Neuroinformatics (2021) 19:107-125
https://doi.org/10.1007/512021-020-09464-w

SOFTWARE ORIGINAL ARTICLE

SUPFUNSIM: Spatial Filtering Toolbox for EEG

®

Check for
updates

Krzysztof Rykaczewski'2 - Jan Nikadon'-3 . Wiodzistaw Duch'# - Tomasz Piotrowski'#

Published online: 21 June 2020
© The Author(s) 2020

Abstract

Brain activity pattern recognition from EEG or MEG signal analysis is one of the most important method in cognitive
neuroscience. The SUPFUNSIM library is a new MATLAB toolbox which generates accurate EEG forward model and
implements a collection of spatial filters for EEG source reconstruction, including the linearly constrained minimum-
variance (LCMV), eigenspace LCMYV, nulling (NL), and minimum-variance pseudo-unbiased reduced-rank (MV-PURE)
filters in various versions. It also enables source-level directed connectivity analysis using partial directed coherence (PDC)
measure. The SUPFUNSIM library is based on the well-known FIELDTRIP toolbox for EEG and MEG analysis and is written
using object-oriented programming paradigm. The resulting modularity of the toolbox enables its simple extensibility. This
paper gives a complete overview of the toolbox from both developer and end-user perspectives, including description of the

installation process and use cases.

Keywords Matlab - Toolbox - Reconstruction - Localization - Object-oriented

Introduction

Neuroimaging and signal processing methods are rapidly
evolving, with the ultimate goal of reaching high time and
space resolution, allowing for models of functional con-
nectivity, activation of large-scale networks and their rapid
dynamic transitions in multiple time scales. Network neu-
roscience is at present the most promising approach to
understand the structure and functions of complex brain net-
works (Bassett and Sporns 2017). Electroencephalography
(EEG) has excellent temporal resolution, is noninvasive and
relatively easy to use. Unfortunately, signals observed at
the scalp level are difficult to interpret, because they are

< Tomasz Piotrowski
tpiotrowski@is.umk.pl

Centre for Modern Interdisciplinary Technologies, Nicolaus
Copernicus University, Wileniska 4, Torun, 87-100, Poland

Faculty of Mathematics and Computer Science, Nicolaus
Copernicus University, Chopina 12/18, Torun, 87-100, Poland

Faculty of Humanities, Nicolaus Copernicus University, Fosa
Staromiejska 1a, Torun, 87-100, Poland

Faculty of Physics, Astronomy and Informatics, Nicolaus
Copernicus University, Grudziadzka 5/7,
Torun, 87-100, Poland

a mixture propagated from many cortical and subcortical
sources through multiple layers of the brain with several
different volume conduction properties, including the scalp,
skull, cerebrospinal fluid (CSF), and brain tissues. Sen-
sors receive corrupted mixed signals from various active
brain structures. Therefore, direct scalp-level EEG analysis
cannot reflect the underlying neurodynamics.
Reconstruction of sources of brain’s electrical activity
from EEG or magnetoencephalographic (MEG) record-
ings, based on spatial filters, also called “beamformers”
in array signal processing, may provide meaningful infor-
mation. Many papers have been written on applications of
spatial filters for reliable discrimination of EEG patterns.
The brain-computer interface (BCI) technology requires
classification of the single-trial brain signals. Ramoser,
Muller-Gerking and Pfurtscheller (Ramoser et al. 2000)
used spatial filtering of a single trial EEG during imag-
ined hand movement, achieving high classification results
in discrimination of specific activation of cortical areas
during left/right hand movement imagination. Spatial fil-
ters synthesized using denoising source separation can
greatly reduce signal to noise (S/N) ratio (de Cheveigné
and Simon 2008). Spatial filters may also be used in
a single-trial neural response to maximize the S/N ratio
based on a generalized eigenvalue decomposition (Das et al.
2020). Optimal spatial filters were designed to detect high-
frequency visual evoked potentials for BCI applications

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-020-09464-w&domain=pdf
mailto: tpiotrowski@is.umk.pl

108

Neuroinform (2021) 19:107-125

(Molina and Mihajlovic 2010). Adaptive common spatial
pattern patches provide highly distinctive features without
large amount of training data (Sannelli et al. 2016).

Long continuous EEG recordings are contaminated by
many physiological artifacts, such as eye blinks, muscular
movements, cardiac activity or electrode movements.
Spatial filters are also used to clean artifacts recovering
relevant brain activity in clinical applications, localizing
sources of epileptic disorders for planning medical or
surgical treatment. Ille et al. (2002). Beamforming may
also help to account for microsaccades that distort higher
frequency EEG components (Craddock et al. 2016).
Clearly the importance of spatial filtering cannot be
overstated.

Creation of spatial filters requires solving forward
and inverse problems in signal analysis. There are
several libraries implementing various forward and inverse
solutions, see for example (Oostenveld et al. 2011a; Tadel
et al. 2011; Gramfort et al. 2014). However, to the best
of our knowledge, none of them implements up-to-date
state-of-the-art spatial filters based on high precision EEG
forward models. SUPFUNSIM MATLAB toolbox (library)
described in this paper is an open source software that
fills this gap by providing, among others, implementation
of various forms of the linearly constrained minimum-
variance filters (LCMV) (Frost 1972; Van Veen et al.
1997; Sekihara and Nagarajan 2008), eigenspace LCMV
(Sekihara and Nagarajan 2008), nulling (NL) (Hui et al.
2010), and minimum-variance pseudo-unbiased reduced-
rank (MV-PURE) filters (Piotrowski and Yamada 2008;
Piotrowski et al. 2009; Piotrowski et al. 2019). It also
enables source-level directed connectivity analysis using
partial directed coherence (PDC) (Baccala and Sameshima
2001a) and directed transfer function (Kaminski et al. 2001)
measures by applying it to the time series representing
reconstructed activity of sources of interest.

The SUPFUNSIM toolbox is based on FIELDTRIP
(Oostenveld et al. 2011a), an excellent MATLAB toolbox
for EEG and MEG signal analysis. It can be used
as an extension (plugin) to FIELDTRIP. The code of
presented library was created to perform experiments for
the paper (Piotrowski et al. 2019) and later refactored
and reimplemented in an object-oriented way. The source
code of the toolbox is publicly available at https://github.
com/nikadon/supFunSim as an Org-mode file, JUPYTER
notebook, and also as a plain MATLAB source code.

The library was written paying attention to its modularity
and possibilities of further development. It is segmented into
separate components based on their functionality. Functions
are not precompiled, as script libraries have the advantage of
being easily maintainable and extensible. In this way users
can easily extend the existing functionality by implementing
new algorithms or extending those already implemented.

@ Springer

The paper is organized as follows. First, we briefly
introduce the forward and inverse problems in EEG (similar
considerations also apply to MEG). Then, we discuss the
benefits of the object-oriented approach for our toolbox
and its extensibility. We close with the use cases which
appear frequently in practical applications of this toolbox.
In appendices we provide mathematical details of the
implemented spatial filters and the full list of toolbox
parameters.

EEG Measurement Model

Electromagnetic signals that originate within enchanted
loom" of human brain volume are propagated through head
compartments (Mosher et al. 1999). This dissolving pattern
of brain electrical activity can be detected on the surface of
scalp using electroencephalography (EEG).

At a given time instant the EEG data acquisition can be
well approximated by a linear equation of the generic form

y = H(®)q + Hi(6))qi + Hp(0p)qp + nm, (D

where, for m EEG sensors located at the scalp and / sources
of interest modelled as equivalent current dipoles (ECD)
located inside brain’s volume,

® by y € R™ we denote the signal observed in the sensor
space at a given time instant,

e 0 =(0,....0) € ® Cc R*3 represents locations of
the sources of interest, i.e., for the i-th source the vector
representing its location is ; € R3. Here, ® denotes the
set of all subsets of locations of source signals,

e H(9) e R™* is the sensor array response (lead-field)
matrix of the sources of interest,

e g e R!is a vector of electric activity of the / sources of
interest representing magnitudes of ECDs,

e similarly, for the k interfering noise sources, 6; =

(91(0, .. .,Glfi)> € RK<3 are the interference source

locations, Hi(6;) € R™*¥ ig the corresponding lead-
field matrix, g; € R is the corresponding interference
activity,

e for the p sources of background activity of the brain
Op = (Ol(b), e Gl(,b)) € RP*3 are the background

source locations (i.e. sources which are not sources of

Y“The great topmost sheet of the mass, that where hardly a light
had twinkled or moved, becomes now a sparkling field of rhythmic
flashing points with trains of traveling sparks hurrying hither and
thither. The brain is waking and with it the mind is returning. It is as
if the Milky Way entered upon some cosmic dance. Swiftly the head
mass becomes an enchanted loom where millions of flashing shuttles
weave a dissolving pattern, always a meaningful pattern though never
an abiding one; a shifting harmony of subpatterns”.

