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The acid tolerance mechanism is important for Escherichia coli to resist acidic conditions
encountered in mammalian host digestive tract environment. Here, we explored how the
LuxR protein SdiA influenced E. coli acid tolerance ability in the context of the glutamate-
and glutamine-dependent acid resistance system (AR2). First, using a growth and acid
shock assay under different acid stresses, we demonstrated that the deletion of sdiA
in SM10λpir or BW25113 led to impaired growth under the acidic environment of pH
3–6, which was restored by complementary expression of SdiA. Next, transcriptome
sequencing and qPCR disclosed that the expression of glutamate decarboxylase W
(GadW) and GadY, the key members of the AR2 system, were regulated by SdiA.
Further, β-galactosidase reporter assays showed that the promoter activity of gadW
and gadY was positively regulated by SdiA. Moreover, qPCR and β-galactosidase
reporter assays confirmed that the regulation of SdiA on GadW, but not GadY, could
be enhanced by quorum sensing (QS) signal molecules AHLs. Collectively, these data
suggest that SdiA plays a crucial role in acid tolerance regulation of E. coli. Our
findings provide new insights into the important contribution of quorum sensing system
AHLs–SdiA to the networks that regulate acid tolerance.

Keywords: SdiA, glutamate decarboxylase W (GadW), glutamate decarboxylase Y (GadY), acid tolerance,
Escherichia coli

INTRODUCTION

Enteric organisms, such as Escherichia coli, often colonize in the host’s gastrointestinal tract and
cause disease. During this process, the acidic stress in the host’s stomach sets a barrier to enteric
pathogens. E. coli has a remarkable ability to withstand low pH environment by activating several
acid resistance (AR) systems, especially the glutamate-dependent AR system (AR2), which is the
most effective AR system to cope with extreme acid stress (Lund et al., 2014; Zhao et al., 2018). The
AR2 system has three structural components including two isoforms of glutamate decarboxylases
(GadA and GadB), and the aminobutyrate (GABA) antiporter GadC. Among them, gadB and gadC
genes are co-transcribed. The gadA gene is 2.1 Mb from gadBC and exists in the acid fitness island
(AFI) (De Biase and Pennacchietti, 2012). This AFI comprises 14 genes related to AR. Among these
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genes, gadE, gadW, and gadX encode regulators of the AR2
system (Ma et al., 2003; Tramonti et al., 2008; Seo et al., 2015).
In addition, a small RNA, GadY, is also involved in the regulation
of AR2 system by stabilizing the gadX mRNA (Opdyke et al.,
2004; Tramonti et al., 2008). The GadX–GadY–GadW circuit can
strengthen the AR2 system by activating gadE transcription and
directly binding to the promoter regions of gadA and gadBC
(Tramonti et al., 2006). However, the regulation of this circuit
remains unclear.

In adaptation to environmental change, quorum sensing (QS)
system plays a significant role through chemical communication
between bacterial cells. In Gram-negative bacteria, this
communication mainly uses signal molecules, N-acyl homoserine
lactones (AHLs), and cognate LuxR transcription factor (Schuster
et al., 2013). The AHLs can recognize specific LuxRs by their
variable acyl chains and regulate gene transcription (Fuqua
and Greenberg, 2002). Some organisms, such as Escherichia
and Salmonella, only have LuxR-type protein SdiA but do not
produce AHLs. However, numerous studies have demonstrated
that this orphan LuxR-type receptor is able to bind to DNA and
regulates gene transcription with or without AHLs, and then
involves in interspecies signaling (Yamamoto et al., 2001; Dyszel
et al., 2010; Nguyen et al., 2015). Moreover, AHLs can improve
the transcriptional regulation ability of SdiA through enhancing
SdiA stability and DNA-binding affinity, thus regulating many
gene transcription in an SdiA-dependent manner (Van Houdt
et al., 2006; Lee et al., 2008; Nguyen et al., 2015). In addition,
SdiA of enterohemorrhagic E. coli O157:H7 (EHEC) can be
constitutively activated by the binding of molecule 1-octanoyl-
rac-glycerol (OCL) in the absence of AHLs (Nguyen et al., 2015).
As increasing investigations about SdiA have been done, it is
generally accepted that SdiA plays a vital role in facing different
environments including acid environment (Dyszel et al., 2010;
Hughes et al., 2010). Nevertheless, the function of SdiA in AR
and its underlying mechanisms remain largely unknown.

