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SUMMARY

To quantify polygenic effects, i.e. undetected genetic effects, in large-scale association studies, we propose
a generalized estimating equation (GEE) based estimation framework. We develop a marginal model for
single-variant association test statistics of complex diseases that generalizes existing approaches such
as LD Score regression and that is applicable to population-based designs, to family-based designs or
to arbitrary combinations of both. We extend the standard GEE approach so that the parameters of the
proposed marginal model can be estimated based on working-correlation/linkage-disequilibrium (LD)
matrices from external reference panels. Our method achieves substantial efficiency gains over standard
approaches, while it is robust against misspecification of the LD structure, i.e. the LD structure of the
reference panel can differ substantially from the true LD structure in the study population. In simulation
studies and in applications to population-based and family-based studies, we illustrate the features of the
proposed GEE framework. Our results suggest that our approach can be up to 100% more efficient than
existing methodology.
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1. INTRODUCTION

While genome-wide association studies (GWAS) led to the discovery of many genetic risk loci for complex
diseases and traits, the overall magnitude of the combined genetic effects on the disease phenotype of
interest that is explained by GWAS findings is much smaller than classical heritability studies suggested
(Manolio and others, 2008). This motivated large-scale efforts, e.g. Psychiatric Genomics Consortium
(PGC), to combine as many available GWAS as possible for any particular disease and trait, and perform
meta-analyses across all available studies. The large-scale efforts identified additional disease loci, but the
overall genetic effect that is attributable to all significant GWAS signals still remains substantially smaller
than the estimated heritability.

At the same time, in many of the meta-analyses and large-scale GWAS, a genomic control factor
(Devlin and others, 2001) (global inflation factor of the association test statistics) that is clearly greater
than one was observed, raising concerns about the validity of the statistical analysis. The inflation of
the association test statistics can be explained by differences in terms of ancestry and/or phenotypic
characteristics between the study populations of the meta-analysis. Such differences would lead to study
heterogeneity which is difficult to account for in such analysis. Current efforts to maximize sample size
by including as many studies as possible in the meta-analysis could amplify this effect. An alternative
explanation for the observed inflation of association test statistics in such large-scale analyses is that the
inflation of the genomic control factor is caused by large numbers of true positive association signals that
do not formally reach the level of genome-wide significance (polygenic effects). While initial simulation
studies suggest that polygenic effects can be a plausible explanation for such inflations of the genomic
control factor (Devlin and others, 2001), statistical methodology is required to address this important
research question.

For population-based studies of unrelated individuals, LD Score regression (Bulik-Sullivan and others,
2015b) proposed a marginal mean model for the single-variant association test statistics and applied a
weighted linear regression technique to estimate the corresponding model parameters, quantifying the
amount of population stratification and polygenic effects. Standard errors for the estimates are obtained
through a jackknife procedure, as classical regression assumptions are violated due to the complex
correlation structure between association test statistics.

Here, we derive a general marginal model for single-variant association test statistics of complex dis-
eases and traits in large-scale studies that is valid for arbitrary study designs, e.g. population-based studies,
family-based studies or any combination of those. For the special case of population-based association test
statistics, our general mean model is equivalent to the mean model of LD Score regression. For the general
mean model, we propose an efficient and robust framework to estimate the parameters of the marginal
model. Our approach extends the idea of GEEs and utilizes LD matrices estimated from external refer-
ence panels/populations. If the LD matrices from the reference panels approximate the true correlation
structure of test statistics reasonably well, our framework achieves a substantially increased efficiency
over LD Score regression estimation. In contrast to existing methods as VEGAS (Liu and others, 2010)
or ImpG (Pasaniuc and others, 2014), our framework does not require that external LD matrices exactly
match the correlation structure of the study and is therefore robust against LD misspecification due to
population differences or small sample sizes of reference panels. Furthermore, our GEE based approach
provides asymptotic valid standard errors, making simulation or bootstrap methods redundant. In simula-
tion studies, we examine the efficiency of our approach and its robustness against misspecification of the
LD structure. In application to the population-based studies of the PGC, we observe an efficiency increase
compared to LD Score regression. We also illustrate the approach by an application to a family-based
association study for autism.
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2. METHODS

In this section, we derive a flexible marginal model for association test statistics in large-scale association
studies. Based on that, we define the PolyGEE framework for the estimation of the polygenic effects.

