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INTRODUCTION
Our information machines exist to make
us faster, more powerful decision-makers.
Computers prompt our limited human
memory with reminders of what we
should be doing. They retrieve informa-
tion we could never remember or indeed
even know. They suggest solutions to
complex problems for us and take over
the many routine tasks that we delegate
to them. Information technology (IT) is
thus a cognitive prosthesis that enhances
our abilities beyond the unaided human
norm.1

Unless a decision process is entirely
automated, it is the product of the tech-
nology, the human user and how well
each fits the other. Weed famously saw
this act of using IT as one of ‘knowledge
coupling’ between human and machine.2

It is the quality of this interaction that
counts in the end, and not the quality of
the elements in isolation.3

The first test of our interaction with IT
should be whether it leads to better, and
quicker, decisions. Well-designed interac-
tions with IT should also ensure that our
decisions are as safe as possible. Poorly
designed interactions unfortunately can
distort decision-making and create new
types of hazards and errors, ending in
patient harm.4 Indeed, there is a steadily
growing evidence base that confirms that
this harm is real, widely prevalent and
that its consequences for patients can be
significant, sometimes fatal.5 6

The evidence base also clearly shows
that human factors are a major contribu-
tor to IT-associated errors and harms.7

There is thus an imperative to design clin-
ical information systems that are both
demonstrably safe in construction and in
use. For this to happen, we must move
from empirical observation of IT-related
hazards, errors and harms to a theory-
based understanding of the causes of
these risks and their mitigation.
In a thoughtful review of what we

know about the genesis of error and
patient harm,8 Patel and colleagues make
abundantly clear that we must understand

deeply the interplay between human cog-
nition and error. That exploration should
also encompass machine reasoning and
human–computer interaction.
In the remainder of this paper, the way

that the interplay between cognition and
IT can lead to error and patient harm is
first reviewed. The second part of the
paper considers how such an understand-
ing can shape our design of safer interac-
tions with IT, and indeed how we can
harness this technology class to minimise
IT-related risks. Both themes are areas of
research and practice that surely must
become a major new focus for patient
safety if we are to neutralise this potent
and increasingly pervasive source of
patient harm.9

THE ROLE OF IT IN THE GENESIS OF
ERROR
While our capacity to design safe interac-
tions with clinical IT is still rudimentary,
we do know enough about error, cogni-
tion and technology to identify a number
of research priorities. For example, dis-
ruptions to memory, cognitive overload
and cognitive biases can all in different
ways impair our interaction with this
technology. Other major sources of dis-
ruption include both IT systems that are
not designed to reflect the cognitive pro-
cesses underpinning clinical work, as well
as the resulting workarounds that arise as
humans try to circumvent the limitations
of IT.

Multitasking, interruption and cognitive
load
Adverse events can occur when the avail-
able cognitive resources such as memory
are insufficient for the task at hand. This
may occur because our attention is
divided among a number of tasks. If a
clinician is distracted or interrupted with
a new task, or is multitasking, then
memory processes can be disrupted by
this excessive cognitive load and lead to
errors in task execution.10 For example,
after being interrupted while creating a
medication order in an electronic
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prescribing system, a clinician may return to the
primary task but select the wrong medication, dose or
indeed create the order in a different patient’s record.
Regrettably current generation clinical ITs are

designed with the implicit assumption that their users
are carrying out a single task and that their attention
is devoted entirely to the interaction with the technol-
ogy. What is really needed are clinical systems that are
designed to be both tolerant of multitasking and inter-
ruption, and that can support recovery from these
events.
Environmental memory cues, for example, can

enhance an individual’s capacity to recover from inter-
ruption.11 When calculating a drug dose on paper, the
paper acts as a cue to help a clinician re-engage with
the task after an interruption, both recalling their pos-
ition in the task sequence and recording intermediate
calculations and initial data. Clinical information
systems can be designed in a similar way. User inter-
faces should make it clear what the current tasks are,
where the user is up to in each and display any inter-
mediate calculations, decisions or data. Systems that
provide such cognitive cues should be better suited to
busy and interruptive clinical environments.12

Automation biases
IT use can be compromised by the many cognitive
biases we know affect all human decision-making.
Biases such as the anchoring, adjustment and repre-
sentativeness heuristics, and information presentation
order effects all can lead to decisions that do not
reflect the available evidence.13 Thus both clinicians
and consumers can misinterpret data presented to
them by information retrieval systems because they
interpret new information through the lens of prior
belief. Related factors that shape how information is
viewed include the order in which documents are
accessed (the order effect) and the amount of time
spent viewing documents (the exposure effect).14 One
consequence of these biases is that clinicians and con-
sumers can be swayed by information presentation
effects into switching from a correct to an incorrect
decision.15

