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Abstract
Lead (Pb) is a heavy metal which is abundant in the environment and known to cause neurotoxicity in children even at minute
concentration. However, the trace elements calcium (Ca), magnesium (Mg), zinc (Zn) and iron (Fe) are essential to children due
to its protective effect on neurodevelopment. The primary objective of this study was to assess the role of Pb and trace elements in
the development of autism spectrum disorder (ASD) among preschool children. A total of 81 ASD children and 74 typically
developed (TD) children aged between 3 and 6 years participated in the study. Self-administered online questionnaires were
completed by the parents. A first-morning urine sample was collected in a sterile polyethene urine container and assayed for Pb,
Ca, Mg, Zn and Fe using an inductively coupled plasma mass spectrometry (ICP-MS). Comparisons between groups revealed
that the urinary Pb, Mg, Zn and Fe levels in ASD children were significantly lower than TD children. The odds of ASD reduced
significantly by 5.0% and 23.0% with an increment of every 1.0 μg/dL urinary Zn and Fe, respectively. Post interaction analysis
showed that the odds of ASD reduced significantly by 11.0% and 0.1% with an increment of every 1.0 μg/dL urinary Zn and Pb,
respectively. A significantly lower urinary Pb level in ASD children than TD children may be due to their poor detoxifying
mechanism. Also, the significantly lower urinary Zn and Fe levels in ASD children may augment the neurotoxic effect of Pb.

Keywords Urinary . Pb . Trace elements . Autism . Children

Introduction

Lead (Pb) is a naturally occurring, non-ferrous, heavy metallic
element found in the earth’s crust. Despite being one of the
most toxic pollutants, Pb has been used worldwide in various
industries and consumers’ products due to its malleability and
corrosion resistance [1]. Human exposure to Pb is inevitable
due to the current industrial revolution, rapid urbanisation and
economic development. It is worthy to note that Pb has potent
and irreversible health effects on human. For instance, Pb
could become a potential cofactor, initiator or promoter in

many diseases, even at an extremely low concentration [2].
Therefore, frequent human exposure to Pb in many countries
worldwide has become a global environmental health con-
cern. Humans can be exposed to Pb through oral ingestion
or inhalation of Pb-contaminated soil and dust [3].

Young children are more vulnerable to Pb exposure than
adults, as they have unique physiological characteristics.
Compared to an adult, children’s digestive system has a higher
oral intake [3] and Pb absorption rate [4] which may increase
further when they are fasting or lack of essential trace ele-
ments [5, 6]. Additionally, mouthing behaviours in young
children may expose them to Pb [7]. Young children often
have the habit of pica (persistent and compulsive cravings to
eat non-food items) due to their innate curiosity and inability
to differentiate between non-food items and food [8]. Apart
from the digestive system, exposure to Pb can easily harm the
children’s immature and developing nervous system [9].

There are many potential sources of Pb in the environment,
including Pb mining and smelting, Pb-related industries (es-
pecially batteries and electronics), indoor and outdoor Pb-
based paint, water piping and solder, domestic products (e.g.
colour pencils, crayons, toys painted with Pb-based paint, Pb-
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glazed ceramic, cigarette, leaded petrol, cosmetic products
and traditional remedies) and hobbies involving Pb (e.g. fish-
ing, painting and collecting electronic devices) [4, 10–14].
Workmen in the Pb-related industries could contribute to
“take-home contamination” by carrying Pb dust on their
clothes, footwear, skin and other personal attires to their home
[4, 15]. Children living in urban cities may be exposed to other
sources of Pb pollution (e.g. soil and dust) and emissions
produced by anthropogenic activities (e.g. road traffic, indus-
tries, construction and demolition) [2, 16]. They spread
through the air rapidly within the environment, contaminate
the food chain and eventually enter the human bodies [17].
Other associated risk factors of childhood Pb exposure are
parents’ education levels, social status, children’s behaviours,
habits, diet and nutritional status [18].

Childhood Pb toxicity is a preventable environmental dis-
ease that has long-lasting adverse health and behavioural ef-
fects. Children exposed to Pb are prone to experience irrevers-
ible morphological and molecular alterations of the nervous
system [19–21]. It has been well established that Pb toxicity
has various adverse effects on the central neurological func-
tion. Consequently, these effects increase the risk of a broad
spectrum of developmental delays, intellectual and behaviour-
al deficits, hyperactivity, social withdrawal, gross and fine
motor performance deficits and decreased intelligence
quotient (IQ) [22–27]. Additionally, these effects have
been associated with higher Pb concentrations within
hours following birth [28].

An acute high concentration of Pb toxicity in children rare-
ly occurs nowadays due to the government’s law and legisla-
tion’s effectiveness in many developed countries to regulate
and control Pb [29]. Examples of these control measures are
phasing out Pb in petrol and household paint and reducing
industrial emission, water Pb and other sources [29].
However, a chronic low Pb toxicity concentration is equally
worrisome and more common in children [30]. Numerous
neurocognitive and neurobehavioural effects were observed
in children with blood Pb levels (BLLs) below 10.0 μg/dL
[31–36]. The United States Centres for Disease Control and
Prevention (CDC) initially defined the elevated BLLs as 10.0
μg/dL or greater [37, 38]. However, the CDC later lowered
the value to 5.0 μg/dL in 2012 [39, 40]. Regardless of the cut-
off BLL concentration, no Pb level can be considered safe due
to its adverse effects on the children’s progressive
neurodevelopment [41, 42].

Autism spectrum disorder (ASD) describes a range of
neurodevelopmental disorders, as stated in the American
Psychiatric Association’s Diagnostic and Statistical Manual
of Mental Disorders 5th Edition (DSM-5) [43]. It is
characterised by abnormal social behaviour, disinterest in
communication and interaction, language disorders, repetitive
and obsessive behaviours and narrowly focussed rigid inter-
ests [44]. Since its first description in 1943 with a prevalence

of 4.5 cases per 10,000 children [45], there has been a large
increase in ASD prevalence [46–50]. The cause and aetiology
of ASD remain controversial. With no current consensus, in-
vestigators from various biomedical fields are studying multi-
ple possible causes of ASD.

The role of environmental factors (e.g. neurotoxic heavy
metal exposure) on the development of ASD cannot be
overlooked. The broad spectrum of ASD also suggests that
the disease’s phenotype heterogeneity may result from expo-
sure to certain environmental agents, instead of primarily due
to genetic disorder [51]. The neurotoxicity and heavy metal
(including Pb) exposure have been associated with the cause
of neurodevelopmental disorders [52]. Previous studies re-
ported that Pb could damage the developing human brain,
causing a broad spectrum of neurodevelopmental disorders
[25, 36, 53]. Depending on the level of dose toxicity, the
disorders could range from overt clinical manifestation
(high-dose toxicity) to subclinical dysfunction (low-dose
chronic toxicity) [25, 36, 53].

Essential trace elements, which include calcium (Ca), mag-
nesium (Mg), zinc (Zn) and iron (Fe), play important roles in
children’s normal brain development, neurotransmitter syn-
thesis catabolism, cellular metabolic process, metabolism rel-
evant to neurotransmitters and motor development [54–60].
Therefore, altered levels of these elements and their imbalance
may lead to dys func t ion of neu ro t r ansmi t t e r s .
Neurotransmitter dysfunction has been observed in many
medical conditions and diseases, including neurological and
behavioural disorders [61–63]. However, less is known about
the role of these elements in ASD development. It has been
suggested that the essential trace elements caused the excit-
atory and inhibitory synapses in ASD to dysfunction [64].