In this study, we focused on the role of SdiA in AR and
explored how SdiA regulated the Gad system. We first confirmed
the link between SdiA and acid tolerance by investigating the
effect of the knockout and overexpression of sdiA on cell growth
in media acidifed by citric acid. Subsequently, the transcriptome,
qPCR and β-galactosidase reporter analysis were performed to
shed some light on the mechanism. Our works offer a deeper
understanding of the role of SdiA in the regulation of AR.

MATERIALS AND METHODS

Bacterial Strains, Plasmids, and Growth
Conditions
The bacterial strains and plasmids used in this study are listed
in Supplementary Table S1. The construction of sdiA-deficient
or -overexpression strains has been described in our previous
study (Lu et al., 2017). Bacteria were grown in LB broth or on
LB agar unless otherwise indicated. When necessary, antibiotics
were used at the following concentrations: 100 µg/ml ampicillin
(AMP) and 16 µg/ml chloramphenicol (CM).

Plasmid Construction
The plasmid pQF50 containing a promoter-less lacZ reporter
was used for gadY and gadW promoter analysis. The DNA
fragments of the gadY promoter spanning −245 to +13 and
gadW promoter spanning −258 to −1 were PCR amplified
and inserted into BamHI/Hind? sites upstream of the lacZ
reporter in pQF50 to generate pQF50-PgadY and pQF50-PgadW,
respectively. All constructs were confirmed by direct sequencing.
Primers used in this study are listed in Supplementary Table S2.

RNA Sequencing and Bioinformatics
Analysis
The wild-type strain, sdiA gene-deficient and -overexpression
strains in SM10λpir were grown overnight (8∼10 h) at 37◦C,
and then 100 µl of the cultures were added into 3 ml of LB
to grow to mid-exponential phase (0.5 McFarland standard).
Then, total RNA was extracted using RNAprep Pure Cell/Bacteria
Kit (Tiangen, Beijing, China), and the entire sequencing was
conducted by the BGI Company. Experiments were performed
in triplicate. The raw data had been submitted to SRA database
of NCBI (accession number: PRJNA627821, SRP258248). The
expression of Unigene was calculated by RPKM method (Reads
Per kb per Million reads).

Real-Time PCR
Total RNA was extracted using RNAiso Plus reagent (Takara,
Dalian, Liaoning, China). Reverse transcription (1 µg of total
RNA) was performed with the PrimeScript RT Reagent Kit (code
No. RR047A; Takara, Dalian, Liaoning, China). The cDNA was
subjected to qPCR on a ViiATM 7 Dx system (Applied Biosystems,
Foster, CA, United States) using SYBR Green qPCR Master Mix
(Takara, Dalian, Liaoning, China). The expression levels of the
target genes were normalized to the expression of an internal
control gene (rpoD) using the 2−11Ct method. The sequences
of the primers are listed in Supplementary Table S2.

Growth Assay
Growth and acid shock assay were performed as described
previously, with some modifications (Gao et al., 2018). E. coli
strains were grown overnight (8∼10 h) in LBG medium (LB
medium supplemented with 0.4% glucose) of pH 7.0 at 37◦C.
Then the bacteria was collected and re-cultured in LBG medium
at pH 7.0 or LBG medium acidified by citric acid to pH 6, pH
5, pH 4, and pH 3 for 24 h at 37◦C in a 96-well round bottom
plate, and the OD600 values were determined at the indicated
time points. All of the tests were carried out independently at
least in triplicate.

Acid Shock Assay
Escherichia coli strains were grown overnight (8∼10 h) in LBG
medium of pH 7.0 at 37◦C. Then the bacteria was collected
and re-cultured in LBG medium at pH 7.0 or LBG medium
acidified by citric acid to pH 6, pH 5, pH 4, and pH 3 for 2 h
at 37◦C in a 96-well round bottom plate. After the acid shock,
the cultures were serially diluted, plated on LB agar, incubated
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FIGURE 1 | Growth of sdiA-deficient and overexpression strains under acid stress. (A,B) The indicated Escherichia coli SM10λpir and E. coli BW25113 strains in
exponential phase were collected and re-cultured for 24 h in LBG medium with different initial pH values obtained by the addition of citric acid. The samples were
collected at the indicated time points, and the OD600 values were determined. The curve of each strain growth was shown. WT, E. coli SM10λpir or E. coli BW25113
carrying pROp200; 1sdiA, E. coli SM10λpir1sdiA or E. coli BW251131sdiA carrying pROp200; 1sdiA-SidA, E. coli SM10λpir1sdiA or E. coli BW251131sdiA
carrying pROp200-sdiA.