2.1. General marginal model for association test statistics of complex diseases

For the complex trait of interest, we want to estimate the amount of polygenic effects at a genome-
wide level using a dense set of nSNPs common SNPs that are ordered by their physical location along
the chromosomes. For these loci, the corresponding summary association test statistics are denoted by
χ 2

1 , . . . , χ 2
nSNPs

. They typically are obtained from a population-based study, a family-based study or from
a meta-analysis/combination of both study designs. For a population-based design, the association test
statistics are often score tests and, in family-based designs, FBAT statistics are frequently used (Lake
and others, 2001; Laird and Lange, 2010). We propose the following general marginal mean model for
association test statistics

E[χ 2
l ] = β1 + Cstudyllβ2, l = 1, . . . , nSNPs, (2.1)

where the parameter ll denotes the LD Score of variant l. The LD Score (Bulik-Sullivan and others, 2015b)
ll = ∑

v
r2

lv measures the total amount of LD between the variant l and variants within a genetic distance

of 1 centimorgan (cM). Bulik-Sullivan and others (2015b) observed that this genetic distance is sufficient
to describe the LD structure locally. In this summation, r2

lv denotes the LD measure r2 between variant l
and a variant v.

To identify and quantify the different sources of inflation, we include two parameters in equation (2.1).
The first parameter β1 measures the amount of global population stratification in the study that causes
the inflation of the test association statistics at a genome-wide level. The second parameter β2 measures
the overall polygenic effects. We will see that that the second parameter can be linked to the heritability
of the disease/trait. The specification of the constant Cstudy depends only on the design of the association
study by a priori-known study parameters such as sample size, disease prevalence etc. Below, we describe
that the already known mean models for case-control and quantitative trait studies of unrelated individuals
are special cases of equation (2.1) and derive the study parameter Cstudy for these scenarios. Furthermore,
for family-based association studies with dichotomous traits, we derive the corresponding special case of
equation (2.1) and, based on these findings, we can derive the parameter Cstudy for the more general case of
association studies with mixed designs, i.e. combinations of population-based and family-based designs.

The variance of association test statistic χ 2
l in our general marginal model is described by

Var(χ 2
l ) = φ(E[χ 2

l ])2, (2.2)

where φ is a dispersion parameter. In 2.1.4, we argue why equation (2.2) is a reasonable assumption. To
understand the special cases of the general marginal model for population- and family-based study designs
for dichotomous traits, we first establish the connection between the relative risk and the liability model.

2.1.1. Link between relative risk and explained variance. For a complex disease with prevalence K and
under the assumption of a multiplicative relative risk model, the phenotypic variance explained by a causal
variant, here denoted by q2, with a minor allele frequency (MAF) p on the liability scale is approximately
given by (Peyrot and others, 2016; Yang and others, 2011b)

q2 = 2p(1 − p)(λ − 1)2

c2
, (2.3)
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where the parameter λ denotes the relative risk of the minor allele and c = t
K is a scaling factor. The

parameter t is the height of the standard normal curve at the point of the 1 − K quantile. Equation (2.3)
is the key to connect the mean of an association test statistic, which clearly depends on the relative risk
λ and the MAF p, to the variance explained by the causal variant. According to the established literature,
the heritability h2 is now defined as the sum of explained variances of causal variants, assuming additive
effects and equal effect size distributions. The heritability defined in this way measures the total amount
of polygenic effects, this explains why we can identify β2 with h2 under these assumptions.