Automation bias or automation-induced compla-
cency is a very specific bias associated with compu-
terised decision support and monitoring
technologies.16 For example, when using a decision
support system, a user can make either errors of omis-
sion (they miss events because the system did not
prompt them to take notice) or errors of commission
(they did what the decision system told them to do,
even when it contradicts their training and available
data).
There are many possible explanations for automa-

tion bias. It has been suggested that when humans
delegate tasks to a computer system they may also
shed task responsibility. Computer users may then
take themselves out of the decision loop and develop

an ‘out of loop unfamiliarity’ with the system they are
meant to be monitoring.17 If an urgent event occurs,
recovering from loop unfamiliarity requires additional
time and cognitive resource to obtain the necessary
understanding of all the variables required to make a
decision, or situational awareness. In contrast, without
a decision aid, a human has no choice but to maintain
an active mental model of the state of any system
being monitored.
Recent evidence suggests that explicit training in

automation bias has a short-term benefit only. Making
individuals personally accountable for the conse-
quences of their decisions, however, does seem to
reduce automation bias. For example, if individuals
are told that their actions are socially accountable
because the data of their performance are being
recorded and will be shared with others, then more
time is spent verifying the correctness of a decision
support system’s suggestions and leads to fewer
errors.18 Reducing automation bias may thus have its
solution both in specific training programmes for the
use of IT and changes to user interface design that
make it easier to stay ‘in the loop’.

Information system design may not reflect real-world use
If IT designers have a poor understanding of clinical
work, they can make incorrect assumptions about the
mental models, cognitive load and concurrent tasks of
users. Design that does not reflect users and their
work has a number of substantive consequences:
▸ Inadequate or poorly designed user interfaces can add

unwanted complexity, unnecessary additional work and
create new opportunities for error. Poor usability can
thus make a system hard to learn, difficult to recall after
a period of not using the system or simply inefficient.19

If there are too many options in a drop-down drug list,
for example, or they are counterintuitively arranged,
patients may be prescribed the wrong drug or dose
through a ‘pick list error’. While such an action is classi-
fied as a ‘use error’, triggered by the commands pro-
vided by a user, it is poor system design that often
creates the hazardous circumstance that predispose the
error. Risks are also increased when systems do not
facilitate recovery from use errors, for example, when an
order entry system does not allow clinicians to modify or
cancel an order once it is placed.

▸ Incomplete or incorrect assumptions about clinical tasks
and mental models also create hazards. Patients might
continue to receive medications because an order entry
system incorrectly assumes that orders will not need to
be changed once made, and thus does not support dis-
continuation or modification of orders. Errors are also
generated when there is a mismatch between the system
and the mental model of users. For example, an
Electronic Medical Record might display weight in
pounds when clinicians work in kilograms.

▸ Mismatches between system workflow and clinical work-
flow can also lead to use errors. For example, reviewing
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a medication list at the time of administration assists in
error detection. This workflow is disrupted when medi-
cation information must be accessed at a central worksta-
tion and not at the patient’s bedside. Errors also occur
when system design does not match the expected
sequence in which clinical tasks are carried out. For
example, medication decision support is likely to be
more effective if it occurs when a clinician is still formu-
lating a treatment plan, and less so at the time of writing
the prescription (which is the norm in current
systems).20

Catching design errors requires effort during system
development, through rich interaction with users and
their workplace. It also requires post-implementation
surveillance to detect the almost inevitable existence
of unanticipated consequences of IT21—much like
postmarket surveillance for new drugs.

Post-implementation adaptation of IT creates patient risks
The socio-technical nature of IT means that the tech-
nology and the context within which it is used cannot
be separated.22 Implementation science tells us that
the work needed to fit IT to a given work context
varies from organisation to organisation. The varia-
tions we find in the effectiveness and safety of IT
across different settings are partly due to the necessary
implementation differences between these contexts.23

Safety issues are also known to arise from the post-
implementation response of an organisation to new
information systems, which include workarounds.
These responses may either be user-initiated ‘repairs’
to a workflow that does not fit current needs or are
triggered when workflows change around an unchan-
ging installed technology.24

