
1Scientific Reports |          (2019) 9:4897  | https://doi.org/10.1038/s41598-019-41230-0

www.nature.com/scientificreports

Development and Validation 
of Nomograms for Malignancy 
Prediction in Soft Tissue Tumors 
Using Magnetic Resonance Imaging 
Measurements
Ji Hyun Lee1, Young Cheol Yoon1, Wook Jin2, Jang Gyu Cha3 & Seonwoo Kim4

The objective of this study was to develop, validate, and compare nomograms for malignancy 
prediction in soft tissue tumors (STTs) using conventional and diffusion-weighted magnetic resonance 
imaging (MRI) measurements. Between May 2011 and December 2016, 239 MRI examinations from 
236 patients with pathologically proven STTs were included retrospectively and assigned randomly 
to training (n = 100) and validation (n = 139) cohorts. MRI of each lesion was reviewed to assess 
conventional and diffusion-weighted imaging (DWI) measurements. Multivariate nomograms 
based on logistic regression analyses were built using conventional measurements with and without 
DWI measurements. Predictive accuracy was measured using the concordance index (C-index) and 
calibration plots. Statistical differences between the C-indexes of the two models were analyzed. 
Models were validated by leave-one-out cross-validation and by using a validation cohort. The mean 
lesion size, presence of infiltration, edema, and the absence of the split fat sign were significant and 
independent predictors of malignancy and included in the conventional model. In addition to these 
measurements, the mean and minimum apparent diffusion coefficient values were included in the DWI 
model. The DWI model exhibited significantly higher diagnostic performance only in the validation 
cohort (training cohort, 0.899 vs. 0.886, P = 0.284; validation cohort, 0.791 vs. 0.757, P = 0.020). 
Calibration plots showed fair agreements between the nomogram predictions and actual observations 
in both cohorts. In conclusion, nomograms using MRI features as variables can be utilized to predict the 
malignancy probability in patients with STTs. There was no definite gain in diagnostic accuracy when 
additional DWI features were used.

Soft tissue sarcomas are rare neoplasms of mesenchymal origin, which often require multimodal treatment1; in 
contrast, benign tumors require less aggressive management. Determining whether a soft tissue tumor (STT) is 
benign or malignant is the most important step of the treatment algorithm. In clinical practice, magnetic reso-
nance imaging (MRI) is the preferred imaging modality for STT characterization, local staging, and preoperative 
planning1,2. Generally, the major criteria for diagnosing malignant STTs using conventional MRI include a large 
size, deep location, and heterogeneous signal intensity2–8; other criteria were also suggested2,4,5,9–11. Additionally, 
several characteristic MRI features such as the “target sign”12,13, “split fat sign”10,13,14, and “tail sign”4,15 were 
reported to be helpful in diagnosing specific STT subtypes. However, it is challenging to distinguish benign 
from malignant STTs using only MRI; most STTs have nonspecific imaging findings and substantial overlap 
exists between the imaging features of malignant and benign lesions4,5,9,16,17. Consequently, the unsatisfactory 
diagnostic performance of MRI for distinguishing benign from malignant STTs was reported previously18–20. 
Diffusion-weighted imaging (DWI), which measures the random motion of water protons and provides a 
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quantitative parameter of water diffusion in tissue, has been reported to be useful in tumor characterization21 and 
treatment response evaluation22,23 in musculoskeletal imaging. Also, it was suggested that DWI can potentially 
improve diagnostic performance in the differentiation of benign and malignant STTs24.

Most previous MRI studies regarding STT differentiation included small numbers of patients, focused on 
specific subtypes, or focused on a limited number of imaging findings4,8–10,24. Few investigations described a sys-
tematic imaging approach for differentiating between benign and malignant STTs8,25.

A nomogram incorporates a variety of factors and is a reliable and pragmatic prediction tool to assess the 
overall probability of a specific outcome. To the best of our knowledge, no study has used nomograms for STT 
differentiation. We aimed to build predictive nomograms by combining known clinical and MRI measurements 
described in the previous literatures2–12,14,15 and to validate them using a validation cohort. Moreover, the diag-
nostic performance of a nomogram based on conventional and DWI measurements together was compared 
with that of a nomogram based on conventional measurements alone to determine whether diagnostic accuracy 
increases when using DWI measurements.