FIGURE 2 | Survival of sdiA-deficient and overexpression strains after acid shock. (A,B) E. coli SM10λpir and E. coli BW25113 wild-type strain, sdiA-deficiency
strain (E. coli SM10λpir1sdiA, E. coli BW251131sdiA), sdiA-deficiency and overexpression strain (E. coli SM10λpir1sdiA-SdiA, E. coli BW251131sdiA-SdiA)
(2.0 × 105) were incubated for 2 h in LBG medium acidified by citric acid. The images represent 1:104 (pH 4) or 1:103 (pH 3) of the serial dilutions of the cultures in
10-fold steps. *P < 0.05; **P < 0.01.

Frontiers in Microbiology | www.frontiersin.org 3 June 2020 | Volume 11 | Article 1078

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01078 June 1, 2020 Time: 18:14 # 4

Ma et al. SdiA Regulates GadW/Y Expression

at 37◦C overnight, and then photographed. All of the tests were
carried out independently at least in triplicate.

β-Galactosidase Assays
β-Galactosidase assays were carried out by the Miller method
when cells were grown to mid-log phase at 37◦C at pH 7.0
(Giacomini et al., 1992). All of the tests were carried out
independently at least in triplicate.

Treatment With AHLs
The indicated E. coli strains were grown overnight in LB medium
at 37◦C, and then 100 µl of the cultures was added into 3 ml of LB
that contains DMSO (control) or C4-HSL and 3-oxo-C12-HSL
(40 µM each) and grown for 6 h at 37◦C, followed by RT-qPCR
or b-galactosidase activity analysis. All of the tests were carried
out independently at least in triplicate.

Statistical Analysis
Data of the results from multiple independent experiments
were expressed as the mean ± standard deviation (SM). The
differences between groups were analyzed using Student’s t-test
when two groups were compared or one-way ANOVA when
more than two groups were compared. All analyses were
performed using GraphPad Prism, version 5 (GraphPad Software,
Inc., San Diego, CA, United States). Differences with a value of
0.01 < P < 0.05 are represented by ∗, P < 0.01 are represented by
∗∗, and P < 0.001 are represented by ∗∗∗.

RESULTS

SdiA Enhances Acid Tolerance Ability of
E. coli
To assess the influence of SdiA on acid tolerance of E. coli,
a series of growth assays under different acid stress (24 h of
incubation in LBG medium acidified to pH 3–7 by citric acid)
was performed in sdiA gene-deficient strain of SM10λpir and
BW25113 (1sdiA), as well as sdiA-overexpression strain in 1sdiA
mutation (1sdiA/SdiA). For SM10λpir, when the pH was down
to 6 or 5, deficiency of sdiA impaired the growth through

TABLE 1 | Transcript level of AR2 genes in SM10λpir sdiA deficient and
complemented strains.

WT 1sdiA 1sdiA-SdiA

sdiA 448 0 11416

gadA 327.5 262.23 462.62

gadB 58.5 56.77 138.38

gadC 93 61 159

gadE 449 360 470

gadW 387 147 372

gadX 751 563 791

gadY 14 8 17

The calculation of Unigene expression uses RPKM method (reads per kb
per million reads).

the whole process, compared to the wild-type strain, which
was restored by introduction of sdiA-overexpression plasmid
(Figure 1A). For BW25113, compared to sdiA-deficient strain,
wild-type and sdiA-overexpression strain also showed growth
advantage in the early stage under pH 6 and all the stage under
pH 5 (Figure 1B). For both SM10λpir and BW25113, when
the pH was down to 4 or 3, the OD600 value of wild-type and
modified strains showed no difference, as a result of no growth
(Figures 1A,B).

An acid shock assay (2 h of incubation in LBG medium
acidified to pH 3–7 by citric acid) was further carried out to
investigate the effect of SdiA on acid tolerance under extreme
acid stress. The result showed that deficiency of sdiA resulted in
decreased survival of both SM10λpir and BW25113 under the
acid stress of pH 4 or 3, whereas overexpression of SdiA abrogated
this effect (Figures 2A,B).

Collectively, these data suggest that SdiA plays a crucial role in
acid tolerance ability of E. coli.