2.1.2. Population-based association studies. In the case of a case-control study, our marginal mean
model is defined by the LD Score regression mean model for the association test statistics χ 2

l , given by
(Bulik-Sullivan and others, 2015b)

E[χ 2
l ] = 1 + Na + ll

ncasesncontrolsc2h2

(1 − K)2NM
, (2.4)

where we denote the sample size by N , the average heritability per SNP by h2

M , the numbers of cases,
respectively, controls by ncases, respectively, ncontrols, and the amount of population stratification by a. The
characterization of h2

M requires the specification of the number of SNPs M that is used in the computation
of the LD Scores. To avoid an overestimation of the heritability, M is restricted to the number of common
SNPs with a MAF above (Bulik-Sullivan and others, 2015a) 5%, as suggested by LD Score regression.
For unascertained studies with quantitative traits, the mean model is given by (Bulik-Sullivan and others,
2015b)

E[χ 2
l ] = 1 + Na + ll

Nh2

M
. (2.5)

Equations (2.4) and (2.5) are linear approximations of the mean of association statistics. These formulas can
be derived using a Taylor approximation of the non-centrality parameter (NCP) (Yang and others, 2011b)
with respect to the relative risk λ (utilizing the small effect size assumption of a polygenic architecture),
applying equation (2.3), using the definition of the LD Scores ll and assuming constant variances of causal
variants that are uniformly distributed along the genome.

2.1.3. Family-based case-control studies. We consider a large-scale family-based association study with
N independent nuclear families, all families are assumed to be of the same type, e.g. the same number
of affected or unaffected offspring (na and nu, respectively), and with parental genotype information
available. We relax this assumption later. We assume that transmissions to offspring are independent given
the parental genotypes. We assume that the variant l is tested by the general association test approach
which is implemented in FBAT (Lake and others, 2001; Lange and Laird, 2002). We denote the offset
parameter by z. Based on a second order Taylor approximation in λ around λ = 1, we find the following
expression for the expectation value of the squared test statistic χ 2

l .

PROPOSITION 1

E[χ 2
l ] ≈ 1 + r2

lDSL

c2 1
2 N ((1 − z)na + z K

(1−K)
nu)

2

(1 − z)2na + z2nu
q2

DSL, (2.6)

where q2
DSL denotes the explained variance of a causal variant in LD r2

lDSL with variant l. The parameters
N , z, na and nu are defined as above, the parameter K denotes the prevalence of the disease.
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The derivation of this approximation can be found in Appendix A of the supplementary materials avail-
able at Biostatistics online. In the following, analogously to the population-based scenario, we consider
the approximation as strict equality to model the mean. Furthermore, following the arguments as in the
setting of population-based studies (constant variances of causal variants, uniform spatial distribution
along the genome), we can state

E[χ 2
l ] = 1 + Na + ll

c2 1
2 N ((1 − z)na + zK/(1 − K)nu)

2

(1 − z)2na + z2nu

h2

M
. (2.7)

The extension of the mean model to multiply family types is straightforward (Appendix A.2 of the supple-
mentary materials available at Biostatistics online). Equation (2.6) characterizes the approximate power
of family-based studies for all combinations of affected and unaffected offspring with reference to small
effect sizes (small relative risks). Our derivation thereby does not rely on an explicit analytic formula for
the exact NCP. The latter is only known for some special cases as trios and sibling pairs (Deng and Chen,
2001; Knapp, 1999). Our results are in line with corresponding second order Taylor approximations of
these NCPs in λ around λ = 1.

2.1.4. Equation (2.2) and Cstudy. Obviously, equations (2.4), (2.5), and (2.7) are covered by model
equation (2.1) with an appropriate choice for Cstudy and identifying β1 with 1 + Na and β2 with h2.
For a meta-analysis of population- and family-based designs, Cstudy is constructed by the corresponding
weighted sum.