— Charles S. Sherrington, Man on his nature. 1942


https://github.com/nikadon/supFunSim
https://github.com/nikadon/supFunSim

Neuroinform (2021) 19:107-125

109

interest and are uncorrelated with them), Hp(fy) €
R™*P is the corresponding lead-field matrix, g, € R?
is the corresponding background activity,

® 1, € R™ is an additive white Gaussian noise (AWGN)
interpreted as a measurement noise present in the sensor
space.

Equation 1 represents a single sample of EEG data y
from subjects’ scalp at a given time (forward solution).
It enables, through customizable parameters, accurate
modelling of real-world EEG experiments. We shall
emphasize at this point that not all components of the
model in Eq. 1 have to be considered, i.e., one may select
only those signal components that fit the aims of user’s
simulation settings.

The lead-field matrices establishing signal propagation
model are estimated on the basis of geometry and electrical
conductivity of head compartments together with position
of sensors on the scalp. We consider these properties to
be fixed in time during a single EEG data acquisition
session. Therefore, lead-field-matrices are assumed to be
time-invariant in such circumstances (its values do not
change during acquisition time in a single session). We
also note that the above EEG forward model (1) assumes
that the orientations of the ECD moments are fixed during
measurement period, and only their magnitudes ¢, gi, gp
vary in time. We also assume that orientations of the ECD
moments are normal and directed outside with respect
to the cortical surface mesh. This is in accordance with
the widely recognized physiological model of EEG signal
origin that considers pyramidal cortical neurons to be the
main contributor to the brain’s bioelectrical activity that can
be measured on the human scalp (Baillet et al. 2001).

We assume that g and g; may be correlated (i.e., that
source of interest can interfere with each other), but are
uncorrelated with the background sources g, and the noise
nm. We further assume that g, gi, gy, ny are zero-mean
weakly stationary stochastic processes with the exception
that ¢ may contain in addition a deterministic component
simulating evoked (phase-locked) activity in event-related
EEG experiments. In our toolbox the presence of this
component is controlled by the SETUP . ERPs variable.

EEG Source Reconstruction

Having solved the EEG forward problem which introduced,
in particular, the lead-field matrices embodying the propa-
gation model of brain’s electromagnetic activity, we are in
a position to solve the inverse problem. Here it amounts
to reconstruction of time courses of activity of sources at
predefined locations. That means that we assume that the
locations of the sources of interest 6 are known. This can

be achieved by defining regions of interest using source
localization methods, e.g., minimum-norm (Pascual-Marqui
1999) or spatial filtering-based methods (Moiseev et al.
2011; Piotrowski and Nikadon 2020), or referring to neuro-
science studies that have identified regions of interest as in
paper by Hui et al. (Hui et al. 2010). Then, the goal is to
reconstruct the activity g of sources of interest based on the
observed signal y as

qg=Wy, (2)

where W € R is a matrix representing spatial
filter’s coefficients. The definitions of the filters currently
implemented in the toolbox are given in Appendix
Implemented spatial filters (Fig. 1).

Toolbox Signal Processing Outline
Overview

In order to obtain EEG signal y we need first to generate
source activity signals and propagate it to electrodes
according to the forward model given in Eq. 1. The
source signals are generated using the method described in
Franaszczuk et al. (1985), which uses stable multivariate
autoregressive (MVAR) model with predefined coefficient
matrices. This results in a wide-sense stationary signals
generated with predefined pairwise linear dependencies
(correlations). Such approach has been studied and used in
literature, see, e.g., Haufe (2012), Baccald and Sameshima
(2001b), and Neumaier and Schneider (2001), and is
specially useful in investigating functional dependencies
between activity of sources using directed connectivity
measures such as partial directed coherence (PDC) (Baccala
and Sameshima 2001a) or directed transfer function (DTF)
(Kus et al. 2004).

Gaussian pseudo-random vectors simulating autoregres-
sive processes are generated using the arsim function
available from Schneider and Neumaier (2001). In this

Forward Problem

Volume
conduction

model

-

Volume
q conduction

model

Fig.1 The relationship between forward and inverse problems

@ Springer



110

Neuroinform (2021) 19:107-125

way, we obtain multivariate times series representing activ-
ity of sources of interest g (denoted in the code as
sim_sig_SrcActiv.sigSRC), sources of interference
noise ¢i (sim_sig_IntNoise.sigSRC), and sources of
background activity gy (sim_sig_-BcgNoise.sigSRC).

Moreover, as our framework allows to add event-related
potentials (ERP, flag variable SETUP . ERPs in the code) to
the source signal, each source activity is divided into pre and
pst parts in relation to the onset of event (g into gp,. and
qpst» etc.) in order to enable simulation of ERP experiments.
In particular, the ERP signal may be added to g, but not
t0 Gpre-

Furthermore, the pre and pst subsignals are used to
implement spatial filters. In particular, noise correlation
matrix N may be estimated from y,,. signal and signal
correlation matrix R may be estimated from y ,, signal.

The y, signal is also used for evaluation of the fidelity
of reconstruction, as a filter Wy produces an estimate of
the activity signal source g, s based on yp. Then, an
MVAR model is fitted to the reconstructed source activity
using arfit function, yielding reconstructed composite
MVAR model matrix A00s. This matrix can then be used
to investigate directed connectivity using partial directed
coherence (PDC) (Baccala and Sameshima 2001a) and
directed transfer function (DTF) (Kaminski et al. 2001).

The overview of signals processed by the toolbox and
dependencies between them is depicted in Fig. 2.

Brain Signals in Source Space
Items 1 and 2 below detail generation of source signals g, g

and gp. Item 3 concerns definition of volume conduction
model. The computation of lead-field matrices H, H; and

Adpre FM; Ypre cov > N
/ !
q= (qu€7 stt) .
A v
~ FM wy Y
Qpst > Ypst > (pst, f
arsim \S “o.  error - 7
"""" ar fit
Y
ADQ €= =======-= EA AR > A00f
v error K
DTF,PDC €======ccmemamans » DTFy, PDCYy

Fig.2 Overview of processing of signals by the toolbox

@ Springer

Hy, is discussed in the subsequent Section Brain Signals in
Sensor Space.

1. Positioning sources:

File supFunSim/mat/sel_atl.mat contains
15000 vertex FreeSurfer (Dale et al. 1999) brain
tessellation together with atlases (Dale et al. 1999;
Fischl et al. 2004) that provide parcellation of the
mesh elements into cortical patches (regions of interest,
ROIs). This file was provided with the BrainStorm
toolbox (Tadel et al. 2011). First, we randomly select
an arbitrary number of ROIs by selecting items from
Destrieux and Desikan-Killiany atlases (Fischl et al.
2004; Desikan et al. 2006). In each ROI, each vertex is a
candidate node for location of the dipole source. Then,
an arbitrary number of locations can be drawn within
each ROI separate for ¢, g; and gp.

Most of the simulation parameters are controlled
using SETUP structure. The geometrical arrangement
and number of cortical sources in each ROIs is
controlled using SRCS field (SETUP . SRCS), which is
a three-column <int > array, where:

e rows represent consequent ROIs (thus, the number
of rows determines the number of ROIs used in the
simulations),

e the first column represents sources of interest, the
second column represents sources of interference,
and the third column represents sources of back-
ground activity,

e integer values of this array represent number of
sources in the given ROI for the given signal type.

For the end-user this provides mechanism not only
to control the total number of sources of a particular
type, but also to choose their spatial distribution.
Additionally, we provide a mesh representing both
thalami (jointly) as a structure containing potential
candidates for the non-cortical (deep) sources of
signal/noise. Variable SETUP contains also the field
(SETUP.DEEP) which defines the number of signals
in the brain center (around thalami) belonging to
a particular signal type (of interest, interfering, or
background activity). Furthermore, in order to account
for the mislocalization of sources, together with the
original lead-fields we also generate perturbed lead-
fields for the source activity reconstruction. These are
generated using locations that are shifted with relation
to the original locations and direction that is rotated in
relation to the original (normal to cortex surface) dipole
orientation. Default shift is random and < 5 mm in each
direction (x, y, z). Default rotation is random, bounded
by 35 (azimuth and elevation).