Mainly, Ca is crucial for neurodevelopment and may pro-
vide preventive and therapeutic effects towards ASD by reg-
ulating synapse development and function [65]. Ca often
binds rapidly to target proteins and subsequently regulate Ca
channel function, generating Ca signalling [66–68]. Mg is the
fourth most regulatory cation in the body that modulates
gamma-aminobutyric acid (GABA) signalling [69, 70]. Mg
also activates the copper-zinc superoxide dismutase (CuZn-
SOD) and nitric oxide released from cells [71]. The CuZn-
SOD and nitric oxide are important in brain development and
functional well-being [71]. Zn is required to scaffold Pro-
SAP/Shank proteins related to excitatory synapses, where
lower Zn concentrations have been associated with ASD
[72]. On the other hand, Fe is an essential element for DNA
synthesis, gene expression, myelination, neurotransmission
and mitochondrial electron transport [73]. These functions
are crucial for the central nervous system. Therefore, Fe defi-
ciency impairs the neurotransmitter processes, myelin
formation and energy metabolism in the brain, which
was thought to cause behavioural and cognitive devel-
opmental delays in children [74, 75].
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Regular consumption of dairy products and milk formulas
is beneficial for children’s health [76]. The foods contain a
high nutritional value that provides high amounts of micro-
nutrients, mainly Ca [76]. However, excessive Ca intake may
cause nephrolithiasis, milk-alkali syndrome and interfere with
the absorption of other essential trace elements, such as Mg,
Zn and Fe [77]. Mg is widely distributed in leafy vegetables,
legumes, nuts, seeds, whole grains, animal foods and bever-
ages [77]. Zn sources can be found in either protein-rich plant
(e.g. cereal grains and legumes) and animal protein food [78].
Phytate (e.g. wholegrain cereals, legumes, nuts and seeds) and
dietary Ca were known to inhibit Zn absorption, while protein
enhances Zn absorption [77]. There are three main dietary
sources of Fe: (i) breast milk (where Fe is bound to
lactoferrin), (ii) haem Fe (meat, poultry and fish) and (iii)
non-haem Fe (e.g. spinach, lentils, pumpkin seeds, beans, nuts
and fortified cereals) [79]. The absorption of non-haem Fe
depends on the total net effect of factors enhancing Fe absorp-
tion, such as ascorbic acid and organic acids (e.g. meat, chick-
en, fish and seafood), fermented vegetables and fermented soy
sauces and factors inhibiting Fe absorption (e.g. phytates and
inositol phosphates, Fe-binding polyphenols, Ca, soy proteins
and vegetable proteins) [77].

Pb exposure is common in urban cities in Malaysia. In
2000, the prevalence of children with BLLs above 10.0 μg/
dL was 11.7% in urban Kuala Lumpur [80]. In 2015, a study
revealed that 27.0% of children in urban Malacca had blood
Pb levels above 10.0 μg/dL [81]. The Federal Territory of
Kuala Lumpur is Malaysia’s national capital and forms the
nation’s most populous urban region. It is the city’s increas-
ingly global orientation and its implications for the wider ur-
ban region [82]. The city’s total land area is 243.70 km2

(24,221.05 ha), which is a hundred percent urban area. It
had a population of 1,556,200 people in 2005, with an average
population density of 64 persons per hectare [83]. The popu-
lation increased to 1,790,000 people in 2018 [84]. Kuala
Lumpur’s rapid urbanisation increases environmental pollu-
tion and exposes children to neurotoxic heavy metals, espe-
cially Pb. Therefore, Kuala Lumpur was the most appropriate
location to conduct this study. To the best of our knowledge,
no study has assessed urinary Pb and essential trace elements
in ASD among preschool children in Malaysia. Therefore, the
primary objective of this study was to assess the role of Pb and
essential trace elements in ASD development among pre-
school children in Malaysia.

Methodology

The current study protocol was approved by the National
University of Malaysia (UKM) Research and Ethics
Committee and the Medical Research and Ethics Committee
of the Ministry of Health (MOH) Malaysia. All procedures

were performed in accordance with the principles of the
Declaration of Helsinki (1964) and later amendments.
Participation was voluntary and informed written consents
were obtained from the parents or legal caretakers before the
study. This observational unmatched case-control study was
conducted among the preschool children in Kuala Lumpur
from January 15 until March 15, 2020. The study was com-
pleted before the first Movement Control Order (MCO) due to
COVID-19 outbreak in Malaysia.

A total of 81 ASD children and 74 typically developed
(TD) children were enrolled in the study. All children were
Malaysian citizen aged between 3 and 6 years. Both group of
children were randomly selected from the students’ name list
with the schools’ permission. The ASD children were recruit-
ed from the national autism rehabilitation centre (GENIUS
KURNIA), located in Sentul City, Kuala Lumpur. The centre
is governed by the Ministry of Education (MOE) Malaysia.
Clinical diagnosis of ASD was made by the paediatrician
working in the government tertiary hospitals. The diagnosis
was based on the DSM-5 criteria and the International
Classification of Diseases-10 (ICD-10). The TD children in
the control group were recruited from public preschools (age
4-6 years), namely TABIKA Department of Community
Development (KEMAS) and public nurseries (age 2-4 years),
namely TASKA KEMAS. The preschools and nurseries are
located in Sentul City, Kuala Lumpur.

The two institutions were established and managed by the
Early Childhood Education Division under the Ministry of
Rural Development (MRD). The institutions were managed
according to the National Preschool Standard Curriculum un-
der the MOE, the National Early Childhood Care and
Development Policy and the National PERMATA
Curriculum [85]. The TD children were declared as “healthy”.
They had no known characteristics of ASD, as verified by the
paediatrician based on the Modified Checklist for Autism in
Toddlers (M-CHAT) screening and the regular children health
assessment during follow-up at 18 months and 36 months old.
The following exclusion criteria were used for both groups: (i)
congenital anomaly or syndrome, (ii) neurodevelopmental or
neurobehavioural disorders, (iii) endocrine disorders, (iv)
acute infectious, surgical and traumatic diseases and (v) cur-
rently on regular oral medications or infusion medications
(chemotherapy) prescribed by specialists or on chelation ther-
apy for heavy metal removal.

The researcher informed each participant’s parent (either
father or mother) through phone calls, messages and emails
to complete the self-administrated online questionnaire
(Google Form). This method of gathering information online
was preferred in this study due to several reasons: (i) easy
access (through phone or computer), (ii) user-friendly, (iii)
can be done at any time (especially for working parent who
are busy during daytime), (iv) better data management (e.g.
record keeping, confidentiality and data analysis) and (v)
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precautionary measure to the risk of COVID-19 transmission
through closed contact during the COVID-19 outbreak in
Malaysia. The researcher assisted the parent who had difficul-
ty to complete the questionnaire through phone calls, mes-
sages and emails. The questionnaire was designed to elicit
the information regarding the socio-demographic background
of the parent and the child, the developmental milestone of the
child, the risk factors that might indicate a predisposition to
ASD (including pregnancy complications, preterm delivery,
breastfeeding and family history of autism), the environmental
exposure to Pb, the parental knowledge assessment on Pb and
the dietary pattern of the child. The child’s anthropometric
parameters (e.g. height and weight) were measured using cal-
ibrated digital weighing scales (Omron) that came with a
height measurement stand. The researcher in the classroom
recorded the measurements.

A first-morning urine sample was collected from each par-
ticipant by the parent at home in a sterile polyethene urine
container pre-treated with 20.0% nitric acid, HNO3 solution
and rinsed twice with deionised water. Before the procedure,
the parent was advised by the researcher regarding the correct
technique of collecting urine sample: (i) the urine collection
should be a clean catch, (ii) urine sample volume should range
between 5.0 and 10.0 mL, (iii) the sterile polyethene urine
container should not be contaminated with detergent, body
soap or any foreign materials, (iv) the urine sample should
not be added with water to avoid the dilutional effect and (v)
proper closure of the urine container and the biohazard zip
bag. The children were allowed to consume foods and drinks
as usual. The urine samples were delivered by the parent to the
researcher on the same day while they sent their children to the
autism rehabilitation centre, preschool or nursery. The urine
samples were labelled with code numbers and delivered to an
accredited environmental laboratory, Faculty of Science and
Technology, UKM, Bangi, Selangor within 24 h. The urine
samples were stored at the temperature of −20.0 °C prior to the
laboratory analysis.