Materials and Methods
Patients.  The institutional review board approved this retrospective study (Samsung Medical Center, 2017-
05-087-001); requirement for informed consent was waived. From May 2011 to December 2016, 3,573 MRI 
examinations including DWI were performed for suspected soft tissue and bone tumors; 502 examinations 
with pathologically proven STTs were included. Exclusion criteria were (a) previous treatment such as excision, 
chemotherapy, or radiotherapy (n = 151); (b) lipoma or well-differentiated liposarcoma (n = 60); (c) cystic lesions 
without a solid component (n = 27); (d) poor-quality MRI (e.g. image distortion with susceptibility artifacts, 
n = 13); and (e) two or more MRI examinations for the same lesion of a same patient (e.g. simple follow-up MRI, 
n = 12). A total of 239 MRI examinations from 236 patients (mean age, 48.8 years; range, 9–93 years; 126 male 
[mean age, 50.6 years; range, 9–90 years] and 110 female patients [mean age, 46.8 years; range, 9–93 years]) were 
included; 40 of the subjects were overlapped with a previous study26; This prior article dealt with tumor spatial 
heterogeneity whereas in this manuscript we report on predictive nomograms for STT. The numbers of STTs that 
were pathologically confirmed by image-guided biopsy, surgical excision, and both were 28, 93, and 118, respec-
tively. Patients were assigned randomly to the training (n = 100) or validation (n = 139) cohort (Fig. 1).

MRI techniques.  All examinations were performed using 3.0-T MRI scanners (Intera Achieva or Ingenia, 
Philips Medical Systems, Best, The Netherlands). Depending on the lesion’s location, dedicated coils were 
used with various MRI parameters. Conventional protocols included axial and coronal turbo spin echo (TSE) 
T1-weighted imaging (repetition time/echo time, 400–520 ms/15–16 ms) and axial and sagittal TSE T2-weighted 
imaging (2,411–5,366 ms/80–100 ms). Axial and coronal TSE fat-suppressed (FS) T1-weighted imaging 
(441–561 ms/15–16 ms; fat suppression, chemical shift-selective) was obtained after contrast administration 
(Gd-DOTA, Dotarem®, Guerbet, Roissy CdG Cedex, France).

Axial-plane DWI was performed using a single-shot spin-echo echo-planar sequence. Sensitizing diffu-
sion gradients were applied sequentially in the x, y, and z directions (field-of-view, 160–350 mm; matrix size, 
128 × 128–256 × 256; repetition time/echo time, 5,000 ms/61–69 ms; fat suppression, chemical shift-selective; 
slice thickness, 5 mm; echo train length, 59–67; number of averages, 2; b-values, 0, 400, and 800 s/mm2)24,27,28. The 
apparent diffusion coefficient (ADC) map was generated using all b-values. Parallel acquisition was performed 
with sensitivity-encoding technique (SENSE) by using parallel reduction factor of 1–2 for conventional sequences 
and 3 for DWI, respectively.

Figure 1.  Flow diagram for patient selection. STT, soft tissue tumor.
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Clinical and imaging measurement analysis.  For clinical data (age, sex, and pathological STT results), 
electronic medical records were reviewed. Cases were categorized as benign, intermediate or malignant according 
to the pathological results; Lesions with benign and intermediate biologic behavior were regarded as one category 
and defined as non-malignant tumors.

Qualitative assessments of conventional image measurements were performed by three radiologists (20, 
18, and 13 years of experience in musculoskeletal radiology). The following characteristics were analyzed in 
consensus by the three radiologists, who were blinded to the clinical information and histopathologic results: 
Morphology (infiltration, lobulation), component (fat, fibrosis, necrosis, hemorrhage, septation, target sign), T1 
and T2 heterogeneity, perilesional findings (edema, split fat sign, tail sign), and others (deep location involvement, 
neurovascular bundle invasion, bone invasion) (Supplemental Material).

