VBL would
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FIGURE 8 | The circuit of bit-wise weighted current mirror addition circuit.

FIGURE 9 | Circuit structure of the proposed threshold-adaptive LIF neuron.
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FIGURE 10 | Hardware simulation results: influence of different crossbar sizes on latency, area, power, energy, and accuracy of the proposed MSPAN system. (A)
The latency of MSPAN system with different crossbar sizes; (B) the area of MSPAN system with different crossbar sizes; (C) the power of MSPAN system with
different crossbar sizes; (D) the accuracy of MSPAN system with different crossbar sizes; (E) the energy of MSPAN system with different crossbar sizes; (F) radar
plot of the overall hardware performance under different crossbar sizes.

be larger than Vref and VTRANS will be of high voltage, and the
transmission gate is expected to open.

Furthermore, since the MAC operation satisfies the
Multiplicative Distribution Law and the Associative Law,
the value of each 1T1R cell can be naturally added on the BL
according to KCL, and then the selected BLs will be weighted
and summed. The WCMA circuit is mainly composed of 3 basic
Shift and Add circuit mirror circuits (SACU). After 3 iterations,
the WCMA circuit is supposed to realize the following Eq. 17:

IsumAi
=
(
−23)

× IBLAi
[3]+ 22

× IBLAi
[2]+ 21

× IBLAi
[1]

+ 20
× IBLAi

[0] (IBLAi
[3] > 6IHRS)

IsumAi
= 22
× IBLAi

[2]+ 21
× IBLAi

[1]+ 20
× IBLAi

[0]
(IBLAi

[3] = 6IHRS)

(17)
Equation 17 realizes the dot product of weights and input bit,
in the form of analog current in Group Ai (i = 0, 1, 2, ...)
(similar for integrative groups), and illustrates how the current
mirror weighted addition circuit merges the currents on the
four BLs. Finally, the output currents of auxiliary and inhibitory
layers in the same bank will undergo a weighted subtraction
operation to realize Eq. 16, mimicking the biological mechanism
of lateral inhibition.

Threshold-Adaptive Leaky Integrate and
Fire Neuron Circuit
The proposed threshold adaptive LIF neuron is shown in
Figure 9. Since the threshold voltage of each layer in the DiSNN

is specifically set, we employ a Single-Pole-Four-Throw Switch
to produce different threshold voltages. Suppose that the voltage
V5 is high in the initial condition. The input current Iin coming
from the WCMA circuit will charge the capacitor Cm to simulate
the process of charge integration on the biological neuron
membrane. The transistor M1 plays the role of leakage resistance,
which discharges Cm slowly and its leakage rate is decided by Vl.
As the input current continues to flow in, the voltage across the
capacitor continues to rise non-linearly. Once Vm surpasses the
threshold voltage that is decided by transistors M3, M4, M5, and
M6, both M5 and M6 will be turned on and pull down the voltage
V5. The inverter composed of M10 and M11 then converts V5 to
a high-level voltage at the output port. To reset the LIF circuit,
V5 is fed back to the input port through the transistor M2, so
that the integration capacitor Cm is discharged quickly, and the
discharge rate is controlled by Vc (Yang et al., 2020). A spike will
be fired before the neuron is reset. Finally, the LIF neuron enters
the refractory period.

RESULTS AND DISCUSSION

Evaluation of Network Performance
To evaluate the performance of the proposed DiSNN, the MIT-
BIH dataset is used in this work (Atzori et al., 2014). The MIT-
BIH dataset is separated into the training set and the testing set
randomly with the ratio of 4:1. In order to train or infer with the
proposed DiSNN, the input data need to be converted into the
time dependent spike sequences. The input size of ECG samples
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during training is 1 × 251 with a batch size of 25, which is min-
max normalized into the range of [0,1]. The corresponding spike
sequences are generated using the spike encoder.

In this experiment, when the time step of spike-encoder is set
to 25, the accuracy of the proposed DiSNN reaches 80, 90, and
95% at the 9th, the 32th, and the 75th epoch, respectively. After
training 100 epoches, the proposed DiSNN achieves an accuracy
of 93.6% while the computation complexity is reduced by over
92% with only a decline of 4% in accuracy compared to the CNN
topology of the same structure, as calculated in Eqs 18, 19.