If we utilize the assumption of normally distributed genetic effects for the moment, we can conclude
that the equation (2.2) is valid with φ = 2. The assumption of normally distributed effects was used in
both the derivation of the linear mixed model of GCTA (Yang and others, 2011a) and the motivation for
the heteroscedasticity weights of the LD Score regression (Bulik-Sullivan and others, 2015b). We relax
assumption equation (2.2) by assuming an arbitrary nuisance parameter φ.

2.2. PolyGEE framework

Now, we propose our PolyGEE approach to estimate the parameters β1 and β2 from the given set of
association test statistics. The correlation structure of the test statistics is mainly caused by the LD structure
between the corresponding genetic variants. Since meaningful degrees of LD around a variant usually do
not exceed beyond 1 cM (Laird and Lange, 2010), we can assume here a band correlation structure.
LD between two loci can be estimated from reference panels such as the 1000 Genomes Project (1000
Genomes Project Consortium and others, 2012) for specific subpopulations. These LD matrices estimated
from reference panels provide reasonable approximations of the correlation structure of our study data for
a moderate-sized number of variants. However, they cannot be assumed to be completely correct, due to
subpopulation differences, small reference panel sample sizes, genetic effects or covariate adjustment (Xu
and others, 2015). We extend the GEE approach to estimate the parameters β1 and β2 in the mean model
for the association test statistics (2.1). GEE approaches provide unbiased estimates for statistical models
that are specified only by their first and second moments (Liang and Zeger, 1986). The observations
are grouped into clusters that are assumed to be statistically independent and, within the clusters, so-
called working-correlation matrices are specified which are supposed to approximate the true correlation
structure. Even, if the correlation matrices are severely mis-specified, the GEE approach is robust against
this model violation and provides both consistent estimates of the parameters of the mean model and valid
standard errors. However, the efficiency of the GEE approach benefits from an accurate specification of the
correlation structure. Note that the quantity ll as the average of LD measures can be estimated more robustly
from reference panels than high-dimensional LD matrices. Therefore, we assume the general marginal
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model to be correctly specified. To apply the GEE methodology to our model (2.1 and 2.2) in the context of
association test statistics from genome-wide large-scale association studies, we divide the human genome
into consecutive blocks of 1 cM length, group the association test statistics within these blocks into clusters
and use the estimated LD matrices as working-correlation matrices. For most association studies, reference
populations from reference panels such as the 1000 Genomes Project will be available that mirror the LD
structure of the study/target population reasonably well. In contrast to the standard application of the
GEE approach, the clusters of observations/association test statistics are here generally not statistically
independent, as association test statistics in adjacent clusters will be correlated due to LD. However, since
the length of the blocks of 1 cM is chosen sufficiently large, we can assume that only nearby clusters
are correlated. In Appendix B of the supplementary materials available at Biostatistics online, we show
how the original GEE assumption of independent clusters can be relaxed in such a way, i.e. the sandwich-
variance estimator can be extended to the scenario of sparsely correlated clusters and how the classical
asymptotic results can be reestablished. Now, we describe the GEE objects to estimate the parameters
in the mean model for the association test statistics. The following description and the derivations in the
supplementary materials available at Biostatistics online are strongly related to Wang (2011) as well as
Xie andYang (2003). As equations (2.1) and (2.2) imply the setting of gamma-distributed test statistics χ 2

l ,
we use the exponential family distribution, including the gamma distribution, using the general notation
as in Xie andYang (2003). As described above, we arrange the human genome respectively the association
test statistics χ 2

l , l = 1, . . . , nSNPs, into 1 cM clusters. The input is therefore described in the following by
yi = (yi1, . . . , yimi )

T , i = 1, . . . , n, where n is the number of clusters with bounded size mi. In addition, we
have covariates xi = (xi1, . . . , ximi )

T , where xij is a pn × 1 vector. pn denotes the number of parameters of
interest.Although the number of parameters pn = 2 and the covariate design (2.1) is fixed in the application
described in this work, we allow general covariate data and pn to grow with the number of clusters for future
applications (see Appendix B of the supplementary materials available at Biostatistics online). We denote
the true, unknown parameter by βn0. The mean and variance are described by E[ yij|xij, βn, φ] = a