Another radiologist (3 years of experience in musculoskeletal MRI) blinded to clinical information and his-
topathologic results evaluated quantitative MRI measurements: the mean (sizemean) and maximum (sizemax) sizes 
and mean (ADCmean) and minimum (ADCmin) ADC values. The lesion’s longitudinal, anteroposterior, and trans-
verse dimensions were measured on MRI; the maximums and means of the three orthogonal dimensions were 
recorded. For each lesion, one axial ADC map plane was selected that showed the largest tumor section diameter. 
The most peripheral portion of each lesion was excluded to minimize partial-volume effects. Referring to axial 
post-contrast FS T1-weighted imaging, the region of interest was manually placed on the ADC map maximally 
within the contrast-enhancing area; regions with necrosis, cystic changes, or dense calcification were avoided.

Characteristics
Entire cohort 
(n = 239)

Training cohort 
(n = 100)

Validation cohort 
(n = 139) P

Age, median (range), years 49 (9–93) 51 (9–87) 49 (9–93) 0.882†

Male (%) 128 (54%) 51 (51%) 77 (55%) 0.502‡

Malignancy (%) 117 (49%) 50 (50%) 67 (48%) 0.784‡

Size

   Sizemean, median (range), cm 3.5 (0.7–15.8) 3.4 (0.7–13.9) 3.5 (1.0–15.8) 0.892§

   Sizemax, median (range), cm 4.4 (1.0–25.0) 4.0 (1.0–24.2) 4.7 (1.0–25.0) 0.665§

Morphology

   Infiltration (%) 92 (38%) 38 (38%) 54 (39%) 0.891‡

   Lobulation (%) 189 (79%) 76 (76%) 113 (81%) 0.321‡

Component

   Fat (%) 16 (7%) 6 (6%) 10 (7%) 0.726‡

   Fibrosis (%) 26 (11%) 11 (11%) 15 (11%) 0.959‡

   Necrosis (%) 43 (18%) 20 (20%) 23 (17%) 0.493‡

   Hemorrhage (%) 30 (13%) 14 (14%) 16 (12%) 0.567‡

   Septation (%) 56 (23%) 18 (18%) 38 (27%) 0.093‡

   Target sign (%) 25 (10%) 12 (12%) 13 (9%) 0.509‡

T1 heterogeneity (%)

   0 77 (32%) 32 (32%) 45 (32%) 0.680‡

   1 77 (32%) 30 (30%) 47 (34%)

   2 43 (18%) 17 (17%) 26 (19%)

   3 42 (18%) 21 (21%) 21 (15%)

T2 heterogeneity (%)

   0 12 (5%) 7 (7%) 5 (5%) 0.238‡

   1 37 (15%) 14 (14%) 23 (17%)

   2 63 (26%) 21 (21%) 42 (30%)

   3 127 (53%) 58 (58%) 69 (50%)

Perilesional

   Edema (%) 90 (38%) 34 (34%) 56 (40%) 0.322‡

   Split fat sign (%) 34 (14%) 15 (15%) 19 (14%) 0.771‡

   Tail sign (%) 72 (30%) 29 (29%) 43 (31%) 0.748‡

Others

   Deep location (%) 178 (74%) 76 (76%) 102 (73%) 0.647‡

   NVB invasion (%) 46 (19%) 17 (17%) 29 (21%) 0.455‡

   Bone invasion (%) 26 (11%) 10 (10%) 16 (12%) 0.711‡

DWI measurements

   ADCmean, median (range)¶ 1.38 (0.47–2.68) 1.39 (0.47–2.68) 1.38 (0.50–2.68) 0.877§

   ADCmin, median (range)¶ 0.87 (0.13–2.43) 0.91 (0.13–2.43) 0.84 (0.15–2.20) 0.218§