2. Sources Timecourse:



Neuroinform (2021) 19:107-125

111

Following (Neumaier and Schneider 2001; Schnei-
der and Neumaier 2001), we use stable MVAR model
to generate time-series. It is assumed that such model
generates a realistic source activity (Korzeniewska et al.
2003). We create separate models for time-series g and
qyv- The g; is obtained as a negative of ¢ with Gaussian
uncorrelated noise added with the same power as the ¢,
ie. gi = —q + n;. In this way, we obtain correlated
time-series ¢ and g;.

The [-variate autoregressive model of order p for a
stationary time-series of state vectors ¢” € R! is defined
at time instant n as

)4
q" =Y Aq" +en, 3)

s=1

where ¢ is the state vector at time n p is the order
of the model of order p = 6 by default, matrices
Ay, ..., Ap € R!*! are the coefficient matrices of the
AR model, and ¢, is the /-dimensional additive white
Gaussian noise (Haufe 2012). For the signal of interest
q, we also give the possibility to include deterministic
component simulating evoked (phase-locked) activity
in event-related EEG experiments. The presence of this
component is controlled by the SETUP . ERPs variable.
Then, g = ¢™ + ¢@, where ¢(@ is the deterministic
ERP component. In the toolbox, ¢@ is generated using
MATLAB gauswavf function generating 1st derivative
of Gaussian wavelet function (Rondik et al. 2011).

Similarly, gp is simulated using independent, ran-
dom and stable MVAR model (of order r = 6 by
default):

-
a," = By " +ef. “)
s=1

MVAR model is considered to be stable if the
absolute values of all eigenvalues of all matrices Ay
(respectively, By) are less than one. We used procedure
adapted from Gomez-Herrero et al. (2008) (namely, we
adapted the stablemvar function) to generate stable
MVAR model that was used for times-series generation.
During generation of MVAR models for g and gy, the
coefficient matrix Ag (respectively, By) is multiplied
by a masking matrix that has 80 % (by default) of its
off-diagonal elements equal to zero. All the remaining
diagonal and off-diagonal masking coefficients are
equal to one. In code, the composite MVAR model
matrix is represented by the variable A00, see Fig. 3.
Such procedure allows, in particular, to obtain specific
profile of directed dependencies between activity of
sources of interest. This approach is taken from Baccala
and Sameshima (2001b). Moreover, it gives us the
possibility to implement the directional measures of

casual dependencies: PDC and DTF measures. Namely,
partial directed coherence and directed transfer function
are matrices defined using Fourier transform of MVAR
model (3), i.e.

P
A =T =Y Agexp(—2mish),
s=1 ®)

where 17 is the identity matrix, A is normalized
frequency, |A| < 0.5. Then, partial directed coherence
between i-th and j-th signals is given by Baccala and
Sameshima (2001a)

Ajj(A) Aij(A)

: _ . ©)
Jamaiy a0

PDC;; (1) =

where A;j(A) is ij element of matrix A(A), a;(A) is
jth column of A(}) and * means Hermitian transpose.
It takes values in the interval [0, 1] and measures the
relative strength of the interaction of a given source
signal j to source signal i normalized by strength of
all of j’s connections to other signals (Blinowska and
Zygierewicz 2011).
Directed Transfer Function (DTF) is defined as

Hji(\)
Vi [H o)

where H (1) := (I — A(1))~! is the transfer matrix,
i,j = 1,...,1. It can be interpreted as ratio between
inflow from channel i to chanel j nomalized by sum of
inflows to channel j. As an alternative to the generation
of simulated data we also provide an example script that
demonstrates how to use real data in EEGLAB format
to test the performance of spatial filters.

Volume conduction model:

We used FIELDTRIP (FT) toolbox (Oostenveld et al.
2011b) to generate volume conduction model (VCM)
and lead-field matrices. VCM was prepared using
ft_prepare_headmodel function implementing
DIPOLTI method (Oostendorp and Van Oosterom 1989)
which takes as arguments three triangulated surface
meshes representing the outer surfaces of brain, skull
and scalp supFunSim/mat/msh.mat (Tadel et al.
2011). VCM is available with our simulation precom-
puted (supFunSim/mat/sel_vol.mat), although
if required, FIELDTRIP toolbox allows for easy com-
putation of custom VCMs on the basis of triangulated
meshes which can be obtained from structural (T1) MRI
scans.

DTFji ()L) = (7)

@ Springer



112

Neuroinform (2021) 19:107-125

The default head geometry is based on the Colin27 2
(Tadel et al. 2011; Holmes et al. 1998; Aubert-Broche
et al. 2006). However, it can be easily substituted
at user’s discretion by replacing triangulation meshes
stored in SETUP.sel_msh (a list of structures
containing: scalp outer mesh, skull outer mesh and
skull inner mesh, where the last triangulation represents
“rough” brain outer mesh). Common choices include
realistic head models generated on the basis of
structural MRI scans or spherical models.

Brain Signals in Sensor Space

In sensor space, we need to provide positions for the
electrodes (a.k.a. sensor montage). By default, in our
simulations we use HydroCel Geodesic Sensor Net uti-
lizing 128 channels as EEG cap layout. Other caps
can easily be used by substituting content of the
supFunSim/mat/sel_ele.mat with electrode posi-
tion coordinates obtained either from specific EEG cap
producer or from standard montages that are available with
EEG analysis software such as EEGLAB (Delorme and
Makeig 2004) or FIELDTRIP (Oostenveld et al. 2011b).
Additionally, for real data acquisition setup, the electrode
positions can be captured using specialized tracking system
for every EEG session.

The volume conduction model, together with source
locations and their orientations, are obtained as described
in the three points of the previous section. Together
with electrode positions, they are the input arguments
for the ft _prepare_leadfield function which during
simulations is run three times outputting H, H; and Hy.

Implementation Details
Object-Oriented Approach

The object-oriented approach provides the toolbox with
several desirable properties of the code and avoids
drawbacks of standard procedural approach commonly
employed in MATLAB scripts. For example, MATLAB by
default stores all variables in one common workspace. This
causes bugs in the code that may be hard to detect. On the
other hand, the object-oriented approach circumvents this
difficulty by its inherent encapsulation property, enclosing
variables within a class and sealing it securely from the
outside environment. We also note that the construction of
the MATLAB language requires explicit assignment of an

2t can be

download from http://neuroimage.usc.edu/bst/
download.php?file=tempColin27_2012.zip and contains:
tess_innerskull.mat, tess_outerskull .mat and

tess_head.mat.

@ Springer

instance of the class each time a method acts on it. Such
approach necessitates language constructs such as obj =
obj .method, where obj is a given instance of a class.

Data structures created during simulation can be
accessed interactively in the JUPYTER notebook or in
MATLAB script. In particular, property MODEL from
EEGReconstruction class contains information about
all variables used within the simulation pipeline.

Benefits of Literate Programming

The code of the toolbox was written in JUPYTER, which
is an open source application that allows users to create
interactive and shareable notebooks. JUPYTER allows for
easy export of whole documents to HTML, ITgX, PDF and
other formats and is a very convenient tool for academic
prototyping, because it permits comments in the code using
IXTgXmathematical expressions. The source code blocks
are interspersed with ordinary natural language blocks
that provide explanations and some insights explaining
the intrinsic mechanics of the code. Such an approach is
called literate programming (Knuth 1984). An example of
mathematical comment and corresponding code is given in
Fig. 4.

However, using JUPYTER is not necessary to run the
toolbox. Instead, the code can be executed under powerful
and cross-platform MATLAB environment. To that end we
have prepared a version of the toolbox as the set of MATLAB
files stored in supFunSim. zip archive.

The toolbox does not have a GUI (Graphical User Inter-
face). Instead, user interacts with it using provided func-
tions. Therefore, as a prerequisite to use the SUPFUNSIM
toolbox knowledge of MATLAB language basics is required.