In the laboratory, the urine samples were prepared by
adding 1.0 mL of urine sample into 10.0 mL of 0.2% nitric
acid (HNO3) solution with a ratio of 1:10. The preparation
process was vital to allow the digestion process of organic
matter in the urine sample. The prepared urine samples were
then assayed for Pb and other essential trace elements (e.g. Ca,
Mg, Zn and Fe) using the PerkinElmer SCIEX™ ELAN®
9000 inductively coupled plasma mass spectrometry (ICP-
MS; PerkinElmer Inc., Shelton, CT 06484, USA). The detec-
tion limits using this operating system for each element were
as follows: Pb 1.0–10.0 part per trillion (ppt), Ca 10.0–100.0
ppt, Mg 1.0–10.0 ppt, Zn 1.0–10.0 ppt and Fe 1.0–10.0 ppt.
The system was calibrated using standard solutions prepared
by the Universal Data Acquisition Standards Kit (Perkin
Elmer Inc., Shelton, CT 06484, USA). Internal online
standardisation was performed to assess the difference in

matrix viscosity using 10.0 μg/L solutions of yttrium and
rhodium Pure Single-Element Standard (Perkin Elmer Inc.,
Shelton, CT 06484, USA) [86].

The dataset from the questionnaire and the laboratory ICP-
MS results were analysed using the IBM Statistical Package
for Social Sciences (SPSS) software (version 22, IBM,
Chicago, IL, USA). Prior to the statistical analysis, the data
normality was explored graphically (based on histogram and
Q-Q plot) and statistically (based on skewness, kurtosis and
Shapiro-Wilks/Kolmogorov-Smirnov statistics). Frequency
and percentage were calculated for each participant’s demo-
graphic parameters. The group differences in Pb levels (mean
± standard deviation) and other essential trace elements (Ca,
Mg, Zn and Fe) were assessed either using the Student’s t-test
(for normal distribution) or Mann-Whitney U test (for non-
normal distribution). The potential associated risk factors and
confounders (quantitative variables) were also assessed using
one of the two methods mentioned above. The median, inter-
quartile range (IQR), minimum and maximum of the analysed
elements were also used as descriptive statistics. The categor-
ical variables were calculated using the Chi-square test and
presented in frequency and raw percentage. The magnitude
of the correlation between element’s concentrations in the
urine was analysed using the Pearson correlation test (for nor-
mal distribution) and by the Spearman rank correlation test
(for non-normal distribution test). The receiver operating char-
acteristic (ROC) analysis was performed as a comprehensive
tool to assess the measured elements’ accuracy and choose the
elements’ cut-off points. Simple and multiple logistic regres-
sion analyses were performed to assess the factors (indepen-
dent variables included heavy metal, Pb) associated with
ASD. The final prediction model allowed for an estimation
of the effect (odds ratio) of the factors. A p-value of less than
0.05 was regarded as statistically significant in this study.

Results

Figure 1 shows a comparison of the urinary Pb concentration
level and essential trace elements (Ca, Mg, Zn and Fe) be-
tween ASD children and TD children according to children’s
age (in months). The data of the concentration level of the
elements was not normally distributed. Therefore, a non-para-
metric test was used to analyse the essential trace ele-
ment data. The outliers were retained, and log transfor-
mation was not performed to preserve the true findings.
The general characteristics of the ASD children and TD
children are shown in Table 1.

A total of 155 preschool children (81 ASD children and 74
TD children) participated in the study. The male-to-female
ratio was approximately 5:1 for ASD children and 1:1 for
TD children (p < 0.001). Most of the children in both groups
were Malays. For the ASD children and TD children, the
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Malay percentage were 75.0% and 94.6%, respectively (p =
0.003). Despite having ASD, approximately 17.3% of ASD
children were able to talk at the age of 3 years old. In contrast,

all TD children (100.0%) were able to speak at the age of 3
years old since the ability to speak was one of the control
group’s inclusion criteria.

Fig. 1 Comparison of
concentration level of urinary Pb
and essential trace elements (Ca,
Mg, Zn and Fe) between ASD
children and TD children
according to children’s age (in
months). The line represents
95.0% confidence interval (CI) of
concentration level
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The parents of the ASD children were approximately 1
year older than the TD children’s parents (p = 0.047). Most
parents in each group aged more than 30 years (p < 0.001),
indicating that the parental age’s proxy during conception was
appropriate. More than half of the ASD children were the first
child in the family, while about 30.0% of the TD childrenwere
a subsequent child in the family (p < 0.001). Most parents had
secondary education (p < 0.001) and were from B40 income
group (less than RM5000.00/month) (p < 0.001).

A majority of the ASD children lived outside Kuala
Lumpur, mainly in Selangor. On the other hand, most TD
children lived in Kuala Lumpur (p < 0.001). Most ASD chil-
dren were born in the government hospital (51.9%), outside
Kuala Lumpur (63.0%) (p < 0.001). Meanwhile, most TD
children were born in public hospitals (85.1%) in Kuala
Lumpur (56.8%) (p = 0.014). Most ASD children stayed in
middle-range houses (32.1% terrace houses and 32.1% con-
dominiums), while most TD children stayed in flat
houses (54.1%). The houses were older in the ASD
group (22.28 ± 14.62 years), compared to TD children
(18.28 ± 9.78 years) (p = 0.045).

Most of the parents were non-smoker (65.4% in the ASD
children group, and 81.1% in the TD children group) (p =
0.011). The parents claimed no risk of Pb exposure at their
workplace (93.8% in the ASD children group and 82.4% in
the TD children group) (p = 0.027). There were no significant
differences between the groups for parent’s gender, children’s
age, children’s immunisation status, children’s BMI, ASD in
family, obstetric risk factors, house location (nearby the main
road, factory and construction site) and source of drinking
water (p > 0.05). However, there was a significant mean dif-
ference of urinary Pb level between groups for the place of
birth (p = 0.046) and the duration of breastfeeding (p = 0.013)
among ASD children, and proximity of the house to the con-
struction site (p = 0.038) among TD children.

As shown in Fig. 2 and Table 2, laboratory analysis of
urinary Pb and essential trace elements revealed statistically
significant differences between the groups (p < 0.05), except
Ca (p = 0.096). Surprisingly, the urinary Pb levels were sig-
nificantly lower in ASD children (mean 0.26 ± 0.31 μg/dL)
compared to TD children (mean 0.58 ± 0.41 μg/dL) (p <
0.05). Urinary Mg, Zn and Fe were also lower in ASD chil-
dren than TD children. Further assessment was done for all the
male children and children aged above 4 years. The result
revealed a similar trend for all elements. However, there was
a marked difference in the mean level of elements between the
groups. For children aged 4 years and below, all elements
were higher in the ASD children group than the TD children
group. However, the finding was not statistically significant (p
> 0.05), except Ca (p = 0.002).

As shown in Table 3, the overall correlation analysis dem-
onstrated a significant positive association between the uri-
nary Pb and the essential trace elements, except Ca (r =

−0.01, p > 0.05). The association levels shown on this corre-
lation ranged from very weak (Pb ×Mg, r = 0.19) to moderate
(Pb × Zn, r = 0.44). The correlation between the essential trace
elements revealed a significant positive association ranging
from weak (Ca × Zn, r = 0.25) to a very strong association
(Ca × Fe, r = 0.87). A similar trend was found in all the male
children (n = 107) and those aged above 4 years (n = 140). In
the ASD and TD children groups, the correlation analysis
revealed a non-significant positive association between the
urinary Pb and the essential trace elements (p > 0.05), except
for Pb × Zn (r = 0.26, p > 0.05) in male ASD children (n = 68).