SdiA Promotes the Expression of GadW
and GadY
Next, we explored the molecular mechanisms responsible for the
function of SdiA that were observed above. The transcriptomes
of SM10λpir, SM10λpir1sdiA, and SM10λpir1sdiA-SdiA were
determined, and we mainly focused on AR2 system genes.
The results showed that the transcription of gadA, gadB, gadC,
gadE, and gadX was hardly changed in sdiA-knockouted strain,
while overexpression of SdiA enhanced gadA, gadB, and gadC
expression. This is consistent with the observation that many
genes of E. coli that respond to plasmid-based expression
of SdiA are largely more different than those that respond
to chromosomal SdiA (Dyszel et al., 2010). Noteworthy, the
expression of GadW and GadY was changed in both sdiA
gene deficient and its compensatory strains, with the down-
regulation in SM10λpir1sdiA, and up-regulation upon SdiA
overexpression (Table 1).

Based on the obvious change in transcriptome data, GadW
and GadY were chosen for further analysis by quantitative
RT-PCR. Conformably, deficiency of sdiA in both SM10λpir
and BW25113 resulted in downregulation of GadW, which
was reversed by restoration of sdiA. For GadY, the expression
was barely changed in sdiA-deficient strain, but elevated in
sdiA-overexpression strain (Figure 3). Taken together, these
results implicate that SdiA may positively regulate GadW and
GadY expression.

SdiA Regulates Transcription Activity of
GadW and GadY
We subsequently evaluated the influence of SdiA on the
transcription activity of the gadW and gadY promoter regions.
The DNA fragment of gadW or gadY promoter was cloned
upstream of the β-galactosidase gene in the pQF50-promoter
reporter, respectively (Figures 4A,B). When transformed
into BW25113 (without endogenous β-galactosidase), the
β-galactosidase activity of pQF50-PgadW and pQF50-PgadY
was greatly elevated, compared to that of the control. More
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FIGURE 3 | SdiA promotes glutamate decarboxylase W (GadW) and GadY expression. (A) The influence of SdiA on GadW and GadY expression in E. coli
SM10λpir. (B) The influence of SdiA on GadW and GadY expression in E. coli BW25113. E. coli SM10λpir or E. coli BW25113 (WT) and the sdiA-deficient strains
(1sdiA) carrying pROp200, E. coli SM10λpir1sdiA carrying pROp200-SdiA (1sdiA-SdiA) were cultured in LB for 6 h, followed by real-time PCR analysis; the rpoD
gene was used as an internal control. **P < 0.01; ***P < 0.001.

FIGURE 4 | The promoter activity of gadW and gadY is regulated by SdiA. (A,B) Diagram of the gadW and gadY promoter and principles of the in vivo investigation
of their activity. (C,D) The influence of SdiA on the promoter activity of gadW and gadY. The E. coli BW25113 strains carrying the reporter pQF50, pQF50-PgadW, or
pQF50-PgadY combined with pROp200 or pROp200-SdiA were grown to mid-log phase, subjected to β-galactosidase activity assay. Values are mean ± SD of at
least three independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001.

importantly, deficiency of sdiA impaired the activity of pQF50-
PgadW but hardly affected that of pQF50-PgadY, while
overexpression of SdiA enhanced both promoter activity of
gadW and gadY (Figures 4C,D). These observations were
consistent with the above quantitative RT-PCR results.

Moreover, it has been shown that transcriptional regulatory
function of SdiA may be increased by AHLs. We further
checked the influence of AHLs on the promoter activity and
expression level of gadW and gadY. As shown in Figures 5A,B,
treatment with 3-oxo-C12-HSL and C4-HSL not only enhanced
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FIGURE 5 | The effect of N-acyl homoserine lactones (AHLs) on the expression of gadW and gadY. (A) AHLs promoted gadW but not gadY expression. E. coli
SM10λpir was cultured in the presence of DMSO or 40 µM C4-HSL and 3-oxo-C12-HSL for 6 h, followed by real-time PCR analysis. (B) AHLs enhanced the
promoter activity of gadW but not gadY. E. coli BW25113 was cultured in the presence of DMSO (Ctrl) or 40 µM C4-HSL and 3-oxo-C12-HSL for 6 h, followed by
b-galactosidase activity analysis. Values are mean ± SD of at least three independent experiments. **P < 0.01; ***P < 0.001.

the promoter activity of gadW but also promoted its expression,
which were attenuated by deficiency of sdiA. However, this
processing seemed to have no effect on the promoter activity and
expression of GadY.

Taken together, our results implicate that SdiA may promote
acid tolerance of E. coli at least partly through regulating GadW
and GadY expression.