Installation

Installation of the SUPFUNSIM is independent of the
operating system. For a simple installation similar to
FIELDTRIP’s installation process, the user can down-
load the file supFunSim.zip from https://github.com/
nikadon/supFunSim. This archive contains the whole tool-
box. After unpacking this archive, the user should exe-
cute addpath (genpath(’/path/to/toolboxes/
supFunSim/’]) ). Function genpath will ensure that
all subdirectories will be added to your path. It is most con-
venient to have the addpath function in the startup.m
script located in the MATLAB directory. Then, the user
may run the RunAll.m script (preferably line by line,
in order to follow execution). The user has to make sure
that there is a mat/ directory (or a link to it) containing
mat files required by the toolbox in the toolbox direc-
tory. The mat files are available for download at http://
fizyka.umk.pl/~tpiotrowski/supFunSim. s More advanced


http://neuroimage.usc.edu/bst/download.php?file=tempColin27_2012.zip
http://neuroimage.usc.edu/bst/download.php?file=tempColin27_2012.zip
https://github.com/nikadon/supFunSim
https://github.com/nikadon/supFunSim
http://fizyka.umk.pl/~tpiotrowski/supFunSim
http://fizyka.umk.pl/~tpiotrowski/supFunSim

Neuroinform (2021) 19:107-125

113

Fig.3 A00: the original

coefficient matrix used for time-
series generation, with sample

values [ = 9 and p = 6., after H

application of a random mask

| B |

L,

user may manipulate JUPYTER notebooks directly and use
make tool to set up the toolbox from scratch. Namely, in
order to open and run notebooks the user should download
and install JUPYTER notebook with MATLAB kernel. The
easiest way to do it (under a UNIX-like system) is by exe-
cuting the following instructions in the command line. First,
we set up a virtual environment, which will install PYTHON
packages locally:

sudo pip install virtualenv # installing
virtualenv environment

mkdir supFunSimToolbox # making directory for
virtual environment

unzip supFunSim.zip -d supFunSimToolbox #
extracting toolbox

virtualenv supFunSimToolbox # creating virtual

environment

source ./bin/activate # activating virtual

environment

Next, we install all necessary packages and install
MATLAB Engine API for PYTHON

pip install -r requirements.txt # installing
all requirements

cd /path/to/matlabroot/extern/engines/python

python setup.py install

We also provide a make tool for simple administration
of notebooks’ code. For example, the user may execute
make everything in terminal in order to generate all
source code files. See README . md file in the repository for
details.

At this stage, one can run the simulations and “play with”
the code by going to supFunSimToolbox directory and
running

jupyter-notebook '

Finally, the description of the installation under Windows
can be found in the README . md file.

Prerequisites/Dependencies

Beyond MATLAB our toolbox requires the following depen-
dencies: FIELDTRIP toolbox (version 20150227) (Oosten-
veld et al. 2011a), MVARICA toolbox (version 20080323)
(G6émez-Herrero et al. 2008), ARFIT toolbox (version
20060713) (Neumaier and Schneider 2001; Schneider and
Neumaier 2001). Location of these toolboxes should be
added to MATLAB path.

Application Structure

The simulation framework provided with the current paper
consists of a set of modules represented by corresponding
classes. The classes are defined in separate (self-contained)
notebooks. The classes depend on auxiliary functions
generated alongside with them when appropriate make
target is invoked. In this way, a given class is enclosed and
all operations involving it are made within it. The toolbox
contains six classes (described in the next section) with a
number of auxiliary functions.

Overview of Toolbox Classes

The main functionality of the toolbox is provided by the
following five classes:

® EEGParameters.ipynb — class generating
parameters for simulations. It can be overwritten in

Fig.4 Example of JUPYTER
notebook

end

88file calculate H Src.m
function model = calculate_H_Src(MODEL)
model = MODEL;

model.H Src_R
model.H_Src_N

A:=Hgep =R'H
B:=Hg, y:=N""H

pinv(sgrtm(model.R)) * model.H_Src;
pinv(sgrtm(model.N)) * model.H_Src;

@ Springer



114

Neuroinform (2021) 19:107-125

order to obtain desired parameters for a sequence of
simulations.

® EEGSignalGenerator.ipynb — class used to
generate signal for forward modelling of sources. It can
be overwritten to generate a signal with given or desired
properties.

® EEGForwardModel.ipynb — class implementing
forward model. In constructs and adds together
all signals (source activity, background activity and
interference noise). Furthermore, the lead-field matrix
is build using FIELDTRIP library based on the selected
head model.

® EEGReconstruction.ipynb — class implement-
ing methods used in the reconstruction of the underly-
ing neuronal activity. All spatial filters are implemented
in this class.

® FEEGPlotting.ipynb — class implementing plots
detailing execution of experiments. Various visualiza-
tions are accessible through the methods included in
this class.

We also wrote a class for unit testing of the toolbox
functionality:

® EEGTest.ipynb — class implementing unit tests
and validation of the code against the functional-code
toolbox implementation.

Figure 5 gives an overview of relationships between
implemented classes. We should also emphasize that
modular design facilitates reuse and extensibility of the
source code and adaptation to other applications. For
example, if one wishes to generate source signals in a
different way compared with the implemented version, one
needs only to overwrite EEGSignalGenerator class (or
some of its methods) while keeping the rest of the code and
its functionality intact.

Mat Files

Directory mat / contains third-party data with the geometry
of the brain, taken from the BRAINSTORM toolbox (Tadel
et al. 2011) and extracted using FIELDTRIP procedures:

¢ sel msh.mat — head compartments geometry (ver-
tices and triangulation forming meshes for brain, skull
and scalp); this data can be used as an input for vol-
ume conduction model and lead-field generation using
FIELDTRIP (or any other toolbox that can be used to
generate forward model);

e gsel_vol.mat — volume conduction model (head-
model). This structure contains head compartments
geometry (the same as in sel_msh.mat) accompanied
by their conductivity values and a matrix containing
numerical solution (utilizing boundary or finite element

@ Springer

supFunSim

EEGPlotting

SETUP : Structure
MODEL : Structure MODEL : Structure

MATS : Structure MATS : Structure
plotMVARmodelcoefficientmatrixmask() init()
plotMVARmodelcoefficientmatrixgraph() setparameters(SETUP : Structure)
plotPDCgraph() setsignals()

plotDTFgraph()

ploterrortable()
plotdeepsourcesasicosahedron642()
plotdeepsourcesasthalami()
plotcortexmesh()
plotbrainoutermesh()
plotskulloutermesh()
plotscalpoutermesh()
plotelectrodepositioning()
plotelectrodelabels()
plotROlvisualization()
plotsourcevisualization()

plotall()

EEGSignalGenerator
SETUP : Structure

EEGForwardModel

setleadfields()
setpreparations()

EEGReconstruction
RESULTS: Structure
setfilters(filter : String)
printaverageresults()
generate() save()

EEGParameters

EEGTest

testsetup()
testsignals()
testleadfields()
testfilters()
testerrors()

Fig.5 Dependencies between classes

method) to a system of differential equations describing
propagation of the electric field. This data is obtained
using FIELDTRIP’S dipoli method and is used as
an input to the function that calculates the lead-field
matrix. The default volume conduction model was
prepared in accordance with the instruction provided
in the FIELDTRIP tutorial Creating a BEM volume
conduction model of the head for source-reconstruction
of EEG data available at Knuth (2016). This structure is
used to compute lead-fields;

¢ gsel geo_deep_thalami.mat — mesh containing
candidates for location of deep sources (based on
thalami). The mesh was prepared on the basis of the
Colin27 (Tadel et al. 2011; Holmes et al. 1998; Aubert-
Broche et al. 2006) MRI images;

® sel geo_deep_icosahedron642.mat — mesh
containing candidates for location of deep sources
(based on icosahedron642);,

e gsel atl.mat — cortex geometry with (anatomical)
ROI parcellation (cortex atlas). This detailed triangula-
tion is parceled into cortical patches (a.k.a. regions of
interest, ROIs). It contains a 15000 vertices and it is
based on the sample data accompanying the BrainStorm
toolbox (Tadel et al. 2011). It was originally prepared
using FreeSurfer (Dale et al. 1999; Fischl et al. 2004)
software;

® sel_ele.mat — geometry of electrode positions. By
default we use HydroCel Geodesic Sensor Net sensor



Neuroinform (2021) 19:107-125

115

montage utilizing 128 channels available. The electrode
positions file is available with the FIELDTRIP toolbox
as GSN-HydroCel-128.sfp file;

® gsel_src.mat — lead-fields of all possible source
locations.

Simulation Parameters Class

This class is responsible for setting up parameters of

simulations.

® EEGParameters:

generate — this method generates
the set of parameters of simulations.
The method itself is mainly based on
generatedummysetup function which
itself uses setinitialvalues and
setsnrvalues functions containing default
configuration for the reconstruction. Users
willing to change basic configuration should
edit the configurationparameters.m
file. The assignments of parameters’ values
made in this file overwrite default parameters’
settings.