′
(θij)

and σ 2
ij = Var(yij|xij, βn, φ) = φa

′′
(θij), where θij = u(xT

ij βn) and u is the injective link function (Xie and
Yang, 2003). We use the notation μi(βn) = (μi1(βn) . . . , μimi (βn))

T , Ai(βn) = diag(σ 2
i1(βn), . . . , σ 2

imi
(βn))

and �i(βn) = diag(u′(xT
i1βn), . . . , u′(xT

imi
βn)) as in Xie andYang (2003). The specification of the functions

a and u for our setting follows from the gamma distribution representation. We also define the GEE

objects Di(βn) = Ai(βn)�i(βn)Xi, Vi(βn) = A1/2
i (βn)RiA

1/2
i (βn) and Hn(βn) =

n∑
i=1

DT
i (βn)V

−1
i (βn)Di(βn).

Ri denotes the working-correlation matrix for cluster i. The entries of the working-correlation matrices are
defined by the corresponding estimated LD measure r2. This is the extension for the correlation of squared
test statistics from the well-established correlation approximation of normally distributed association
z-scores equal to the LD measure r. With these objects, we can set up the GEEs

gn(βn) =
n∑

i=1

DT
i (βn)V

−1
i (βn)(yi − μi(βn)) = 0. (2.8)

Under the assumption of sparsely correlated clusters and reasonable technical conditions (Appendix B
of the supplementary materials available at Biostatistics online), we can reestablish the following results
for the asymptotic existence of the estimator β̂n, which are oriented at previous work (Wang, 2011).
The proofs are sketched in Appendix B of the supplementary materials available at Biostatistics online.
The two key points in the proofs of Propositions 3 and 5 are the utilization of a central limit theorem
for weakly dependent data and the modification of the sandwich-variance estimator to account for the
specified dependence structure of the clusters.
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PROPOSITION 2 There exists a root β̂n of gn(βn) = 0 satisfying ||β̂n − βn0|| = Op

(√
pn√
n

)
.

Since the clusters are only sparsely correlated, we still observe the asymptotic normality of gn(βn0).

PROPOSITION 3 For αn ∈ Rpn with ||αn|| = 1, we have αT
n M

− 1
2

n (βn0)gn(βn0) → N (0, 1), as n → ∞, in
distribution, where Mn(βn0) = Cov(gn(βn0)).

With these results, we can establish the asymptotic distribution of the estimator β̂n.

PROPOSITION 4 αT
n M

− 1
2

n (βn0)Hn(βn0)(β̂n − βn0) → N (0, 1), as n → ∞, in distribution.

Finally, we analyze the features of the estimators variance and the corresponding hypothesis testing.
Therefore, define the covariance matrix 
n = H −1

n (βn0)Mn(βn0)H −1
n (βn0).

PROPOSITION 5 For an l × pn matrix Cn such that G = CnCT
n with G positive definite, we have

Cn
̂nCT
n − Cn
nCT

n = op(n−1), where 
̂n = H −1
n (β̂n)M̂n(β̂n)H −1

n (β̂n) and M̂n(β) =
n∑

i=1
gni(β)gT

ni(β) +
∑

i 	=j correlated
gni(β)gT

nj(β). 
̂n describes the sandwich-variance estimator.

If we are interested to test hypotheses of the form H0 : βn0b = 0 vs. H1 : βn0b 	= 0 for b = 1, . . . , pn,
we can use the immediate consequence (Wang, 2011):

COROLLARY 2.1 Under H0, Wnb = β̂2
nb


̂nbb
→ χ 2(1), as n → ∞, in distribution, where χ 2(1) denotes the

chi-squared distribution with one degree of freedom.

To solve the GEEs, we implemented a C/C++ tool to extract the working-correlation matrices from the
1000 Genomes data and solve the GEEs via a Newton-Raphson algorithm. For the covariates, we used the
pre-computed LD Scores for the European sample of 1000 Genomes (1000 Genomes Project Consortium
and others, 2012).

