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ABSTRACT A single-chromosome closed genome of Peptacetobacter (Clostridium)
hiranonis strain DGF055142 was generated using Illumina MiSeq short reads paired
with Oxford Nanopore MinION long reads. This isolate was obtained from a canine
in Flagstaff, Arizona, in 2019. Peptacetobacter (C.) hiranonis was hypothesized to con-
tribute to canine Clostridium difficile infection resistance.

P eptacetobacter (Clostridium) hiranonis is a normal component of healthy canine
guts (1–3) and performs primary to secondary bile acid conversion via 7a-dehy-

doxylation (4, 5). Secondary bile acids have been shown to inhibit Clostridium difficile
growth in vitro (6, 7), and the presence of P. (C.) hiranonis in canine guts has been
hypothesized to contribute to resistance to C. difficile infection (1).

A live culture of P. (C.) hiranonis was isolated from feces obtained from a healthy 2-
year-old Alaskan Klee Kai canine that was previously determined positive for P. (C.) hir-
anonis DNA (1, 8). Upon deposit, the sample was transferred to an anaerobic chamber
(Coy Labs). A 10-ml loopful of sample was homogenized with 200 ml 1� sterile phos-
phate-buffered saline (PBS) and plated onto prereduced brain heart infusion salt (BHIS)
agar plates supplemented with 2mM hemin, 4mM L-cysteine, and 2mM taurocholic
acid for 48 h at 37°C under anaerobic conditions. During incubation, the sample was
confirmed to harbor P. (C.) hiranonis DNA by species-specific PCR (1, 8). Isolation streaks
were performed on 20 colonies with Clostridium-like morphologies and incubated for
48 h. DNA was extracted from subcolonies using a 5% Chelex 100 heat soak method
(9–11), and P. (C.) hiranonis PCR was conducted (1, 8); 16/20 were positive but not
pure. Purification continued until two isolates were obtained. Isolates were propagated
as lawns, and 280°C frozen stocks were prepared in 20% glycerol. Simultaneously,
genomic DNA (gDNA) was extracted using Qiagen kits and prepped for whole-genome
sequencing (WGS) on an Illumina MiSeq instrument (12, 13). One isolate (DGF055142)
was pure as determined during WGS analysis [only P. (C.) hiranonis reads were identi-
fied] and prepared for long-read sequencing by adjusting a bacterial suspension to a
1.0 McFarland turbidity standard (Remel); a lawn was created and incubated at 37°C
for 24 h. High-molecular-weight (HMW) gDNA was extracted using the Quick-DNA
HMW MagBead kit (Zymo) and assessed for quality using a standard genomic 50-kb
fragment analyzer kit (Agilent) to ensure mean DNA fragments of .60,000 kb.
Additionally, A260/A230 and A260/A280 ratios were assessed using NanoDrop technology
(Thermo Fisher) to confirm MinION suitability, and the DNA concentration was deter-
mined using a Qubit device (Thermo Fisher). Libraries were prepared using an SQK-
LSK109 1D ligation gDNA kit with the native barcoding gDNA kit (Oxford Nanopore).
Libraries were loaded onto an R9/R9.4 flow cell, and MinION sequencing was per-
formed for 60 h using MinKNOW software; base calling was performed with Guppy
v3.22 (Oxford Nanopore) using the 9.4.1_450bps_hac workflow.
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Illumina reads were trimmed with bbduk.sh v38.86 (https://sourceforge.net/projects/
bbmap/), MinION reads (total, 232,473; N50, 17,946) were trimmed with Porechop v0.2.4
(https://github.com/rrwick/Porechop), and a hybrid assembly was created with Unicycler
v0.4.8 (14). The final assembly was polished using Pilon v1.23 (15) until no more correc-
tions could be made and then was annotated with the NCBI PGAP pipeline (16). The
depth and breadth of coverage were calculated by aligning sequence reads against the
assembly with minimap2 v2.17 (17) and then calling the per-base coverage with
SAMtools v1.10 (18). Default parameters were used for all software.

A single contig assembly was generated (2,534,695 bp; G1C content, 31.35%; 2,220
coding DNA sequences [CDSs]). Other assembly statistics are as follows: average depths of
coverage, 116� (Illumina) and 609� (MinION); median depths of coverage, 121� (Illumina)
and 612� (MinION); standard deviation (SD) depths of coverage, 17� (Illumina) and 101�
(MinION); breadths of coverage (.10�), 99.99% (Illumina) and 99.72% (MinION); genome
size, 2,534,695 bp; number of contigs, 1; number of CDSs, 2,220; and G1C content, 31.35%.

Data availability. All sequence data were deposited in NCBI GenBank under
BioProject accession number PRJNA688511 and SRA number SRP299691. The com-
pleted genome assembly can be found under GenBank accession number CP066811.
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