For the complete list of all simulation
parameters consult Table 1.

For unit testing, configuration from the
testparameters should be used. The con-
figuration in this file agrees with the configu-
ration used in supFunSim. org file. To per-
form unit testing, simply uncomment appro-
priate line in the generatedummysetup .m
file.

Signal Generation Class

This class is responsible for EEG signal generation.

® EEGSignalGenerator:

init — this method initializes all toolboxes
required by SUPFUNSIM. It sets path to
toolboxes, creates their default settings, sets
head model, geometry of patches etc.;
setparameters — this method sets config-
uration for simulation using parameters from
EEGParameters class;

setsignals — this method gen-
erates all source-level signals:
sim_sig_SrcActiv.sigSRC,

sim_sig_ IntNoise.sigSRC,

sim_sig BcgNoise.sigSRC, as well as

sensor level sim_sig MesNoise.sigSNS
measurement noise:

makeSimSig — MVAR-based sig-
nal generation; the signal is then
halved into pre and pst parts,
generatetimeseries
sourceactivity — generates
simsig Src Activ.sigSRC
signals of sources of interest using
makeSimSig and if required, adds
ERP deterministic signal to the pst
part of the signal of interest,
generatetimeseries
interferencenoise

— generates
simsig IntNoise.sigSRC
interference noise sig-
nal as the negative of
sim_sig_SrcActiv.sigSRC
signal of interest with added white
Gaussian noise of  prescribed
power relative to the power of
sim_sig_SrcActiv.sigSRC,
generatetimeseries
backgroundnoise — generates
sim_sig BcgNoise.sigSRC
background activity signal using

makeSimSig,
generatetimeseriesmeasure
ment noise — generates

sim_sig MesNoise.sigSNS
measurement (sensor-level) noise
signal as an additive white Gaussian
noise.

Forward Model Class
Class EEGForwardModel generates solution to the
forward problem: leadfield matrices and the resulting

electrode-level signal.

EEGForwardModel:

setleadfields — this method generates
leadfield matrices:

geometryrandomsampling —
random or user-defined selection of
cortex ROIs for sources (of inter-
est, interfering activity, background
activity),

@ Springer



116

Neuroinform (2021) 19:107-125

Table 1 SETUP configuration

Parameter Description

rROI random (if 1) or predefined (if 0) ROIs

rPNT random (if 1) or predefined (if 0) candidate points for source locations
SRCS represent SrcActiv, IntNoise and BcgNoise, respectively

AzElSrcS,AzElIntS,AzE1BcgS

DEEP
ERPs
noo
KOO
P00
FRAC
STAB

RNG

ITER
PDC_RES
TELL

PLOT

SCRN

DISP

SEED
SEEDS
RANK_EIG
f1tREMOVE
SHOWori
IntLEfgRANK
supSwitch
thalamus
DEBUG
PATH
SRATE
CUBE

CONE
H Src pert
H._Int_pert

@ Springer

represent deviation of azimuth
and elevation (in radians)
from the orthonormal for the
SrcActiv, IntNoise and
BcgNoise, respectively

deep sources

add ERPs (timelocked activity)

number of time samples per trial

number of independent realizations of signal and noise based on generated MVAR model
order of the MVAR model used to generate time-courses for signal of interest

proportion of ones to zeros in off-diagonal elements of the MVAR coefficients masking array

VAR stability limit for MVAR
eigenvalues (less than 1.0 results
in more stable model produc-
ing more stationary signals (Neu-
maier and Schneider 2001))

range for pseudo-random sampling of eigenvalues for MVAR coefficients range
iterations limit for MVAR pseudo-random sampling and stability verification
frequency resolution vector for normalized PDC and DTF estimation
provide additional comments during code execution (“tell me more”)

plot figures during the intermediate stages

get screens positions

force figures to be displayed on (3dr) screen

seed for random number generation

hardcoded seeds to ensure repeatability of the simulation

rank of EIG-LCMV filter: set to number of active sources

to keep (if 0) or remove (if 1) selected filters

to show (if 1) or do not show (if 0) Original and Dummy signals on figures
rank of patch-constrained reduced-rank lead-field

rec: run reconstruction of sources activity, 1oc: find active sources

type of head model

if we want to debug

path to directory with the code

sampling rate

perturbation of the lead-fields
based on the shift of source loca-
tion within a cube of given edge
length (centered at the original
lead-fields locations)

perturbation of the lead-fields based on the rotation of source orientation (azimuth TH, elevation PHI)

use original (if 0) or perturbed (if 1) lead-field for signal reconstruction
use original (if 0) or perturbed (if 1) lead-field for nulling constrains



Neuroinform (2021) 19:107-125

117

Table 1 (continued)

Parameter Description

SINR signal to interference noise power ratio expressed in dB (both measured on electrode level)
SBNR signal to biological noise power ratio expressed in dB (both measured on electrode level)
SMNR signal to measurment noise power ratio expressed in dB (both measured on electrode level)
WhtNoiseAddFlg white noise admixture in biological noise interference noise (FLAG)

WhtNoiseAddSNR SNR of BcgNoise and WhiNo (dB)

SigPre final signal components for pre-interval (use zero or one for signal)

IntPre final signal components for pre-interval (use zero or one for interference noise)

BcgPre final signal components for pre-interval (use zero or one for background activity)

MesPre final signal components for pre-interval (use zero or one for measurement noise)

SigPst final signal components for post-interval (use zero or one for signal)

IntPst final signal components for post-interval (use zero or one for interference noise)

BcgPst final signal components for post-interval (use zero or one for background activity)
MesPst final signal components for post-interval (use zero or one for measurement noise)

DATE date

NAME temporary file name

SINR_RNG range of SNR for interference signals

SBNR_RNG range of SNR for background signals

SMNR_RNG range of SNR for measurment noise

geometryindices — identifica-
tion of cortex ROIs’ indices within
cortex atlas,
geometrycoordinates —
coordinates of vertices of sources
within selected ROIs,
geometrydeepsources —
coordinates of vertices of sources
within thalamus,
geometryperturbation —
generation of perturbed source
locations and orientations,
geometryleadfieldscomput
ationy — computation of origi-
nal lead-fields of sources of interest
sim 1fg_SrcActiv_orig.LFG,
sources of interfering activity
sim 1fg IntNoise_orig.LFG,
sources of background activity
sim_1fg BcgNoise_orig.LFG,
as well as their respecitve
perturbed versions
sim 1fg SrcActiv_pert.LFG,
sim_ 1fg_ IntNoise_pert.LFG,
sim_1fg BcgNoise pert.LFG,
respectively,

forwardmodeling — mul-
tiplication of source signals by
their ~ corresponding  lead-field

matrices  yielding  sensor-level
signals of sources of interest
sim_sig_SrcActiv.sigSNSs,
sources of interfering activity
sim_sig_IntNoise.sigSNS,
and sources of background activity
sim_sig BcgNoise.sigSNS;

setpreparations — generates output
EEG signal and prepares for signal reconstruc-
tion using spatial filters:

preparationsnrsadjustment
— rescales sensor-level signals to
the appropriate SNRs,
prepareleadfieldconfigu-
ration — determines whether
original or perturbed lead-field
matrices of sources of interest
and of interfering sources will
be made available to spatial fil-
ters according tu user’s setting
of SETUP.H._Src_pert and
SETUP.H_Int _pert flags; more-
over, reduces the rank of lead-field
matrix of interfering sources accord-
ing to SETUP.IntLfgRANK
variable value,
preparemeasuredsignals

— sums sensor-level signals and

@ Springer



118

Neuroinform (2021) 19:107-125

adds measurement noise signal
(sim_sig_ MesNoise.sigSNS)
to produce output y_Pre and y_Pst
EEG signals.

store2eeglab — a method that
allows the user to save data in
the EEGLAB format; this toolbox
and its plugins allows for better
preprocessing and visualization of
EEG signal.

rawAdjTot SNRAB

— adjusts power of
sim_sig_IntNoise.sigSNS,
sim_sig BcgNoise.sigSNS
and sim_sig MesNoise.sigSNS
signals with respect to the power of
sim_sig_SrcActiv.sigSNSs,

to obtained desired
signal-to-interference, signal-
to-background-activity, and

signal-to-measurement-noise ratios,
respectively. These ratios are defined
by the user using SETUP.SINR,
SETUP.SBNR, and SETUP.SMNR
variables, respectively, and are
expressed in decibels [dB] using the
following implementation:

function [y] = rawAdjTotSNRdB
(x01, x02, newSNR)
vy = ((x02 / norm(x02)) =*
norm (x01)) / (db2pow

(0.5 % newSNR)),

end

where db2pow is the MAT-
LAB function converting decibels to
power.