The overall correlation between the essential trace elements
revealed a significant positive association, with the association
level ranging from weak (Ca × Zn, r = 0.25) to a very strong
association (Ca × Fe, r = 0.87). A similar trend was found in
all the male children (n = 107), all children aged above 4 years
old (n = 140), all ASD children (n = 81), male ASD children (n
= 68) and ASD children aged above 4 years old (n = 76). The
correlation between essential trace elements showed moderate
to a very good association in all TD children (n = 74) and TD
children aged above 4 years old (n = 64), and excellent asso-
ciation in male TD children (n = 39). The correlation between
urinary Ca and Fe produced persistent good to excellent asso-
ciation among different groups of participants (correlation co-
efficient, r from 0.64 to 0.97). Despite the non-significant
findings, the correlation between urinary Pb and Ca showed
a negative very weak to weak associations among all children
(n = 155), male ASD children (n = 68), ASD children aged 4
years and below (n = 5), female TD children (n = 35) and TD
children aged 4 years and below (n = 10).

Table 4 demonstrates each urinary element’s cut-off point
among the 155 children using the ROC curve analysis. The
area under the curves for urinary Pb and Zn showed the sig-
nificant value closest to one (0.84 and 0.81, respectively). On
the other hand, the urinary Ca, Mg and Fe showed the value
closest to 0.5 (0.57, 0.59 and 0.65, respectively). The cut-off
point for all elements was within the standard reference level.

Table 5 shows the multiple logistic regression analysis re-
sults of potential associated factors of ASD in both groups.
Parental education, the children’s ethnicity, the children’s
gender and parental smoking status were identified as signif-
icant associated factors of ASD. Parents with tertiary educa-
tion had 26 times the odds of having ASD child compared to
parents with secondary education (OR = 26.15, 95% CI 7.10,
96.38, p < 0.001). The odds of ASD in non-Malay children
were 7.5 times higher than Malay children (OR = 7.52, 95%
CI 1.62, 34.85, p = 0.010). The odds of ASD in male children
were 8.5 times higher than for female children (OR = 8.52,
95% CI 2.76, 26.28, p < 0.001). An ex-smoker parent had 25
times of having ASD child compared to a non-smoker parent
(OR = 25.29, 95% CI 4.03, 158.68, p = 0.001).

Table 6 shows the multiple logistic regression analysis re-
sults of urinary Pb and essential trace elements. The
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interactions between urinary elements Pb and Ca, Pb and Mg,
Pb and Zn and Pb and Fe were significant. Therefore, these
interactions were included in the multiple logistic regression
analysis. The odds of ASD significantly reduced by 0.1%with
increased of every 1.0 μg/dL urinary Pb after further interac-
tion analysis (OR = 0.001, 95% CI 0.00, 0.89, p = 0.046). The
odds of ASD significantly increased by 24.0% with increased
of every 1.0 μg/dL urinary Ca (OR = 1.24, 95% CI 1.13, 1.36,

p < 0.001). After further interaction analysis, the odds of ASD
increased by only 4.0% with increased of every 1.0 μg/dL
urinary Ca. However, the result was non-significant (OR =
1.24, 95% CI 1.13, 1.36, p < 0.001). An increment of every
1.0 μg/dL urinary Zn reduced the odds of ASD by 5.0% (OR
= 0.95, 95% CI 0.91, 0.99, p = 0.008). However, after further
interaction analysis, the odds of ASD significantly reduced by
11.0% with increment of every 1.0 μg/dL urinary Zn (OR =

Fig. 2 Box plots show a comparison of mean concentration level of urinary Pb and essential trace elements (Ca, Mg, Zn and Fe) between ASD children
and TD children among all participants, among male children and among female children
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Table 2 The urinary Pb and essential trace element level between the ASD group and TD group

Urinary Pb and
essential trace elements

Group Sample Min Max Mean ± Std Dev Geometric mean Median IQR Changes † p-value #

Overall (n = 155)

Pb (μg/dL) ASD 81 0.08 2.56 0.26 ± 0.31 0.21 0.19 0.106 + 123% <0.001*

TD 74 0.14 1.96 0.58 ± 0.41 0.47 0.46 0.508

Ca (μg/mL) ASD 81 2.41 259.21 54.91 ± 53.88 34.04 37.71 64.93 −24% 0.134

TD 74 3.40 247.45 41.84 ± 43.12 27.98 27.11 35.55

Mg (μg/mL) ASD 81 3.00 303.56 104.29 ± 72.15 76.95 85.38 103.69 + 28% 0.060

TD 74 7.93 465.64 133.09 ± 94.74 102.55 99.26 115.02

Zn (μg/dL) ASD 81 5.41 151.18 39.81 ± 24.52 33.40 33.48 24.94 + 123% <0.001*

TD 74 17.39 466.26 88.88 ± 90.15 69.06 65.05 46.20

Fe (μg/dL) ASD 81 1.01 152.17 34.69 ± 33.28 21.33 25.27 36.75 + 68% 0.001*

TD 74 4.70 425.27 58.32 ± 64.26 39.18 36.86 52.17

Among male children (n = 107)

Pb (μg/dL) ASD 68 0.08 2.56 0.27 ± 0.33 0.21 0.19 0.12 + 141% <0.001*

TDC 39 0.16 1.96 0.65 ± 0.47 0.51 0.56 0.53

Ca (μg/mL) ASD 68 2.65 259.21 57.72 ± 53.50 37.70 41.06 70.05 −14% 0.316

TDC 39 3.40 247.45 49.47 ± 53.46 31.51 28.58 31.52

Mg (μg/mL) ASD 68 14.94 303.56 106.00 ± 71.08 82.36 91.38 102.00 + 32% 0.044*

TDC 39 7.93 393.15 139.96 ± 90.50 111.79 102.62 96.83

Zn (μg/dL) ASD 68 10.56 151.18 41.13 ± 25.16 35.23 35.51 24.14 + 156% <0.001*

TDC 39 25.86 466.26 105.20 ± 118.06 75.03 72.17 47.59

Fe (μg/dL) ASD 68 1.01 152.17 36.44 ± 32.75 23.49 27.83 42.61 + 91% 0.005*

TDC 39 8.14 425.57 69.56 ± 80.15 45.38 47.04 46.25

Among female children (n = 48)

Pb (μg/dL) ASD 13 0.13 0.84 0.24 ± 0.19 0.21 0.17 0.08 + 108% <0.001*

TDC 35 0.14 1.41 0.50 ± 0.32 0.35 0.36 0.40

Ca (μg/mL) ASD 13 2.41 213.80 40.19 ± 55.62 19.94 30.11 44.65 −17% 0.634

TDC 35 5.99 98.29 33.35 ± 25.62 24.51 23.92 34.91

Mg (μg/mL) ASD 13 2.99 259.17 95.35 ± 79.97 53.92 67.74 134.83 + 32% 0.291

TDC 35 17.79 465.64 125.44 ± 100.00 93.14 93.57 131.49

Zn (μg/dL) ASD 13 5.41 65.49 32.87 ± 20.32 25.29 30.85 38.91 + 115% <0.001*

TDC 35 17.39 172.50 70.70 ± 35.02 62.97 58.38 44.22

Fe (μg/dL) ASD 13 1.34 139.07 25.52 ± 35.92 12.87 18.50 24.65 + 79% 0.019*

TDC 35 4.70 149.80 45.79 ± 37.13 33.26 30.01 58.04

Among children aged of 4 years old and below (n = 15)

Pb (μg/dL) ASD 5 0.17 2.56 0.81 ± 1.02 0.46 0.24 1.50 −56% 1.000

TDC 10 0.19 0.60 0.36 ± 0.15 0.33 0.31 0.25

Ca (μg/mL) ASD 5 30.11 259.21 107.95 ± 92.77 80.13 86.03 157.42 −68% 0.019*

TDC 10 9.11 98.29 34.18 ± 30.86 25.70 22.40 27.85

Mg (μg/mL) ASD 5 49.53 254.56 133.93 ± 88.58 109.69 118.69 170.55 −36% 0.371

TDC 10 7.93 185.63 86.01 ± 53.55 65.85 82.15 95.55

Zn (μg/dL) ASD 5 20.82 151.18 57.22 ± 53.91 43.41 30.85 77.27 −10% 0.440

TDC 10 25.86 82.17 51.51 ± 20.59 47.87 44.63 41.91

Fe (μg/dL) ASD 5 18.504 152.17 68.10 ± 54.72 51.17 55.19 98.87 −40% 0.310

TDC 10 15.19 124.13 40.64 ± 34.89 31.78 24.68 34.02

Among children aged of more than 4 years old (n = 140)

Pb (μg/dL) ASD 76 0.08 1.25 0.23 ± 0.17 0.20 0.18 0.10 + 170% <0.001*

TDC 64 0.14 1.96 0.62 ± 0.43 0.50 0.52 0.54

Ca (μg/mL) ASD 76 2.41 213.80 51.42 ± 49.37 32.17 33.26 58.21 −16% 0.302
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0.89, 95% CI 0.83, 0.93, p = 0.001). An increment of every
1.0 μg/dL urinary Fe reduced the odds of ASD by 23.0% (OR
= 0.77, 95% CI 0.69, 0.87, p <0.001). The odds of ASD
reduced by only 5.0% with increment of every 1.0 μg/dL
urinary Fe. However, the result was non-significant (OR =
0.95, 95% CI 0.73, 1.24, p = 0.698).