Some workarounds exploit existing software func-
tionality to execute tasks in ways unanticipated by the
system designers. A time-poor clinician might thus use
the cut and paste features of an electronic record as a
workaround to copy text from a clinical note and use
it to create a new duplicate entry. While it saves time,
cut and paste also creates quality and safety issues, for
example, incorrectly recording that patient observa-
tions were taken, when they were not.25

Other workarounds completely bypass IT, creating
parallel workflows that circumvent the workflow as
designed. One well-documented IT workaround
comes from a medication administration system that
used wristband barcodes to identify patients. This
workaround allowed nurses to collect medications for
multiple patients from a medication cart when they
should have been only servicing one patient at a time.
The workaround saved time walking back and
forward between cart and patient by affixing copies of
patient barcodes to desks, scanner carts, doorjambs,
supply closets, clipboards, nurse belt loops or even
their arms, allowing multiple patients to be scanned at
once.26 The obvious risk with this workaround is that
the wrong medication will be given to a patient,

exactly the opposite of the intent of the system
design.

DESIGNING SAFER INFORMATION SYSTEMS
Improvements in the design of information systems,
and specifically the design of human–computer inter-
actions, are clearly a necessary response to the
growing evidence for IT-related harm. Many such
examples of such changes have been provided in the
previous section. There are also two more systemic
opportunities to manage IT risks, and both are cur-
rently not well understood or routinely exploited. The
first is to harness IT to undertake surveillance of the
processes and decisions in an organisation, given that
the role of IT in many errors only becomes clear
when they are considered as a group, and not indi-
vidually. The second is to not see IT implementation
as a technical process of installation of a technology
into an organisation, but rather see it as one of fitting
IT to users and their workflows—implementation is
redesign.

IT’s role in hazard and error detection
Patel and colleagues8 emphasise that error detection
and recovery are integral to the creation of a safe clin-
ical workplace. Given IT’s central role in the collation
and analysis of clinical data, information systems have
a significant role to play in identifying hazards and
errors, as well as guiding the system towards safer
areas of behaviour.
Incident reports are a cornerstone of patient safety

as they provide frontline accounts of hazards and
actual harms.27 Unfortunately such reports are often
not acted upon in a timely fashion, often because
there are so many of them to respond to. Reports may
also be incorrectly labelled, and reports of similar
events may be described or classified in different
ways, minimising the signal in the data. Simple com-
puter text mining methods appear to be a powerful
way of improving this situation. Incident reports can
be classified automatically for severity and class with
great precision.28 29 The widespread use of such tech-
nology should allow near real-time alerting of ‘out-
breaks’ of severe or clustered events, and assist health
services in prioritising their responses.
It is also possible to develop statistical profiles of

the usual behaviour of clinical services, reflecting, for
example, the typical volumes of events such as pre-
scriptions or test orders, as well as the expected fre-
quency of different event types. Automated
monitoring of these process trails within clinical infor-
mation systems can trigger alerts when there are
deviations beyond normally accounted for variation.
Such deviations may signal new systemic hazards such
as failure or error in a particular clinical IT system, as
well as help study how such hazards evolve over
time.30
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These methods also have application in improving
the safety of care more broadly. Just as there can be
organisational profiles of routine behaviour, we can
extend such ‘safety envelopes’ to individual patients.
There is, for example, a well-known increase in the
risk of death associated with weekend admission.31

Data mining methods allow us to identify those
patients most at risk of increased death and help sep-
arate those patients who are likely to be at greater risk
because of disease acuity from those who are at risk of
death because of reduced service availability.32 Such
methods can be used to build predictive models that
can calculate the incremental risk of iatrogenic harm
through continuing ‘exposure’ to care.33 We can also
compare the electronic record of an individual patient
to a ‘virtual cohort’ of similar patients, to help predict
which clinical interventions are most likely to benefit
a specific patient and avoid those that harm.34

At the level of the decision-maker, providing feed-
back about their practice compared with a standar-
dised cohort of clinicians can help signal when an
individual’s practice varies significantly from norms—
perhaps justifiably so. Clinical feedback appears to be
a powerful intervention to improve the quality and
safety of clinical care,35 and may have a very powerful
cognitive basis. Historically, cognitive scientists have
identified a wide variety of cognitive ‘biases’, and as
Patel and colleagues point out, the nature of these
individual biases is sometimes unclear.
Recent research in psychology suggests that most

decision biases are caused by a misalignment between
event samples known to the individual and the true
sample of events. In the decision by sampling model,
our personal judgements are shaped by our personal
sample of the available evidence, drawn from memory
or the environment.36 As our personal sample of
events is typically small and unrepresentative of the
total distribution, our decisions are equally skewed.
Such distortions are common in human assessments of
health risks, where individuals play down risks asso-
ciated with behaviours such as smoking, drinking or
exposure to HIV. Information systems that provide
clinicians with feedback on their behaviour probably
work by recalibrating each individual’s estimate of
how normal their decisions are for typical patients.
Similarly, providing individuals with tools to engage
in sense-making of data can assist in de-biasing their
decisions and better reflecting the underlying informa-
tion presented to them.15