Reconstruction Class

Class EEGReconstruction computes implemented
spatial filters and applies them to the observed y_Pst
simulated EEG signal. It also computes various fidelity
measures of the reconstruced activity of sources of interest.

® EEGReconstruction:
— setfilters — calculates matrices which

are used in the process of reconstruction:

spatialfilterconstants —
We compute some of constats used
later in defining filters.

@ Springer

spatialfiltering — We
compute all intermediate variables
needed to calculate the filters.
spatialfilteringexecution
— For every filter W(0) given as a
parameter to this function we are cal-
culating W(6)y using post-interval
signal as y. Then we perform arfit
for all reconstructed signals and
obtain autoregression matrix. This
matrix is necessary to calculate PDC
and DTF measures.
spatialfilteringerroreva-
luation — Function which cal-
culates difference between original
signal and reconstructed. For that
it uses various measures: Euclidean
metric and correlation coefficients
to compare activity signals, MVAR
coefficient matrices and PDC and
DTF coefficient matrices.
vectorizerrorevaluation
— Function that combines results in
single array. Such uniform output of
different error measures is later used
in plotting.

— printaverageresults — print table of
comparison of different reconstruction filters.
— save — save reconstructed filters.

Plotting Class
The toolbox makes it possible to visualize results of

experiments. User can plot results of simulation using
EEGPlotting class which is specially prepared for this.

eegplot = EEGPlotting (reconstruction) ;

Interesingly, there are many ways to facilitates visual-
ization of the analysis and results. JUPYTER functionality
gives us a possibility to plot figures inside notebook (using
%plot magic option):

eegplot .plotskulloutermesh () ;

or to open it in MATLAB interactive environment:

eegplot .plotsourcevisualization () ;




Neuroinform (2021) 19:107-125

119

Toolbox SUPFUNSIM contains variety of plotting func-
tions for different visualizations of results. Some of them
are presented in Figs. 6, 7, 8 and 9.

Plot consists of layers that are generated by func-
tions with self-explonatory names. E.g. function
plotROIvisualization plots cortex, regions of inter-
est. Function plotsourcevisualization plots mesh
for ROIs on cortex, mesh for deep sources ROI, sources and
cortex.

® EEGPlotting:

— plotMVARmodelcoefficientmatrix
mask — this method plots mask for MVAR
model coefficient matrix.

— plotPDCgraph — this method is used for
plotting PDC profiles across sources of interest
and interfering sources.

Fig.6 Volume conduction

model essential components.

Triangulation meshes

representing brain, skull and

scalp boundaries with electrode

positions plotted on top of the

scalp surface. This figure was

generated using an instance of

EEGPlotting class

employing

plotbrainoutermesh (),

plotskulloutermesh(),

plotscalpoutermesh (),

plotelectrodepositioning () smo
aIld 150

plotelectrodelabels () Ete N\ Em

100
methods EN17

OoXx

O
E118
50 E123

[mm]

-50
-100

-150

15
150

100 oy

50

-50

mm]

E1127 @

113 vl o %P
Uy | \O\
. e -
Fa’ E@i@®120  E6 ' E42 5175
~ e ® ) //‘ @

E18 ® ° g N

E17E21 gy ®

— plotDTFgraph — this method is used for
plotting DTF profiles across sources of interest
and interfering sources.

— plotMVARmodelcoefficientmatrix
graph — this method plots composite
MVAR model matrix for sources of interest,
interfering and background sources.

— ploterrortable — this method plots
results of reconstruction as heatmap table.

— plotdeepsourcesasicosahedron642
— this method for plotting of deep sources.

— plotdeepsourcesasthalami — this
method can be used for plotting of both tha-
lami.

— plotcortexmesh — this method plots
cortex mesh.

— plotbrainoutermesh — this method

plots brain outer mesh.

LE85
;;EBS ' Es B84 g7y
90 =78
E93 -
| E79 Pz E72
E103 E87 E101 i
Q Eos ED 67 "1
c4
2
fw T @ Eso‘ o 69 E61

E105 ©
R Ess g es - E66
o % lc %9 80% 2 E60
S
QE108 Q10 ° O pes s
E31 @ ® ol

£23 [} E27
-150

E128 -100

E127

-100 100 [mm]

-150 150

@ Springer



120

Neuroinform (2021) 19:107-125

Fig.7 Cortex and ROIs.
Detailed cortical surface
triangulation with selected
cortical patches. This figure was
generated using an instance of
EEGPlotting class
employing
textttplotcortexmesh() and
textttplotROlvisualization()
methods

Fig.8 ROIs and thalami.
Cortical patches selected as a
candidate ROIs for source
position with thalami mesh and
scalp outer mesh. This figure

was generated using an instance
of EEGPlotting class
employing
plotROIvisualization(),
plotdeepsourcesasthalami ()
and

plotscalpoutermesh ()
methods

@ Springer

[mm]

[mm]

150

-50

-100

150

50

-100

-150

150

100

100

ox

oy

ox

oy

[mm] -100

-150

[mev] -100

-150

-150

-100

100 [mm]

-150

-100

100 {mm}

150



Neuroinform (2021) 19:107-125

121

Fig.9 Bioelectrical activity
positions and orientations.
Cortical patches selected as a
candidate ROIs for source
position with thalami mesh.
Vectors representing direction of
the dipole moments for the
sources of bio-electrical activity.
Red lines represent the activity
of interest; blue — the interfering
activity and black — background
activity. Solid lines represent
original sources and dotted lines .
represent perturbed sources.
Arrows representing dipole
position and orientation are
drawn not to scale. This figure
was generated using an instance
of EEGPlotting class 100
employing 50
plotROIvisualization(),
plotdeepsourcesasthalami ()

[mm]
i

and
plotsourcevisualization()
methods
— plotskulloutermesh — this method
plots skull outer mesh.
— plotscalpoutermesh — this method
plots sclap outer mesh.
— plotelectrodepositioning — this
method plots electrode positions.
— plotelectrodelabels — this method
plots electrode labels.
— plotROIvisualization — this method
plots ROIs based on generated meshes.
— plotsourcevisualization — this
method is used for source vizualization.
Unit Test Class

Since this implementation is based on the previous one,
which was done in Org-mode, authors have created a class
EEGTest for unit tests.

In order to generate and distribute files into directories
(necessary for the test) there is a make target test.

For example, unit tests can look like that:

ox

-150

oy -100

L w0 (o)

-150 150

eegtest = EEGTest ()

eegtest = eegtest.testsetup ()
eegtest = eegtest.testsignals ()
eegtest = eegtest.testleadfields ()
eegtest = eegtest.testfilters ()
eegtest = eegtest.testerrors ()

This class can be useful for developers who wants to
extend our framework. This way they always can check
whether it is still passes the compliance test.

Sample Usage
Generating Set of Parameters for Simulations

Generation of a new simulation requires preparation of a
set of parameters. This is done by the EEGParameters
class, in which the generate method is included. In
the default version the dummy function is called, which
returns the default parameter structure, but the user can

@ Springer



122

Neuroinform (2021) 19:107-125

always overwrite the function to create own version or change
the configuration of the simulation and perform own experi-
ments. Syntax for generating parameters is as follows:

reason is that meshes are loaded only once during all
iterations. All that, as a part of the main object, can be saved
in mat file and later restored.

parameters = EEGParameters () .generate () ;

Several sample settings have been prepared. Func-
tions setinitialvalues and setsnrvalues set
up initial parameters and signal to noise ratios. Func-
tion smartparameters overwrites initial values
and contains parameters for the sample run. Function
testparameters contains parameters for unit test done
by EEGTest. For that line containing this function must
be uncommented.

Generated structure contains about 50 fields. All fields
are listed in Table 1.