Discussion

Urinary Pb as a Biomonitor to Assess Body Burden of
Pb

The determination of Pb in urine is considered to reflect the
absorbed Pb that has diffused from plasma and is excreted
through the kidneys, which accounts for about two-thirds of
total elimination [87, 88]. The urinary Pb is understood to
reflect Pb exposure within the last few days to weeks [88,
89]. It also explains possible long-term Pb exposure [87,
90]. The absorbed Pb from blood is deposited into calcified
tissues (e.g. bone) and can be stored for decades [91, 92]. Pb is
slowly released from the calcified tissue based on the bone
turnover rates, either from a compact structure (slow turnover)
or from a trabecular structure (rapid turnover) [92], depending
on age or intensity of exposure [93]. In addition, the continu-
ous growth of young children indicates constant bone remod-
elling for skeletal development. The constant bone remodel-
ling contributes to endogenous contamination where stored Pb
in the bone is continuously released into the plasma [92, 94].
The cortical bone contributes about more than a twofold con-
centration of Pb excreted in the urine per day compared to
trabecular bone [95].

The 24-h urine collection method has its limitations, al-
though it has been used frequently in many clinical studies.

The limitations are the method is inconvenient and may po-
tentially contaminate the urine samples with heavy metals
[96]. Several investigators suggested that the short duration
of urine collection can provide sufficient information about
Pb excretion [97]. For instance, Gulson et al. revealed an
extremely good correlation between blood-urine pairs for iso-
topic Pb composition, indicating that urine can serve as an
alternative for blood especially in new born infants and young
children [96]. Fukui et al. suggested urine Pb to be a good
alternative to blood Pb measurement on a group basis, in
which the urine Pb was not adjusted by creatinine concentra-
tion [98]. In this study, the spot collection of urine for Pb
measurement was chosen as it is the commonest and the most
preferable biological sample in the biomonitoring studies in-
volving children. Non-invasive samples (e.g. urine) were col-
lected instead of invasive samples (e.g. blood) as the clinical
procedures are difficult to perform on young children and
create parental anxiety, which could lead to less participation
and potentially result in selection bias [99, 100].

The Concentration of Pb Below Elevated Level

The urinary Pb concentration for both groups in this study was
below the elevated level of 5.0 μg/dL. The highest recorded
concentration level of urinary Pb was 2.5 μg/dL. Out of the
155 participants, most children (90.0%) had urinary Pb level
below 1.0 μg/dL (n = 135). Previously accumulated data
(since the early 1990s) have provided sufficient evidence
about the toxic effects of Pb occurring at low concentration
level [101]. Since children are more vulnerable to Pb exposure
and more likely to suffer from neurodevelopmental deficits,
the importance of adverse health effects in young children
cannot be underestimated [102]. Previous cohort studies have
shown significant inverse associations among most or all

Table 2 (continued)

Urinary Pb and
essential trace elements

Group Sample Min Max Mean ± Std Dev Geometric mean Median IQR Changes † p-value #

TDC 64 3.40 247.45 43.04 ± 44.80 28.36 30.96 36.40

Mg (μg/mL) ASD 76 2.99 303.56 102.34 ± 71.22 75.17 84.35 104.55 + 37% 0.019*

TDC 64 17.79 465.64 140.45 ± 97.89 109.89 102.54 126.28

Zn (μg/dL) ASD 76 5.41 124.09 38.66 ± 21.56 32.83 33.60 24.51 + 145% <0.001*

TDC 64 17.39 466.26 94.72 ± 95.40 73.13 71.12 48.90

Fe (μg/dL) ASD 76 1.01 139.07 32.49 ± 30.70 20.14 23.95 36.13 + 88% <0.001*

TDC 64 4.70 425.57 61.08 ± 67.48 40.48 42.90 56.88

*p < 0.05 indicates significant statistical result
# Comparison of urinary heavy metals and essential trace element mean ± standard deviation level using Mann-Whitney U test

†Changes in urinary heavymetal and essential trace element mean level were measured by dividing the means differences (between two groups) with the
mean level of ASD group
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children with BLLs below 10.0 μg/dL [36, 103, 104] and as
low as 1.0–2.0 μg/dL in other cohort studies [105–107]. The
available evidence suggests that the mean BLLs range be-
tween 2.0 and 4.0 μg/dL in the US and European countries
[108]. Our study demonstrated a significant cut-off point of
0.25 μg/dL for urinary Pb from the ROC curve analysis, indi-
cating a possibility of a neurotoxic effect of Pb at this level.
However, the minimum level to cause the neurological effect,
especially in young children, cannot be concluded from the
present findings.

The low urinary Pb level in all children in this study could
reflect that the Pb exposure in urban Kuala Lumpur has im-
proved. Previous studies done in urban Kuala Lumpur showed
a reducing trend of Pb level among children from 5.26 μg/dL
(BLLs) in 2000 [80] to 3.40 μg/dL (BLLs) in 2007 [109]. In
the current study, the Pb level further dropped to 0.42 μg/dL
(urinary Pb). This comparison is valid, although different bi-
ological samples were used in those studies because the Pb
concentrations in urine are generally lower by a minimum
factor of 10 compared to Pb in the blood [88].

The reasons for the low Pb levels in children in Malaysia
over the two decades could be due to the Malaysian govern-
ment’s action to phase out Pb from gasoline since early 1998
[110]. Consequently, Pb concentration in the air reduced

greatly from 1990 to 2004 [111]. The Malaysian government
also formulated a series of policies, including the latest
National Automotive Policy (NAP) 2020 [112], to encourage
the use of alternative vehicles. Examples of these vehicles are
battery electric vehicles (BEVs) and public transportation (e.g.
electric bus, monorail and electric train). Additionally,
Malaysia planned to regulate heavy metals (including Pb) in
the ceramic ware since 2014. However, in 2020, Malaysia
notified the World Trade Organization (WTO) regarding the
maximum release amounts for Pb for cookware during testing
to a new standard level of 0.5 mg/L [113]. This new standard
supersedes the 13th schedule of the Food Regulations
1985, which stated that Pb in the leachate from packag-
ing, appliance containers and vessels used for cooking
should not exceed 2.0 mg/L [114].