TCNN =
∑

MHMW (KHKW + KH + KW − 1) CinCout

× Ops× bit +
∑

NinNout × Ops× bits (18)

TSCNN =
∑

MHMW (KH + KW − 1) CinCout × Ops× bit

× t +
∑

NinNout × Ops× bits× t (19)

where T, M, N, K, C, H, W, stand for Time Complexity,
Feature Map Size, Neuron Count in FC Layers, Kernel, Channel,
Height, and Width, respectively; Ops stands for the needed cycles
in one computing operation (1 for adding, 1 for conditional
branching, and 10 for multiplication); bit stands for the bit
number of data flowing between two layers in NN; t stands for
the number of time steps.

Effect of Array Size and Memristance
Fluctuation on Network Performance
The proposed MSPAN system is evaluated on the NeuroSim
platform (Peng et al., 2020). The results are evaluated at the 65 nm
CMOS technology node and the IO bus is designed to work at a
clock frequency of 500 MHz. To find out the suitable crossbar size
for optimal performance, we examine the influences of crossbar
size on latency, area, power, energy, and accuracy of the proposed
MSPAN system, as shown in Figure 10.

As the result shows, the latency of hardware system rises as
the size of the sub-array increases, which can be ascribed to the
reduction of parallelism degree. The area, power, and energy also
tend to decrease as the size of the sub-array increases, because
the weight matrix needs to be divided into smaller sub-arrays,
which results in larger overhead for additional peripheral circuits
(such as WCMA circuits and LIF neurons). However, for large
crossbar size, non-ideal factors such as IR drop as well as the
manufacturing defects are more likely to be introduced, therefore
a trade-off is needed between the hardware performance and the
computation accuracy for synaptic array.

To evaluate the overall impact of array size on the hardware
indicators, a radar chart is drawn intuitively in Figure 10F.
The five indicators are linearly mapped to the radar chart,
and the largest value of each indicator is mapped to the fifth
circle. For the pentagons formed by different array sizes, the
smaller the area, the better the overall performance. Therefore,
under comprehensive consideration, 128 × 128 is selected as the
crossbar size of synaptic array.

The above simulation result is based on the premise that
RRAM is an ideal device, but in fact, due to the limitations

of fabrication technology and unstable usage environment,
RRAM devices have various non-ideal factors (Chen et al.,
2017). To make the simulation result more approximate to the
measurement data after taping out, the inference accuracy is
re-simulated considering the conductance variation and stuck-at-
faults (SAFs) problems, as shown in Figure 11.

For the conductance variation, we focus on device-to-device
(d2d) variation and cycle-to-cycle (c2c) variation, which may
have great impacts on the accuracy of CIM computation
and the performance of DiSNN. Figure 11A demonstrates
that the accuracy of the proposed hardware structure will
gradually decrease as the variation (estimated as the ratio of
conductance fluctuation range to the average conductance)
increases, and the decline rate will increase sharply if the
ratio is greater than 0.5. Typical fabrication process and room-
temperature test environment for inference can restrict the
variation parameter lower than 1.0 (Zhang et al., 2019), and the
accuracy will drop by 8.49%.

Stuck-at-fault is another common problem that affects the
performance of RRAM crossbar chip. It is mainly caused by
the defects introduced in the manufacture process, which will
result in a certain percentage of RRAM cells to remain in
HRS or LRS, i.e., SAF. The device in fault may be randomly
distributed in the crossbar structure or assembled in the form
of a whole row or a whole column. Figure 11B shows the
accuracy with increasing percentage of RRAM cells of SAF.
Previous work (Chen et al., 2017) claimed that, the stuck
at LRS and stuck at HRS problems are supposed to affect
1.75 and 9.04% of RRAM cells in crossbar array, respectively.
Based on such SAF level, the hardware accuracy rate is
only reduced by 4.25%, and the entire system still keeps a
high performance.

Simulation With Different Proportions of
Neuron Configuration
The LIF circuit in Figure 9 is simulated by Cadence Virtuoso. All
transistors in the circuit except the two inverters are supposed
to operate in the sub-threshold region. In the simulation
process, Cm is set to be 0.9 pF, the W/L ratio of PMOS
is 220/100 nm, the W/L ratio of NMOS is 120/100 nm,
and VDD, Vc, VI, V1, V2, V3 , and V4 are set to be
1 V, 850 mV, 300 mV, 900 mV, 950 mV, 1 V, and 1.05 V,
respectively. The threshold voltage of the proposed LIF neuron
can be adjusted to accommodate the hyperparameter in the
DiSNN algorithm.