3. RESULTS

In the following section, we present the results of a simulation study and the analysis of real data examples.

3.1. Simulation study

We demonstrate the features of the proposed method PolyGEE by simulation studies in which we mimicked
the summary statistics from a large-scale association study. A crucial property of the simulation setting is
a realistic LD structure of the simulated test statistics. We utilized the LD structure of chromosome 2 in
the European sample of the 1000 Genomes Project (1000 Genomes Project Consortium and others, 2012).
We randomly selected 62 500 common variants for which pre-calculated LD Scores are available from the
LD Score regression project (Bulik-Sullivan and others, 2015b). The corresponding distances between
the genetic positions of these variants, calculated by the genetic map of the 1000 Genomes project, ranged
from approximately 0–275 cM. Due to computational restrains for large matrices, we partitioned the
chromosome in 11 regions of about 25 cM length. For each region, we estimated the LD matrix between
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Table 1. Empirical standard errors (emp. s.e.) over 1000 replications and the estimated standard errors
(est. s.e.) for PolyGEE are listed for the full and shrinked information scenario. Standard errors for the
first parameter in 10−3 and 10−5 for the second

PolyGEE standard error estimation

98% 64%

emp. s.e. est. s.e. emp. s.e. est. s.e.

(β1, β2) β1 β2 β1 β2 β1 β2 β1 β2

(1.00, 0.0000) 5.11 4.11 5.08 4.06 5.67 5.25 5.62 5.21
(1.00, 0.0001) 4.98 4.22 5.14 4.23 5.50 5.33 5.68 5.36
(1.00, 0.0005) 5.37 4.95 5.35 4.83 5.95 6.06 5.89 5.88
(1.00, 0.0010) 5.67 5.58 5.60 5.50 6.20 6.54 6.12 6.48
(1.02, 0.0000) 5.20 4.07 5.18 4.16 5.76 5.25 5.74 5.33
(1.02, 0.0001) 5.25 4.31 5.23 4.31 5.77 5.38 5.80 5.46
(1.02, 0.0005) 5.50 4.82 5.45 4.91 6.02 5.87 6.00 5.99
(1.02, 0.0010) 5.53 5.59 5.60 5.50 6.13 6.61 6.13 6.48

the variants from the phased 1000 Genomes project data set. Between variants with more than 1 cM
distance, LD estimates were truncated to zero. We used the resulting LD matrix as the correlation matrix
of normally distributed, mean zero z-scores with variance

β1 + llβ2,

where ll is the LD Score of the corresponding variant l. To achieve the setting of genome-wide data,
we repeated 13 independent draws of these variants and obtained 812 500 z-scores, respectively, squared
test statistics. In conclusion, these squared test statistics follow our general marginal model equations
(2.1) and (2.2) and the assumed band structure of LD/correlation. To investigate multiple scenarios, we
assigned different combinations of reasonable values to the two parameters β1 and β2, similar to estimated
results from real data. For PolyGEE, we split each region into 1 cM blocks, which resulted in about 25
blocks for each region. For each block, we extracted the correlation structure between the test statistics
from the corresponding LD matrix. These LD matrices for the 1 cM blocks were used as the working-
correlation matrices. We first ran the PolyGEE analysis with these original LD matrices, mimicking the
scenario where the LD from the reference panel coincides with the LD structure in the data set. In a
second set of simulations, we ran the analysis with a scaled version of these matrices, where we shrinked
the LD matrices towards the identity matrix with a factor of 64%. This set of simulations mimics the
scenario where LD matrices substantially deviate from the true correlation structure. In order to compare
the performance of PolyGEE, we implemented an explicit weighted linear regression estimator of the
model of LD Score regression (Bulik-Sullivan and others, 2015b) (2.4 and 2.5). For the corresponding
heteroscedasticity weights, we applied the true, in practice unknown, values for the parameters. The
overcounting part of the weights was correctly specified. The LDSC software for LD Score regression
uses a two-step delete-block jackknife procedure (200 consecutive blocks per default) for the estimation
of parameters and standard errors (Bulik-Sullivan and others, 2015b). As described, we used an explicit
estimator instead and estimated the empirical standard error over independent replications. This also
avoided the difficult choice of the number of blocks for the jackknife in LDSC for our setting, which
clearly influences the results in practice. Table 1 contains the empirical and estimated standard errors
of the PolyGEE estimates for 8 different parameter value combinations. The empirical standard errors
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Table 2. Relative efficiency of the LD Score regression esti-
mator in comparison with PolyGEE estimator, based on
1000 replications. The efficiencies are listed for the full
and shrinked information scenario