DISCUSSION

In this study, we disclosed the role of SdiA in acid tolerance of
E. coli. Our findings highlight the transcription control of SdiA
on GadW and GadY, and provide new insights into the regulatory
network of the acid resistance system AR2.

Previous studies have identified AFI as the key factor that
improves the tolerance of E. coli strains to environmental acidic
stress (Foster, 2004). One of the essential AFI regulators, GadE,
was a LuxR-like protein. In the present study, we focused on
another LuxR protein SdiA. Most recent publications about SdiA
have reported its gene regulatory function (Dyszel et al., 2010;
Nguyen et al., 2015; Sabag-Daigle et al., 2015). A few reports
revealed the roles of SdiA in diverse biological processes (Smith
et al., 2011), such as cell division (Sitnikov et al., 1996), antibiotic
resistance (Yang et al., 2006; Tavío et al., 2010), virulence
(Kanamaru et al., 2000), and biofilm formation (Culler et al.,
2018). Here, gain- and loss-of-function studies showed that SdiA
positively regulated mild and extreme acid (pH 3–6) tolerance
ability of both E. coli strains SM10λpir and BW25113. Since
acid stress can damage bacteria cells and impair their growth,
and SdiA was activated during the transit of Salmonella through
turtles (Smith et al., 2008), we conferred that SdiA might favor
E. coli to resist acidic conditions encountered during transit
through the mammalian host gastric environment and prolonged
exposure to the mildly acidic environment of the host gut.

To date, many SdiA regulon members have been described
(Dyszel et al., 2010; Abed et al., 2014; Shimada et al., 2014;
Sabag-Daigle et al., 2015). Here, we report the identification of
SdiA-regulated genes gadW and gadY through transcriptome
sequencing and qPCR. Although the observation that the gad

system can be activated by SdiA even in the absence of AHLs
has been previously reported (Dyszel et al., 2010; Hughes et al.,
2010), how SdiA directly activates transcription of the gad system
is unclear. It seems that genes with specific DNA sequences
(SdiA-box) 5′-AAAAG(N8)GAAAA-3′ in the promoter region
may be the potential targets of SdiA (Yamamoto et al.,
2001). Our bioinformatics analysis discovered a DNA motif 5′-
AAAAT(N18)TAAAA-3′ and 5′-AAAAC(N18)CAAAA-3′ in the
gadY–gadW intergenic region. Further, β-galactosidase activity
test showed that SidA regulated the promoter activity containing
the above-mentioned DNA motifs. However, the interaction
between SdiA and these sites needed further validation. In
addition, the β-galactosidase reporter system showed that
the transcription activity of gadY arising from gadY–gadW
intergenic region was much higher than that of gadW (Figure 4).
Nonetheless, the influence of SdiA on the promoter activity
of gadW was more remarkable than that of gadY, indicating
that there might be other transcription factors that regulated
gadY expression.

It has been shown that SdiA is already in a DNA-binding
conformation in the absence of AHLs. AHLs enhance this
protein’s affinity to DNA, allowing it to regulate transcription of
genes that have lower-affinity sites to this protein, whose SdiA
regulation occurs only in the presence of AHLs (Nguyen et al.,
2015). This was consistent with our observation that SdiA alone
can regulate GadW expression, while the presence of C4- and 3-
oxo-C12 HSLs enhanced this effect. C4- and 3-oxo-C12 HSLs
are the well-known AHLs from Pseudomonas aeruginosa. We
have previously found that C4- and 3-oxo-C12 HSLs produced
by P. aeruginosa can inhibit traI expression by activating E. coli
SdiA. However, neither C4- nor 3-oxo-C12 is the most potent
ligands for SdiA, thus the response of SdiA to these two AHLs
in this system can possibly represent an artifact. For GadY, the
expression was barely changed in chromosomal sdiA-deficient
strain, but elevated in sdiA-overexpression strain, which might
be explained by the use of high copy number plasmids in this
study, and it has been well established that overexpression of
SdiA can bypass their requirement for AHL (Michael et al., 2001;
Dyszel et al., 2010). More importantly, the presence of AHLs
has been suggested in bovine rumen and human gut, and EHEC
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senses rumen AHLs through SdiA to repress Lee expression and
activate the gad AR system, which was necessary for efficient
EHEC colonization of cattle fed a forage or grain diet (Sperandio,
2010; Sheng et al., 2013; Landman et al., 2018). Future studies
are needed to illuminate the role of AHL-SdiA signaling in acid
tolerance within the human gastrointestinal tract.
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