The Ministry of Domestic Trade, Co-operatives and
Consumerism Malaysia (MDTCC) regulates mandatory safe-
ty standards for toys intended for children aged below 14
years old. The maximum acceptable migration of Pb in paint
shall not be more than 90.0 ppm [115]. Malaysia also intro-
duced local legislative frameworks to manage the country’s
overall e-waste sector. These frameworks include generation,
movement, recycling and disposal based on laws and legisla-
tions relevant to scheduled waste and e-waste management in

Table 3 Correlation between the levels of the studied elements in the urine of the ASD group and the TD group
Correlation Coefficient, r †

Group of Respondents Overall (ASD + TD) ASD TD

Urinary Elements Total

n=155

Male

n=107

Female

n=48

< 4 

years

n=15

> 4 

years

n=140

Total

n=81

Male

n=68

Female

n=13

< 4 

years

n=5

> 4 

years

n=76

Total

n=74

Male

n=39

Female

n=35

< 4 

years

n=10

> 4 

years

n=64

Pb x Ca - 0.01 0.00 0.04 - 0.10 -0.01 0.04 - 0.02 0.45 - 0.30 0.02 0.11 0.30 - 0.12 - 0.22 0.13

Pb x Mg 0.19* 0.20* 0.15 - 0.11 0.21* 0.05 0.08 0.09 0.00 0.04 0.15 0.08 0.17 - 0.04 0.12

Pb x Zn 0.44* 0.48* 0.27 0.08 0.47* 0.20 0.26* - 0.23 0.30 0.19 0.15 0.22 0.08 - 0.18 0.13

Pb x Fe 0.21* 0.22* 0.17 - 0.11 0.22* 0.08 0.03 0.35 - 0.30 0.06 0.08 0.19 - 0.09 - 0.06 0.06

Ca x Mg 0.54* 0.60* 0.48* 0.64* 0.53* 0.57* 0.59* 0.59* 0.80 0.55* 0.55* 0.70* 0.45* 0.56 0.55*
Ca x Zn 0.25* 0.31* 0.22 0.40 0.23* 0.34* 0.31* 0.42 0.80 0.32* 0.42* 0.66* 0.21 0.73* 0.40*
Ca x Fe 0.87* 0.89* 0.83* 0.77* 0.87* 0.97* 0.97* 0.97* 1.00 0.97* 0.91* 0.95* 0.82* 0.64* 0.92*
Mg x Zn 0.61* 0.62* 0.61* 0.67* 0.60* 0.63* 0.58* 0.82* 0.70 0.62* 0.63* 0.70* 0.56* 0.69* 0.61*
Mg x Fe 0.52* 0.61* 0.36* 0.83* 0.50* 0.55* 0.56* 0.55 0.80 0.52* 0.46* 0.66* 0.24 0.78* 0.43*
Zn x Fe 0.44* 0.48* 0.36* 0.54* 0.44* 0.34* 0.32* 0.40 0.80 0.31* 0.43* 0.63* 0.23 0.47 0.42*

*p < 0.05 indicates significant statistical result

†Correlation coefficient, r was calculated using Spearman’s correlation test

Indicates a very weak correlation between two elements (r value ranges from 0.00 until 0.19), , Indicates a weak correlation between two
elements (r value ranges from 0.20 until 0.39), , Indicates a moderate correlation between two elements (r value ranges from 0.40 until 0.59), ,
Indicates a good correlation between two elements (r value ranges from 0.60 until 0.79), , Indicates an excellent correlation between two elements (r
value ranges from 0.80 until 1.00)

Table 4 Determination of cut-off point of each urinary elements among 155 children using ROC curve analysis and comparison with available
standard references

Urinary element Area under the curve 95% CI p-value Cut-off point Standard reference level Lab specimen Reference

Pb (μg/dL) 0.84 0.78, 0.91 <0.001* 0.25 5.00 Serum ACCLPP, CDC 2012

Ca (μg/mL) 0.57 0.48, 0.66 0.134 48.64 88.00-108.00 Serum NHANES, CDC 2011

Mg (μg/mL) 0.59 0.50, 0.68 0.060 75.87 6.00-304.00 Urine NHANES, CDC 2014

Zn (μg/dL) 0.81 0.74, 0.87 <0.001* 65.85 100.00 Serum ATSDR, CDC 2005

Fe (μg/dL) 0.65 0.56, 0.73 0.001* 60.24 32.00-175.00 Serum NHANES, CDC 2008

ACCLP Advisory Committee on Childhood Lead Poisoning Prevention, CDC Centres for Disease Control, NHANES National Health and Nutrition
Examination Survey, ATSDR Agency for Toxic Substances and Disease Registry

*p < 0.05 indicates significant statistical result

The estimation of cut-off points of elements from ROC curve analysis in the current study
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Table 5 Multiple logistic regression analysis results of associated factors for ASD

Variables B Wald aOR 95% CI p-value R2

Parents

Education background

Tertiary education 3.26 24.06 26.15 7.10, 96.38 <0.001* 0.58

Secondary education 1.00

Children

Race

Non-Malay 2.02 6.65 7.52 1.62, 34.85 0.010*

Malay 1.00

Gender

Male 2.14 13.90 8.52 2.76, 26.28 <0.001*

Female 1.00

ASD among the siblings

Yes −0.84 0.68 0.43 0.06, 3.18 0.409

No 1.00

Obstetric history

Advanced maternal Age

More than 35 years old 0.30 0.07 1.35 0.14, 12.75 0.794

35 years old and below 1.00

Birth order

First child 0.45 0.88 1.57 0.61, 4.05 0.350

Subsequent child 1.00

GDM

Yes −0.57 0.82 0.57 0.17, 1.93 0.364

No 1.00

PIH

Yes 1.14 0.29 3.12 0.05, 200.93 0.592

No 1.00

Anaemia in pregnancy

Yes −0.50 0.90 0.61 0.22, 1.70 0.342

No 1.00

Prematurity

Yes 0.55 0.42 1.73 0.33, 9.06 0.516

No 1.00

Mode of delivery 0.65 0.723

Caesarean section −0.49 0.63 0.62 0.19, 2.05 0.429

Assisted delivery 0.02 0.00 1.02 0.16, 6.68 0.985

Spontaneous vertex 1.00

Birth weight 1.48 0.477

2500 g and below −1.67 0.66 0.12 0.003, 10.64 0.418

2501 g until 4000 g −0.88 0.16 0.42 0.688

More than 4000 g 1.00 0.06, 30.02

Neonatal complication

Yes −0.17 0.05 0.84 0.20, 3.65 0.821

No 1.00

Breastfeeding

No 0.37 0.04 1.45 0.04, 59.90 0.846

Yes 1.00

Environmental exposure background

Parental smoking status 12.11 0.002*
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Malaysia. These laws and legislations include the
Environmental Quality Act (EQA) 1974, Environmental
Quality (Prescribed Premises) (Scheduled Wastes Treatment
and Disposal Facilities) Regulations 1989, Environmental
Quality (Prescribed Premises) (Scheduled Wastes Treatment
and Disposal Facilities) Order 1989, Environmental Quality
(Scheduled Wastes) Regulations 2005, Customs (Prohibition
of Import) Order 2012 and Customs (Prohibition of Export)
Order 2017 [116].

Reduced Urinary Pb Concentration in ASD Children

Our results do not support an early hypothesis that high Pb in
the urine was associated with ASD among preschool children
in urban Kuala Lumpur. Instead, Pb concentration was

significantly lower (p < 0.05) in the ASD children’s urine
samples than TD children (0.26 μg/dL for ASD children ver-
sus 0.58 μg/dL for TD children). When we adjusted for a
potential confounding factor, such as age and gender (as
shown in Table 2), there was no sufficient evidence to
indicate a higher urinary Pb concentration in ASD chil-
dren than TD children.

However, our univariable results are consistent with sever-
al other studies since the early 1980s until 2020. These studies
reported lower urinary Pb levels in ASD children than TD
children, as listed in Table 7. For example, Marlowe et al.
reported significantly lower Pb level in the hair sample of
ASD children (mean 6.28 ± 2.12 ppm) compared to race-
matched and social class-matched TD children (mean 6.66 ±
2.49 ppm) [118]. In Japan, Yasuda et al. reported significantly
lower Pb level in the hair sample of ASD children (mean 0.39
± 0.23 ppb) compared to age-matched and gender-matched
TD children (mean 0.89 ± 0.50 ppb) [119]. In Turkey,
Yorbik et al. reported significantly lower Pb level in the urine
sample of ASD children (mean 1.19 μg/g creatinine) com-
pared to unmatched TD children (mean 4.63 μg/g creatinine)
[122]. In Saudi Arabia, Alabdali et al. reported significantly
lower Pb level in the blood sample of ASD children (mean
4.73 μg/dL) compared to age-matched and gender-matched
TD children (mean 6.79 μg/dL) [126]. In Jamaica, Rahbar
et al. reported significantly lower Pb level in the blood sample
of ASD children (mean 2.25μg/dL) compared to age-matched
and gender-matched TD children (mean 2.73 μg/dL) [127].
Five years later, the same author (Rahbar et al.) report-
ed significantly lower Pb level in the blood sample of
ASD children (geometric mean 1.92 μg/dL) compared
to age-matched and gender-matched TD children (geo-
metric mean 2.34 μg/dL) [131].