Table 1.  Descriptive characteristics of the study population. †Independent t test. ‡Chi-squared test. §Mann-
Whitney test. ¶10−3 mm2/s. NVB, neurovascular bundle; DWI, diffusion-weighted imaging; ADC, apparent 
diffusion coefficient.
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Statistical analysis.  Continuous and categorical variables are summarized as the median (range) and fre-
quency (%), respectively. For two independent group comparisons, continuous variables and categorical variables 
were analyzed with the independent t-test or Mann-Whitney test and the chi-squared test or Fisher’s exact test, 
respectively. For use in clinical practice, age, sizemean, sizemax, ADCmean, and ADCmin were categorized using a 
5-year scale for age, a 1-cm scale for sizemean and sizemax, and 0.1 × 10−3 mm2/s scale for ADCmean and ADCmin to 
estimate a model predicting malignancy; non-significant cutoffs were excluded. Stepwise selection was applied 
to the training set using a logistic regression model from all combinations of candidate cutoffs. The model’s 
goodness-of-fit was checked with the R2 value and Hosmer-Lemeshow test. Likelihood ratio chi-squared statistics 
for testing the null model against the model with all predictors and the selected models were presented. Variables 
with P < 0.05 were considered independent predictors of malignancy and used for nomogram modeling. Among 
independent predictors, ADCmean and ADCmin were excluded from Model I (the conventional model); they were 
included in Model II (the DWI model). The nomogram’s predictive performance was measured by the concord-
ance index (C-index), which is equivalent to the area under the receiver operating characteristic curve. Models 
were validated by leave-one-out cross-validation within the training cohort and by using a validation cohort. 
Then, we selected one model each from Models I and II with the smallest difference between the training and 
validation cohort C-indexes to determine the most valid model. The nomogram’s optimal cutoff for predictive 
probability was determined by maximizing Youden’s index; the sensitivity, specificity, positive predictive value, 
and negative predictive value were calculated based on the cutoff. The chi-squared test was performed to detect 
differences in C-indexes between nomograms for Models I and II. In univariate and multivariate analyses, differ-
ences were statistically significant at P < 0.05.

Nomogram calibrations for both models were assessed for the training and validation cohorts by plotting 
observed probabilities against nomogram-predicted probabilities of malignancy. Bootstrapping with 1,000 resa-
mples was used to adjust for bias. Statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, 
NC, USA) and R version 3.3.2 (R development Core Team, Vienna, Austria).

Training cohort Validation cohort

Non-malignant (n = 50) Malignant (n = 50) Non-malignant (n = 72) Malignant (n = 67)

Schwannoma (n = 23) UPS (n = 7) Schwannoma (n = 26) Myxoid liposarcoma (n = 12)

Hemangioma (n = 5) MPNST (n = 5) Fibromatosis (n = 8) UPS (n = 8)

Intramuscular myxoma (n = 3) Myxoid liposarcoma (n = 5) Neurofibroma (n = 6) Myxofibrosarcoma (n = 7)

Fibromatosis (n = 3) DFSP (n = 3) Nodular fasciitis (n = 4) Metastatic carcinoma (n = 5)

Neurofibroma (n = 2) Malignant melanoma (n = 3) Hemangioma (n = 4) DFSP (n = 4)

Tenosynovial GCT (n = 2) Metastatic sarcoma (n = 3) Tenosynovial GCT (n = 3) Malignant melanoma (n = 4)

Benign spindle cell tumor (n = 2) Metastatic carcinoma (n = 3) Intramuscular myxoma (n = 3) Synovial sarcoma (n = 4)

Superficial acral fibromyxoma (n = 1) Alveolar soft part sarcoma (n = 2) PVNS (n = 2) Epithelioid sarcoma (n = 3)

Angioleiomyoma (n = 1) Low-grade fibromyxoid sarcoma 
(n = 2) Fibroma (n = 2) Low-grade fibromyxoid sarcoma (n = 3)

Angiolipoma (n = 1) ESMC (n = 2) IMFT (n = 2) Rhabdomyosarcoma (n = 2)

Cellular angiofibroma (n = 1) Myxofibrosarcoma (n = 2) Solitary fibrous tumor (n = 2) Alveolar soft part sarcoma (n = 2)

Myoepithelioma (n = 1) Synovial sarcoma (n = 2) Angioleiomyoma (n = 1) Lymphoma (n = 2)