Example Run Of Simulations

The input configuration structure from EEGParameters
class contains options and parameters that specify how the
stimulation will run. Once the user is satisfied with the
parameter settings a sequence of simulations is ready to run,
which may look, e.g., like that:

filters = [ 'LCMV’, 'MMSE’, ’'ZF’, 'RANDN’, '
SMVP_ R’ 1;
reconstruction = EEGReconstruction () ;
reconstruction = reconstruction.init () ;
for np = 1:length (parameters)
parameter = parameters (np)
reconstruction = reconstruction.

setparameters (parameter) ;
reconstruction = reconstruction.setsignals ()
i
reconstruction = reconstruction.
setleadfields () ;
reconstruction = reconstruction.
setpreparations () ;
reconstruction = reconstruction.setfilters (
filters) ;
reconstruction.save () ;
end
reconstruction = reconstruction.
printaverageresults () ;

Here parameters were generated as described above.
Selection of filters to compute the source reconstruction is
done above in a very direct way. Filters are self-contained,
i.e. they can run independently. What is worth noting, there
are fifteen spatial filters available in the current version of
SUPFUNSIM (including, e.g., classical LCMV), and more
will be added.

All intermediate values of model variables along with
the initial settings are stored in attributes SETUP and
MODEL. Attribute RESULTS contains the scores of all the
most important measures of errors for individual filters.
Moreover, all meshes are kept in attribute MATS. The main

@ Springer

load (’'reconstruction DATE.mat’) ;
ob7j .MODEL

Here DATE is identifier of reconstruction, given by date
of execution.

Future Work

Some applications require combination of spatial filtering
modeling of source activity in frequency domain. It is
certainly worthwhile to add additional transformation such
as Laplace transformation (Kayser and Tenke 2015) to avoid
dependence of the reference. The choice of commercial
Matlab toolbox may also be a limitation for some users
and it will be worthwhile to convert the whole package to
languages such as Python. Adaptive filters have not yet been
implemented, therefore creation of on-line applications is
not yet feasible.

Information Sharing Statement

The source code of the toolbox is publicly available at https://
github.com/nikadon/supFunSim as an Org-mode file,
JUPYTER notebook, and also as a plain MATLAB source code.

Acknowledgments This work was supported by a grant from the
Polish National Science Centre (UMO-2016/20/W/NZ4/00354). The
authors are grateful to anonymous reviewers for their constructive
comments which surely promoted the usability of the SUPFUNSIM
toolbox and the readability of the revised manuscript.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

Appendix
Implemented Spatial Filters

We denote the concatenated composite lead-field matrices
of H and H; as H := [H H;], and similarly g := [¢¢[]".


https://github.com/nikadon/supFunSim
https://github.com/nikadon/supFunSim
http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/

Neuroinform (2021) 19:107-125

123

Table2 MATS structure containing all meshes

Parameter Description

sel_msh
sel_geo_deep-thalami
sel_geo_deep_icosahedroné642

structure with head compartments geometry (cortex)

structure with mesh containing candidates for location of deep sources (based on thalami)
structure with mesh containing candidates for lacation of deep sources (based on icosahedron642)
structure with cortex geometry with (anatomical) ROI parcellation

sel_atl

sel_vol structure with volume conduction model (head-model)
sel_ele structure with geometry of electrode positions
sel_src structure with all cortex lead-fields

The covariance matrices of g, g., gp +nm, y are denoted by
0, O, N, Y, respectively.
We selected for comparison the following spatial filters:

1. The LCMV filter, expressed as both (Moiseev et al.
2011)

Wremvry = (H'RTVH)'H'R™!, (8)

and Moiseev et al. (2015)

Weemvny = (H'N'H)T'HINT. 9)
2. The nulling filter (Hui et al. 2010):

Wi = I Ok J(HC R Ho) ™ HER ™ (10)
3. The Wiener filter, defined as Kailath et al. (2000)

Wr_mmse = QH'R™', (11

for the interference-free model, and Kailath et al. (2000)

Wr-mmse = ElgqilHLR™', (12)

for the model in presence of interference.
4. The zero-forcing filter, defined as Kailath et al. (2000)

Wzr = H', (13)

where HT denotes pseudo-inverse of H.

5. The eigenspace-LCMYV filters (Sekihara and Nagarajan
2008) exploiting projection of the signal covariance
matrix R onto its principal subspace of the forms

WEiG-Lcmv () = WLemv(R) PRy, (14)
and
WEIG—Lcmv vy = WLemv vy PR, (15)

where Pp, is the orthogonal projection matrix onto
subspace spanned by eigenvectors corresponding to
Al = -0 = Agg — the sig largest eigenvalues of R,
where sig is the dimension of signal subspace.

6. The MV-PURE filters, defined as Piotrowski et al.
(2019)

We_mv_rure = PLoWLemv /Ny, (16)

for the interference-free model, and Piotrowski et al.
(2019)

er—MV—PURE = PKgi) Wi, a7

for the model in presence of interference. In the above
expressions, PL@, for i = 1,2,3, are the orthogonal
projection matrices onto subspaces spanned by eigen-
vectors corresponding to the » smallest eigenvalues of
symmetric matrices LD = WLCMV(R)RW£CMV(R) —
20, L® = WLCMV(R)RW£CMV(R)’ L® =
WLCMV(N)NWZCMV(N)’ respectively; similarly, PKﬁi) ,
for i = 1,2,3, are the orthogonal projection matri-
ces onto subspaces spanned by eigenvectors cor-
responding to the r smallest eigenvalues of sym-

metric matrices KV = WLCMV(R)RWECMV(R) —
20, K@ = WLCMV(R)RW£CMV(R), K® =

WLCMV(N)NW£CMV(N)’ respectively. Here, Q is the
covariance matrix of sources of interest g.

The file EEGReconstruction.ipynb is richly
commented using mathematical formulas, thanks to which
it will be easy to find a concrete place of implementation of
a specific filter.

Configuration

Table 1 contains all configuration parameters. Some of the
more complex parameters have been explained below the
table.

Within SETUP, perhaps the most important are the
parameters controlling configuration of activity of sources
(SRCS), configuration of deep sources (DEEP), number
of samples and realizations of the signal (n00, K00),
presence of ERPs (ERPs), number of iterations (ITER),
configuration of lead-fields perturbation (CUBE, CONE),
signal to noise ratios, (SINR, SBNR, SMNR), and presence
of signal components (SigPre, IntPre, BcgPre,
MesPre, SigPst, IntPst, BcgPst, MesPst).

There are 7 structures containing head conduction model.
They are listed in Table 2.

@ Springer



124

Neuroinform (2021) 19:107-125

References

Aubert-Broche, B., Evans, A.C., Collins, L. (2006). A new improved
version of the realistic digital brain phantom. Neurolmage, 32(1),
138-145.

Baccala, L.A., & Sameshima, K. (2001). Partial directed coherence:
a new concept in neural structure determination. Biological
Cybernetics, 84(6), 463—474.

Baccala, L.A., & Sameshima, K. (2001). Partial directed coherence:
a new concept in neural structure determination. Biological
Cybernetics, 84(6), 463—474.

Baillet, S., Mosher, J.C., Leahy, R.M. (2001). Electromagnetic brain
mapping. IEEE Signal Processing Magazine, 18(6), 14-30.

Bassett, D.S., & Sporns, O. (2017). Network neuroscience. Nature
Neuroscience, 20(3), 353-364.

Blinowska, K.J., & Zygierewicz, J. (2011). Practical biomedical
signal analysis using MATLAB®. Boca Raton: CRC Press.

Craddock, M., Martinovic, J., Miiller, M.M. (2016). Accounting for
microsaccadic artifacts in the eeg using independent component
analysis and beamforming. Psychophysiology, 53(4), 553-565.

Dale, A.M., Fischl, B., Sereno, M.I. (1999). Cortical surface-based
analysis: I. segmentation and surface reconstruction. Neurolmage,
9(2), 179-194.

Das, N., Vanthornhout, J., Francart, T., Bertrand, A. (2020). Stimulus-
aware spatial filtering for single-trial neural response and temporal
response function estimation in high-density eeg with applications
in auditory research. Neurolmage, 204, 116211.

de Cheveigné, A., & Simon, J.Z. (2008). Denoising based on spatial
filtering. Journal of Neuroscience Methods, 171(2), 331-339.

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox
for analysis of single-trial EEG dynamics including independent
component analysis. Journal of Neuroscience Methods, 134(1),
9-21.

Desikan, R.S., Ségonne, E., Fischl, B., Quinn, B.T., Dickerson, B.C.,
Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman,
B.T., Albert, M.S., Killiany, R.J. (2006). An automated labeling
system for subdividing the human cerebral cortex on MRI scans
into gyral based regions of interest. Neurolmage, 31(3), 968—
980.

Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne,
F., Salat, D.H., Busa, E., Seidman, L.J., Goldstein, J., Kennedy,
D., Caviness, V., Makris, N., Rosen, B., Dale, A.M. (2004).
Automatically parcellating the human cerebral cortex. Cerebral
Cortex, 14(1), 11-22.