Poor Excretory Mechanism of Pb in ASD Children

The finding of the current study also supports the value con-
cept that the ASD children might have a decreased ability to
excrete the heavy metals (including Pb) and may be consid-
ered poor detoxifiers relatively to TD children, as supported
by the previous evidence [132, 133]. The decreased ability to
excrete the heavy metals may lead to a higher body burden

Table 5 (continued)

Variables B Wald aOR 95% CI p-value R2

Active smoker 1.35 2.77 3.84 0.79, 18.72 0.096

Ex-smoker 3.23 11.88 25.29 4.03, 158.68 0.001*

Non-smoker 1.00

Constant −3.21 1.17 0.04 0.280

aOR adjusted odds ratio, R2 Nagelkerke R square

*p < 0.05 indicates significant statistical result

Table 6 Multiple logistic regression analysis results of urinary Pb and
essential trace elements

Urinary elements B Wald aOR 95% CI p-value R2

Without elements’ interaction

Pb (μg/dL) −0.78 0.53 0.46 0.06, 3.75 0.469 0.83

Ca (μg/mL) 0.22 21.44 1.24 1.13, 1.36 <0.001*

Mg (μg/mL) 0.00 0.32 1.00 0.99, 1.02 0.571

Zn (μg/dL) −0.06 6.94 0.95 0.91, 0.99 0.008*

Fe (μg/dL) −0.26 19.24 0.77 0.69, 0.87 <0.001*

Constant 2.88 13.99 17.73 <0.001*

With elements’ interaction

Pb (μg/dL) −7.10 3.98 0.001 0.00, 0.89 0.046* 0.88

Ca (μg/mL) 0.06 0.39 1.06 0.88, 1.27 0.531

Mg (μg/mL) 0.02 2.58 1.03 1.00, 1.06 0.108

Zn (μg/dL) −0.12 11.34 0.89 0.83, 0.95 0.001*

Fe (μg/dL) −0.05 0.15 0.95 0.73, 1.24 0.698

Pb × Ca 0.62 2.19 1.86 0.82, 4.23 0.139

Pb × Mg −0.04 1.55 0.96 0.90, 1.02 0.214

Pb × Fe 0.12 5.83 1.13 1.02, 1.25 0.016*

Pb × Zn −0.86 2.01 0.43 0.13, 1.39 0.156

Constant 5.78 11.71 323.15 0.001*

aOR adjusted odds ratio, R2 Nagelkerke R square

*p < 0.05 indicates significant statistical result
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and subsequent neurological damage [121, 134]. The reason
ASD children had difficulty to excrete heavy metals (includ-
ing Pb) remains unclear and not well explained. However, it is
postulated that the poor mechanism of Pb excretion could be
explained by plausible hypotheses which are the presence of
specific antioxidant in the body and competitive mechanism
of Ca towards Pb during excretion.

Oxidative stress in response to environmental insults plays
a role in essentially every human disease. It is also presumed
to be involved in the aetiology of ASD, in which decreased
antioxidant capacity and increased oxidative stress in ASD
can lead to neural structure damage and impair neural func-
tioning [135, 136]. Endogenous thiols, such as glutathione
(GSH), L-cysteine, N-acetyl cysteine (NAC), taurine and mel-
atonin, are examples of important antioxidants. These antiox-
idants can reduce metal availability, decrease damage to the
organ cells and biological macromolecules and promote de-
toxification. The antioxidants work through various action
mechanisms, such as scavenging free radicals, interrupting
radical chain reactions and forming stable complexes with
heavy metals, including Pb [121, 137]. Therefore, the de-
creased level of antioxidants in the body of ASD children will
promote sequestration of heavy metals in the children’s brain
and subsequently excrete lower concentration of heavy metals
in the urine [121].

Role of Essential Trace Element Towards Pb

Besides urinary Pb, the concentration levels of certain essen-
tial trace elements were significantly lower in ASD children
than TD children; urinary Zn (39.81 μg/dL for ASD children
versus 88.88 μg/dL for TD children) and urinary Fe (34.69
μg/dL for ASD children versus 58.32 μg/dL for TD children).
The concentration level of urinary Mg was also lower in ASD
children than TD children, but the result was non-significant.
However, when we adjusted the age and gender, the mean
difference of urinary Mg appeared to be significant in children
aged above 4 years (102.34 μg/dL for ASD children versus
140.45 μg/dL for TD children) and male children (106.00 μg/
dL for ASD children versus 139.96μg/dL for TD children). In
contrast, the result showed that the urinary Ca was significant-
ly higher in ASD children than TD children aged 4 years and
below (107.95 μg/dL for ASD children versus 34.18 μg/dL
for TD children).

The univariable findings of essential trace elements in this
study are consistent with the previous studies for Mg, Zn and
Fe. For instance, Skalny et al. demonstrated that the Mg con-
centration in the hair (17.91 μg/g for ASD children versus
18.84 μg/g for TD children) and urine (108.59 μg/mL for
ASD children versus 118.51 μg/mL for TD children) of
ASD children was lower than the unmatched TD control.
However, the findings were non-significant [138]. Priya
et al. demonstrated that the Mg concentrations in hair of low

functioning autism (LFA) (mean 174.02 ± 20.88 μg/g), medi-
um functioning autism (MFA) (mean 202.21± 24.26 μg/g)
and high functioning autism (HFA) (mean 236.31 ± 28.35
μg/g) children were significantly lower than the control group
(mean 454.36 ± 54.52 μg/g). This finding indicated that the
severity of ASD increases with the reducingMg concentration
level in the hair [139]. Strambi et al. demonstrated significant-
ly lower plasma Mg level in ASD children (mean 2.27 ± 0.33
mg/100 mL) compared to unmatched healthy children (mean
2.51 ± 0.14 mg/100 mL) [70]. A systematic review and meta-
analysis study reported significantly lower Mg levels in
hair (after removal of an outlier study with effect size
of −0.612, z-value = 2.68, p = 0.007) and serum (effect
size of −0.105, z-value = 5.88, p < 0.001) of ASD
children than healthy controls [140].

As for Zn, Priya et al. demonstrated the significantly lower
concentration of Zn in the hair of LFA children (mean 130.46
± 15.65 μg/g) than the control group (mean 171.68 ± 20.60
μg/g) [139]. Li et al. reported significantly lower concentra-
tion of Zn in the serum of ASD children (mean 78.70 ± 7.00
ng/mL) compared to age-matched and gender-matched
healthy controls (mean 87.70 ± 8.70 ng/mL) [141].
Saghazadeh et al. reported a significant effect size of −0.361
(z-value = 2.31, p = 0.021), indicating that the ASD patients (n
= 513) had lower blood Zn levels than controls (n = 333), after
excluding two outlier studies. Further sensitivity hair sample
analyses indicated that Asian patients with ASD (n = 236) had
lower Zn levels in the hair (standardised mean difference
(SMD) = −1.493, p = 0.002) than their Asian counterparts (n
= 306), after excluding an outlier study [140].

As for Fe, Lubkowska et al. demonstrated that the Fe con-
centration in hair of ASD children (mean 9.02 ± 4.62 μg/g)
was significantly lower than age-matched healthy controls
(mean 10.05 ± 2.92 μg/g) [142]. Additionally, Saghazadeh
et al. reported a significant effect size of −1.410 (z-value =
2.38, p = 0.017), indicating that the Fe levels in the hair of
ASD children were lower than healthy children, after exclud-
ing an outlier study [140].