Figure 12 shows the simulation waveform of the proposed
threshold-adaptive LIF neuron. The three groups of graphs in
Figure 12 correspond to different input conditions. In each
group, the top line is the input waveform, the middle line is
the potential difference across capacitor Cm, i.e., the neuron’s
membrane accumulative voltage, and the bottom line is the
waveform of the output pulse changing with time. The simulation
results indicate that with the increase of input current amplitude,
frequency, and duration, the time interval between the emitted
pulses of the proposed LIF neuron becomes smaller while the
frequency of the emitted pulses also increases.
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FIGURE 11 | Hardware simulation results: (A) accuracy under increasing RRAM device variation compared with ideal accuracy; (B) accuracy with increasing RRAM
stuck at fault (SAF) rate, where SAH represents stuck at HRS and SAL represents stuck at LRS.

FIGURE 12 | Simulation result of the proposed threshold-adaptive LIF neuron under different input condition. (A) The emission time of a LIF neuron under a series of
square waves with slightly different amplitudes; (B) the output of a LIF neuron under a series of square waves with the same amplitude but increasing duty cycles;
and (C) the emitted pulse number of a LIF neuron under a series of square waves with increasing amplitude at equal intervals.

Implementation Overheads
For AI based edge systems, a tradeoff exists between the
energy and the computation accuracy. As shown in Figure 13,
the SNN-based systems show overwhelming advantages in
energy consumption compared to CNN/ANN-based work while
maintaining relatively high accuracy. Further optimization can be
achieved by deploying SNN in CIM architecture. The proposed

MSPAN system deploying a 7-layer network achieves the lowest
energy consumption compared with all counterparts using
65 nm technology.

To demonstrate the contributions of this work, the evaluation
metrics including area, energy consumption, and detection
accuracy are estimated and compared with other state-of-the-art
work, as shown in Table 2. The proposed system exhibits at

Frontiers in Neuroscience | www.frontiersin.org 12 December 2021 | Volume 15 | Article 761127

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-761127 December 9, 2021 Time: 17:16 # 13

Jiang et al. Memristive Spike-Based Neuromorphic Computing

FIGURE 13 | The tradeoff between accuracy and energy for related ECG detection works. The energy has been normalized to 65 nm for a fair comparison.

TABLE 2 | Overall comparison with other state-of-the-art works.

References Technology
(nm)

Area (mm2) Energy
(/heartbeat)

Task type Detection
accuracy (%)*

Network
type

Computing
architecture

Device
type

TBME (Kiranyaz et al., 2016) 28 Arm cortex 37 mJ 2-class 98.6 CNN Out memory CMOS

ICHI (Kachuee et al., 2018) 28 Arm cortex 1.17 J 4-class 93.4 CNN Out memory CMOS

JHBI (Saadatnejad et al., 2020) 28 Arm cortex 35 mJ 4-class 99.2 LSTM Out memory CMOS

TBCAS (Amirshahi and Hashemi, 2019) 28 – 1.78 µJ 4-class 97.9 SNN Out memory CMOS

IET (Wu et al., 2020) 55 4 1.99 µJ 3-class 97.8 SRNN Out memory CMOS

This work 65 3.44 0.178 µJ 4-class 93.6 DiSNN In memory RRAM

*The detection accuracy for each work on this table is evaluated at the software level.

least 10× energy efficiency compared with other works and also
achieves a satisfying accuracy of over 93% in the 4-class ECG
classification tasks.

CONCLUSION

In this work, a memristive spike-based computing engine with
adaptive neuron for edge biomedical application is proposed
and evaluated on ECG-based arrhythmia detection tasks.
A hardware-friendly DiSNN, named DiSNN is first put forward,
which can achieve an accuracy of 93.6% on MIT-BIH dataset
while the computation complexity is reduced by over 92% with
a merely 4% decline in accuracy compared to the CNN topology
of the same structure. To deploy DiSNN in edge devices for
inference, a memristor based CIM architecture is implemented.
The proposed DiSNN achieves a satisfying detection accuracy of
92.25% and the average energy consumption is only 0.178 µJ

per heartbeat at a supply voltage of 1.0 V and a working
frequency of 500 MHz in 65 nm technology. The low energy
consumption greatly surpasses related works in ECG-based
arrhythmia detection field.
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