98% 64%

(β1, β2) β1(%) β2(%) β1(%) β2(%)

(1.00,0.0000) 61.2 49.0 75.4 80.0
(1.00,0.0001) 61.9 53.1 75.5 84.7
(1.00,0.0005) 63.3 55.7 77.7 83.5
(1.00,0.0010) 66.6 61.6 79.6 84.6
(1.02,0.0000) 59.9 47.1 73.5 78.4
(1.02,0.0001) 63.9 52.6 77.4 81.8
(1.02,0.0005) 63.2 55.5 75.7 82.4
(1.02,0.0010) 61.5 61.1 75.6 85.5

were computed over 1000 replications, the estimated standard errors were calculated by the sandwich-
variance formula (see Proposition 5) and averaged over the replications. The simulation results confirm
that the variance estimator correctly estimates the standard errors of our method PolyGEE, in the setting
of full correlation information as well as in the scenario of the shrinked information. Table 2 provides
the relative efficiency of the LD Score regression estimator in comparison with PolyGEE. We observed
that the LD Score regression estimation variance is up to more than factor 2 larger than the estimated
variances of our PolyGEE approach, if the LD working-correlation matrices are correctly specified. The
relative efficiencies of LD Score regression compared to PolyGEE range between 47% and 67%. If the
LD working-correlation matrices are strongly shrinked towards the identity matrix, the gain of efficiency
is smaller, but still substantial. The relative efficiencies along both parameters in this shrinked scenario
range between 73% and 86%, with median and mean of 79%.

3.2. Application to real data

In this section, we compare the performance of PolyGEE with LD Score regression based on the association
results for public available summary statistics.

3.2.1. Population-based association data. We applied both methods, PolyGEE and LD Score regression,
to the summary association statistics of three traits from the PGC. The PGC provides the results of large-
scale meta-analyses for bipolar disorder (BIP), schizophrenia (SCZ), major depressive disorder (MDD),
attention deficit disorder (ADHD), and autism spectrum disorder (ASD). We analyzed the data from the
PGC-Cross-Disorder Group for SCZ (Cross-Disorder Group of the Psychiatric Genomics Consortium
and others, 2013) and the meta-analysis results for BIP (Psychiatric GWAS Consortium Bipolar Disorder
Working Group and others, 2011) and MDD (Ripke and others, 2013). The samples for these diseases
are unrelated case-control cohorts.

We filtered the summary statistics with the LDSC software (Bulik-Sullivan and others, 2015b) using the
default parameters. This procedure includes removing ambiguous SNPs and variants with an imputation
info-score < 0.9, if the info-score is available. If no imputation-info score is available it is suggested to
restrict the input to the set of HapMap3 (International HapMap 3 Consortium and others, 2010) SNPs,
since these SNPs are usually well-imputed. We used both filter options for the PGC studies. LD Score
regression was performed with LDSC, based on the pre-calculated LD Scores for the European Sample
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Table 3. Results for the population-based meta-analyses for BIP, SCZ ,and MDD of the PGC. We provide
the estimates for LD Score regression and PolyGEE. Standard errors depicted in brackets