As for Ca, our univariate analysis contradicted with other
trace elements (Mg, Zn and Fe). However, a recent study
reported a similar finding, whereby the higher concentration
of Ca was found in the serum of ASD children (median
109.16, 25–75 percentiles 103.55–113.5) than age-matched
and gender-matched neurotypical children (median 106.71,
25–75 percentiles 103.82–112.3) [143]. However, the result
was non-significant.

From the regression analysis of urinary trace elements, uri-
nary Zn appeared to be a protective factor of ASD (OR = 0.95,
95% CI 0.91, 0.99, p = 0.008). The protective effect exerted
by the urinary Zn was significantly increased after further
interaction analysis (OR = 0.89, 95% CI 0.83, 0.95, p =
0.001). The urinary Fe was found to exert a protective effect
towards ASD (OR = 0.77, 95% CI 0.69, 0.87, p < 0.001).
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However, the protective effect of urinary Fe was reduced and
non-significant after further interaction analysis (OR = 0.95,
95% CI 0.73, 1.24, p = 0.698). These findings signified that
the presence of essential trace elements in the body, especially
Zn and Fe, is crucial to counteract Pb’s neurotoxic effect.

The essential trace elements (e.g. Mg, Zn and Fe) play a
vital role as antioxidant agents, whereby the presence of these
elements in the body helps to prevent redistribution and accu-
mulation of metal in tissues, reduces metal availability, de-
creases toxicity, stabilises cell membranes and decreases dam-
age to biological macromolecules [137]. These elements also
decrease teratogenic toxicity by decreasing the replacement of
essential ions, forming insoluble metal-mineral complexes
and producing metal-binding proteins (MT) [137]. Essential
trace elements also decrease gastrointestinal absorption of
heavy metals and decrease its distribution through competitive
absorption mechanism [137]. However, our findings failed to
support the theory. The correlation between urinary Pb and
essential trace elements showed a significantly positive very
weak to moderate correlation coefficient (r-value ranged from
0.19 to 0.44), except for the correlation between urinary Pb
and Ca, which showed a non-significantly negative very weak
correlation (p > 0.05).

Assessment of Other Associated Factors of ASD

Several associated factors of ASD were identified. These fac-
tors were ethnicity, parental education, children’s gender and
parental smoking status. Our finding showed that parents with
tertiary education had 26 times the odds of having an ASD
child than parents with secondary education (OR = 26.15,
95% CI 7.10, 96.38, p < 0.001). This finding was supported
by Eow et al., where the odds of having an ASD child among
mother with tertiary education was 3.5 times higher compared
tomother with secondary education or lower (OR = 3.47, 95%
CI 1.00, 5.94) [144].

In terms of ethnicity, the proportion of non-Malay was low
in the ASD children group (n = 18/63 (22.2%)) and TD chil-
dren group (n = 4/70 (5.4%)). However, ethnicity (i.e. non-
Malay) contributed a significant risk factor towards ASD (OR
=7.52, 95% CI 1.62, 34.85, p = 0.010). A study reported that
the non-Malay children had about 4.5 times the odds of de-
veloping ASD compared to Malay children (OR = 4.52, 95%
CI 2.10, 6.94) [144].

As for gender, the male-to-female ratio of ASD children
was 5:1. This ratio is higher than the previously reported ratio
of 4:1 [145] and 3:1 [146, 147]. Therefore, male gender was a
significant risk factor for ASD (OR = 8.52, 95% CI 2.76,
26.28, p < 0.001).

Lastly, the findings showed that parents (either father or
mother) who were an ex-smoker had higher odds of having
an ASD child than non-smoking parents (OR = 25.29, 95% CI
4.03, 158.68, p = 0.001). However, the finding was non-

significant for parents who were an active smoker, indicating
that the exposure towards heavy metals (including Pb) might
occur during prenatal and antenatal periods. The parents’ de-
cision to stop smoking might be influenced by their children
being diagnosed as ASD. The risk of getting an ASD child is
still high (OR = 3.53, 95% CI 1.30, 9.56) although the preg-
nant mother is only a second-hand smoker (mostly related to
smoking husband or spouse) [148].

Recommendation

This study focussed on the prevention strategies for ASD,
particularly from environmental health and nutrition perspec-
tives. Since there is no safe Pb level, young children should
not be exposed to Pb. If they are still being exposed to Pb, the
exposure level should be minimised. Top stakeholders (i.e.
government) should initiate and improve preventive measures
by implementing the relevant laws and legislations. The cur-
rent regulations stated that the standard Pb level should be
frequently revised and amended when necessary. The enforce-
ment should be strengthened to control and monitor Pb-based
product manufacturing (e.g. paint, ceramic ware, toys, electric
and electronic devices).

We also recommend the government, especially the MOH,
to initiate the first national Pb screening programme among
newborn babies and preschool children. This practice has been
done in the USA for a few decades ago. The programme could
probably start by identifying the high-risk group of babies and
young children through a risk-based assessment of the
family’s socio-demographic background. Additionally, the
prevalence of childhood exposure at the national level and
burden of environmental-related disease could be identified
and analysed for further action by the relevant stakeholders.
The MOH could also decide on the different types of samples
for biomonitoring depending on the objectives (short-term or
long-term exposure monitoring) and laboratory analysis costs.
At the family level, parents or caretakers should have adequate
knowledge about the health effect of toxic environmental el-
ements to minimise Pb exposure to their children. Parental
knowledge about Pb exposure should be improved via various
health educations, either from mass media, electronic social
media and health care centre (e.g. health clinics and hospitals).

In terms of nutrition, we recommend the parents or care-
takers to provide adequate essential trace elements to their
children. As mentioned in this article, the essential trace ele-
ments provide many benefits to the children’s body when
consumed adequately. According to the Recommended
Nutrient Intakes (RNI) for Malaysia 2017 by the National
Coordinating Committee on Food and Nutrition, MOH [77],
the recommended Ca intake for children age 1–3 years and 4–
6 years is 700.0 mg per day and 1000.0 mg per day, respec-
tively. For Mg, the recommended intake for children age 1–3
years old and 4–8 years old is 80.0 mg per day and 130.0 mg

115Assessment of Urinary Lead (Pb) and Essential Trace Elements in Autism Spectrum Disorder: a Case-Control...



per day, respectively. On the other hand, the recommended Zn
intake for children age 1–3 years old and 4–6 years old is
4.2 mg per day and 5.2 mg per day, respectively. Lastly, the
recommended Fe (with 10.0% bioavailability) intake for chil-
dren age 1–6 years old is 6.0 mg per day, whereas the recom-
mended Fe (with 15.0% bioavailability) intake for 1–6 years
old is 4.0 mg per day.

Limitations

The results of the current study should be interpreted careful-
ly. Pb and essential trace elements were investigated only in
the urine samples, which may not fully explain a complex
pathological mechanism occurring in the brain due to these
elements. Moreover, the relatively inconsistent results in the
Pb levels of ASD children may be attributed to the heteroge-
neity (spectrum) of ASD, subjects’ diverse geographic loca-
tions or methodological differences. Nevertheless, these re-
sults indicated that further studies are warranted to investigate
the possible role of Pb and other heavy metals in ASD.

Conclusion

The Pb concentration level in the urine samples of both groups
was below the CDC’s elevated level. The study also found that
the Pb concentration level was significantly lower in ASD chil-
dren than TD children. The low Pb concentration level may be
due to the poor detoxifyingmechanism,which retainsmore Pb in
the body while excreting less Pb in the urine. In addition, signif-
icantly lower concentration of the essential trace elements, name-
ly urinary Mg, Zn and Fe, may augment the neurotoxic effect of
Pb in ASD children. These findings imply the importance of
essential trace elements in protecting the children’s central ner-
vous system. Prevention strategies should be consistent and in-
volve stakeholders and parents’ participation to ensure the chil-
dren’s exposure towards Pb is minimised. Prevention strategies
are crucial to provide optimum nutrition to reduce the occurrence
and the progress of ASD among preschool children.
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