Franaszczuk, P.J., Blinowska, K.J., Kowalczyk, M. (1985). The
application of parametric multichannel spectral estimates in the
study of electrical brain activity. Biological Cybernetics, 51(4),
239-247.

Frost, O.L. (1972). An algorithm for linearly constrained adaptive
array processing. Proc. IEEE, 60(8), 926-935.

Gramfort, A., Luessi, M., Larson, E., Engemann, D., Strohmeier,
D., Brodbeck, C., Parkkonen, L., Himildinen, M. (2014). MNE
Software for processing MEG and EEG data. Neurolmage, 86,
446-460.

Gomez-Herrero, G., Atienza, M., Egiazarian, K., Cantero, J.L.
(2008). Measuring directional coupling between EEG sources.
Neurolmage, 43(3), 497-508.

Haufe, S. (2012). Towards EEG source connectivity analysis, Tech.
Rep., Technische Universitit Berlin, Fakultit IV — Elektrotechnik
und Informatik.

Holmes, C.J., Hoge, R., Collins, L., Woods, R., Toga, A.W., Evans,
A.C. (1998). Enhancement of MR images using registration for
signal averaging. Journal of Computer Assisted Tomography,
22(2), 324-333.

@ Springer

Hui, H.B., Pantazis, D., Bressler, S.L., Leahy, R.M. (2010). Identifying
true cortical interactions in MEG using the nulling beamformer.
Neurolmage, 49(4), 3161-3174.

Ille, N., Berg, P., Scherg, M. (2002). Artifact correction of the
ongoing eeg using spatial filters based on artifact and brain
signal topographies. Journal of Clinical Neurophysiology, 19(2),
113-124.

Kailath, T., Sayed, A.H., Hassibi, B. (2000). Linear estimation. New
Jersey: Prentice Hall.

Kaminski, M., Ding, M., Truccolo, W.A., Bressler, S.L. (2001). Evalu-
ating causal relations in neural systems: granger causality, directed
transfer function and statistical assessment of significance. Bio-
logical Cybernetics, 85(2), 145-157.

Kayser, J., & Tenke, C.E. (2015). Issues and considerations for using
the scalp surface laplacian in eeg/erp research: a tutorial review.
International Journal of Psychophysiology, 97(3), 189-209.

Knuth, D.E. (1984). Literate programming. The Computer Journal,
27(2), 97-111.

Knuth, D.E. (2016). Creating a FEM volume conduction model
of the head for source-reconstruction of EEG data, http:/
www.fieldtriptoolbox.org/tutorial/headmodel_eeg_fem/. Accessed
30 Sep 2016.

Korzeniewska, A., Manczak, M., Kaminski, M., Blinowska, K.J.,
Kasicki, S. (2003). Determination of information flow direction
among brain structures by a modified directed transfer function
(ddtf) method. Journal of Neuroscience Methods, 125(1-2), 195—
207.

Kus, R., Kaminski, M., Blinowska, K. (2004). Determination of
EEG activity propagation: pair-wise versus multichannel estimate
5109), 1501-1510.

Moiseev, A., Gaspar, J.M., Schneider, J.A., Herdman, A.T. (2011).
Application of multi-source minimum variance beamformers for
reconstruction of correlated neural activity. Neurolmage, 58(2),
481-496.

Moiseev, A., Doesburg, S.M., Grunau, R.E., Ribary, U. (2015).
Minimum variance beamformer weights revisited. NeuroImage,
120,201-213.

Molina, G.G., & Mihajlovic, V. (2010). Spatial filters to detect
steady-state visual evoked potentials elicited by high frequency
stimulation: bci application. Biomedical Engineering, 55(3), 173—
182.

Mosher, J.C., Leahy, R.M., Lewis, P.S. (1999). EEG and MEG:
forward solutions for inverse methods. IEEE Transactions on
Biomedical Engineering, 46(3), 245-259.

Neumaier, A., & Schneider, T. (2001). Estimation of parameters
and eigenmodes of multivariate autoregressive models. ACM
Transactions on Mathematical Software, 27(1), 27-57.

Oostendorp, T., & Van Oosterom, A. (1989). Source parameter
estimation in inhomogeneous volume conductors of arbitrary
shape. IEEE Transactions on Biomedical Engineering, 36(3),
382-391.

Oostenveld, R., Fries, P.,, Maris, E., Schoffelen, J.-M. (2011).
FieldTrip: open source software for advanced analysis of MEG,
EEG, and invasive electrophysiological data. Computational
Intelligence and Neuroscience, pp 156869.

Oostenveld, R., Fries, P, Maris, E., Schoffelen, J.-M. (2011).
FieldTrip: open source software for advanced analysis of MEG,
EEG, and invasive electrophysiological data. Computational
Intelligence and Neuroscience, 2011, 1-9.

Pascual-Marqui, R.D. (1999). Review of methods for solving the EEG
inverse problem. International Journal of Bioelectromagnetism,
1(1), 75-86.

Piotrowski, T., & Yamada, 1. (2008). MV-PURE estimator: minimum-
variance pseudo-unbiased reduced-rank estimator for linearly


http://www.fieldtriptoolbox.org/tutorial/headmodel_eeg_fem/
http://www.fieldtriptoolbox.org/tutorial/headmodel_eeg_fem/

Neuroinform (2021) 19:107-125

125

constrained ill-conditioned inverse problems. IEEE Transactions
on Signal Processing, 56(8), 3408-3423.

Piotrowski, T., Cavalcante, R.L.G., Yamada, I. (2009). Stochastic MV-
PURE estimator — robust reduced-rank estimator for stochastic
linear model. IEEE Transactions on Signal Processing, 57(4),
1293-1303.

Piotrowski, T., Nikadon, J., Gutiérrez, D. (2019). MV-PURE spa-
tial filters with application to EEG/MEG source reconstruc-
tion. IEEE Transactions on Signal Processing, 67(3), 553—
567.

Piotrowski, T., & Nikadon, J. (2020). Localization of brain activity
from EEG/MEG using MV-PURE framework. arXiv:1809.03930.

Ramoser, H., Muller-Gerking, J., Pfurtscheller, G. (2000). Optimal
spatial filtering of single trial eeg during imagined hand
movement. [EEE Transactions on Rehabilitation Engineering,
8(4), 441-446. https://doi.org/10.1109/86.895946.

Rondik, T., Ciniburk, J., Moucek, R., Mautner, P. (2011). ERP
components detection using wavelet transform and matching
pursuit algorithm. In 2011 international conference on applied
electronics (pp. 1-4): 1EEE.

Sannelli, C., Vidaurre, C., Miiller, K.-R., Blankertz, B. (2016).
Ensembles of adaptive spatial filters increase bci performance:
an online evaluation. Journal of Neural Engineering, 13(4),
046003.

Schneider, T., & Neumaier, A. (2001). Algorithm 808: ARfit—a
matlab package for the estimation of parameters and eigenmodes
of multivariate autoregressive models. ACM Transactions on
Mathematical Software, 27(1), 58-65.

Sekihara, K., & Nagarajan, S.S. (2008). Adaptive spatial filters for
electromagnetic brain imaging. Berlin: Springer.

Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M. (2011).
Brainstorm: a user-friendly application for MEG/EEG analysis.
Computational Intelligence and Neuroscience, 2011, 8.

Van Veen, B.D., Van Drongelen, W., Yuchtman, M., Suzuki, A.
(1997). Localization of brain electrical activity via linearly
constrained minimum variance spatial filtering 44(9), 867—
880.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer


http://arxiv.org/abs/1809.03930
https://doi.org/10.1109/86.895946

	supFunSim: Spatial Filtering Toolbox for EEG
	Abstract
	Introduction
	EEG Measurement Model
	EEG Source Reconstruction
	Toolbox Signal Processing Outline
	Overview
	Brain Signals in Source Space
	Brain Signals in Sensor Space

	Implementation Details
	Object-Oriented Approach
	Benefits of Literate Programming
	Installation
	Prerequisites/Dependencies

	Application Structure
	Overview of Toolbox Classes
	Mat Files
	Simulation Parameters Class
	Signal Generation Class
	Forward Model Class
	Reconstruction Class

	Plotting Class
	Unit Test Class

	Sample Usage
	Generating Set of Parameters for Simulations
	Example Run Of Simulations

	Future Work
	Information Sharing Statement
	Appendix  
	Implemented Spatial Filters
	Configuration
	References