Disorder LDSC PolyGEE

#SNPs 1 + Na Polygenic term #SNPs 1 + Na Polygenic term

BIP 803 530 1.0495 (0.0105) 0.3046 (0.0379) 667 734 1.0448 (0.0083) 0.2953 (0.0312)
SCZ 840 450 1.0418 (0.0117) 0.4190 (0.0455) 761 854 1,0428 (0.0091) 0.3709 (0.0380)
MDD 891 172 1.0241 (0.0079) 0.1130 (0.0265) 812 873 1,0181 (0.0065) 0.1093 (0.0223)

Table 4. Results for the family-based association study for ASD. We provide the estimates for LD Score
regression and PolyGEE. Standard errors depicted in brackets

Disorder LDSC PolyGEE

#SNPs 1 + Na Polygenic term #SNPs 1 + Na Polygenic term

ASD 806 205 1.0396 (0.0073) 0.5754 (0.4052) 701 164 1.0387 (0.0056) 0.5750 (0.3251)

of the 1000 Genomes project. For PolyGEE, we took the same input data set as for LD Score regression,
but additionally excluded SNPs in perfect LD and variants with very low p-values (< e-16) (if exist). This
excludes model outliers and avoids the construction of degenerated correlation matrices. Table 3 provides
the estimated parameters and the corresponding number of variants included in this analysis. The polygenic
term corresponds to an estimate of the heritability on the observed scale, using the number of SNPs M
for common SNPs (see above) provided by LDSC and the reported sample size from the corresponding

publication. Therefore, the polygenic term quantifies h2 c2ncasesncontrols
N 2(1−K)2 . Since we compare the performance

of estimators in terms of accuracy, we renounce to transform the heritability to the liability scale, since
this is a constant factor transformation of the estimate. The estimated standard errors of the LD Score
regression estimates were calculated by LDSC using the default settings. For PolyGEE, the estimated
standard errors were calculated by our sandwich-variance estimator (Proposition 5). We observe that the
PolyGEE estimates are more accurate and that the variance of the parameter estimates for the LD Score
regression is around 50% higher.

3.2.2. Family-based association data. We also applied PolyGEE and LD Score regression to the sum-
mary statistics from the Autism Genome Project (AGP) Consortium association study for autism spectrum
disorder (ASD) (Anney and others, 2012). The analysis was based on 2,359 affected offspring of European
ancestry. Quality control of the input data was performed as for the population-based association studies.
It is important to note again that, despite that LD Score regression was developed for population-based
association statistics, the derivation of equation (2.7) implies the possibility to also analyze family-based
association by the underlying estimation framework of LD Score regression. Since the output options
of the LDSC software assume population-based association data, we had to modify the results and the
output according to equation (2.7). Table 4 contains the results of the analysis with PolyGEE and LDSC.
The polygenic term describes hc2 (c2 as defined in equation (2.3)), assuming 2,359 trios as an accurate
approximation of the family structure in the sample (Anney and others, 2012). The findings in terms of
efficiency gains are substantial and of similar magnitude as for the population-based studies.
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4. DISCUSSION

At a genome-wide level, we derived a general marginal model for single-variant association test statistics
of complex diseases. We proposed the PolyGEE methodology to estimate the amount of polygenic effects
and confounding biases from the association test statistics of large-scale association studies using this
model. We showed via simulation studies and the application to real data that our approach is substantially
more efficient than the existing LD Score regression framework, i.e. the estimates are more precise. The
increased efficiency of our approach is achieved by incorporating detailed local LD information from
the external reference panels, e.g. 1000 Genomes project, into the estimation step. However, our GEE
approach does not require that the reference panel and the study data are exact matches in terms of the LD
structure. The approach is robust against deviations of the sample LD structure from the reference panel
and can compute asymptotic valid standard errors. Our theoretical derivations and assumptions lead to
general valid results for the estimation framework. For further research, this makes it possible to extend
the mean model to incorporate more components or estimate the genetic correlation between two traits.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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