Harm minimisation through complexity reduction in
system design and implementation
System implementation is an often-difficult step in the
lifecycle of technology. Many have observed that even
when a system works well when first evaluated it may
perform very differently in the sites where it is later
implemented. Implementation may require far greater
expense and effort because the technology does not

fit in as easily as expected with existing processes and
systems.37 Implementation should thus be considered
an adaptive process that may require both a process of
construction—building the necessary components to
allow new and pre-existing work elements to inter-
operate—and customisation—the localisation or
tuning of components and processes to the special
needs of an organisation or process. Failure to under-
stand the adaptive nature of implementation is no
doubt one of the main reasons health IT systems
flounder post-installation.
System complexity is a natural source of hazard as it

increases the likelihood of unanticipated interactions
between the components in any IT system. A common
consequence of poor adaptation during IT implemen-
tation is increased complexity in the workflow.13 Yet
Patel and colleagues8 make the strong case that such
workplace complexity leads to impaired cognition and
error.
Safe systems typically minimise complexity by

emphasising modularity in design, which by its nature
constrains any interactions between components to
within their own local module. We can see the bene-
fits of design modularity in the way tightly coupled
interventional bundles improve patient safety.38 IT
provides us a means to modularise clinical work, for
example, around agreed order sets, care plans and
clinical protocols.
Safe IT design also emphasises the creation of

defences such as redundant components within a
system.39 Failure in one system component then need
not lead to harm if other elements are designed to
step in, either to provide a cross check (eg, through
alert generation) or as a substitute (such as a reminder
for a missed action).
The implementation work required when new

information systems are installed also provides an
opportunity for redesign and optimisation of existing
clinical processes. If well executed, such redesign can
emphasise complexity reduction and system redun-
dancy. Indeed, we can view the introduction of tech-
nologies such as a decision support system as one of
complexity reduction for the decision-maker.40

A good test for whether or not such technology is
likely to be effective is whether at the end of the
redesign process the human task has indeed become
less complex.
Unfortunately complexity of work practice has a

natural tendency to increase with time. Redesigns,
perhaps prompted by new IT, are natural points in the
evolution of complexity where it can be checked.
A more sustainable strategy, however, is to make com-
plexity reduction a continuous task. Clinical processes,
work practices and their supporting technologies
probably need to be designed with a ‘use-by’ date. In
biology, cells have built-in checks for obsolescence,
and through the process known as apoptosis, are trig-
gered to die in programmatic ways. Rather than
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accrete increasingly complex IT in our workplaces
that impede cognition and decision-making, we prob-
ably need to actively consider information apoptosis
as an essential strategy to minimise complexity.41

CONCLUSION
Cognition and error form a crucial nexus that we
must understand if patient care is to be as safe as pos-
sible. In their review of cognition and error, Patel and
colleagues provide us with an ambitious research
agenda to explore this nexus. Cognitively driven
research not only helps us understand why errors
occur, but will also help us design interventions to
minimise and recover from such risks.
This nexus has an additional component, and that is

IT. While much is known about safe IT design and
use, the translation of this research evidence into the
designs of routinely available information systems is
slow. There is a similar gap between what we know to
be good implementation practice and actual imple-
mentations. For example, the likelihood of successful
and safe IT implementations appears greater with
incremental and steady system roll-out rather than big
bang approaches and genuine engagement with clin-
ical users, as well as the devotion of significant
resources to training.9

We thus are faced with a substantial challenge. IT is
a crucial instrument in our journey to make healthcare
delivery safer.42 We are unlikely to achieve our safety
goals without it. Yet our skills at designing and imple-
menting IT are still at a stage where we can cause
harm. The growing calls for better regulation of IT
design, implementation and use are in part a response
to the need to take this challenge seriously.43 Given
the ever-growing demands for efficiency, engagement
with an ever-changing evidence base and reduced
resources within the health system, it is however hard
to imagine modern clinical practice without our cog-
nitive prostheses.
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