Pilomatricoma (n = 1) Dedifferentiated liposarcoma (n = 1) Angiomatoid fibrous 
histiocytoma (n = 1) MPNST (n = 2)

Spindle cell lipoma (n = 1) Leiomyosarcoma (n = 1) Dermatofibroma (n = 1) Metastatic sarcoma (n = 2)

Vascular leiomyoma (n = 1) Epithelioid sarcoma (n = 1) EHE (n = 1) BPDCN (n = 1)

Benign mesenchymal tumor (n = 1) Plasma cell myeloma (n = 1) Intramuscular angioma (n = 1) ESMC (n = 1)

Benign neurogenic tumor (n = 1) Ewing sarcoma (n = 1) Melanocytic ganglioneuroma 
(n = 1) Squamous cell carcinoma (n = 1)

Follicular lymphoma (n = 1) Chondroid syringoma (n = 1) Leiomyosarcoma (n = 1)

Squamous cell carcinoma (n = 1) Spindle cell lipoma (n = 1) Pleomorphic sarcoma (n = 1)

Primary sarcoma (n = 1) Glomus tumor (n = 1) Verrucous carcinoma (n = 1)

Pleomorphic liposarcoma (n = 1) Vascular leiomyoma (n = 1) Undifferentiated sarcoma (n = 1)

Unclassified spindle cell sarcoma 
(n = 1)

Undifferentiated sarcoma (n = 1)

Table 2.  Details of the histopathological diagnoses in the training and validation cohorts. UPS, undifferentiated 
pleomorphic sarcoma; MPNST, malignant peripheral nerve sheath tumor; DFSP, dermatofibrosarcoma 
protuberans; ESMC, extraskeletal myxoid chondrosarcoma; GCT, giant cell tumor; PVNS, pigmented 
villonodular synovitis; IMFT, inflammatory myofibroblastic tumor; EHE, epithelioid hemangioendothelioma; 
BPDCN, blastic plasmacytoid dendritic cell neoplasm.
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Results
Patient demographics.  The median age was 51 years (range, 9–87 years) in the training cohort and 49 
years (range, 9–93 years) in the validation cohort. Malignant STTs were identified in 50% (50/100 cases) in the 
training cohort and in 48% (67/139 cases) in the validation cohort. Among 28 STTs that were pathologically 
confirmed by image-guided biopsy, 15 were benign. 13 of them showed no significant interval change or suspi-
cious features for malignancy during follow up period (average, 15 months; range, 2–46 months); follow up was 
lost in the other two cases. The pathological reports were different between that from image-guided biopsy and 
surgical excision in three malignant STTs; false-negative core biopsy results were obtained in two myxoid liposar-
comas and a low grade fibromyxoid sarcoma. Lesions with intermediate biologic behavior including fibromatosis, 

Characteristics
Non-malignant 
(n = 50)

Malignant 
(n = 50) P

Age

   Age ≤ 50 y 30 (60%) 18 (36%) 0.016†

   Age > 50 y 20 (40%) 32 (64%)

Sex

   Male 26 (52%) 25 (50%) 0.841†

   Female 24 (48%) 25 (50%)

Size

   Sizemean ≤ 3 cm 31 (62%) 11 (22%) <0.001†

   Sizemean > 3 cm 19 (38%) 39 (78%)

   Sizemax ≤ 4 cm 34 (68%) 16 (32%) <0.001†

   Sizemax > 4 cm 16 (32%) 34 (68%)

Morphology

   Infiltration 6 (12%) 32 (64%) <0.001‡

   Lobulation 31 (62%) 45 (90%) 0.001†

Component

   Fat 2 (4%) 4 (8%) 0.678‡

   Fibrosis 3 (6%) 8 (16%) 0.110†

   Necrosis 3 (6%) 17 (34%) <0.001†

   Hemorrhage 3 (6%) 11 (22%) 0.021†

   Septation 10 (20%) 8 (16%) 0.603†

   Target sign 11 (22%) 1 (2%) 0.002†

T1 heterogeneity

   0 17 (34%) 15 (30%) 0.179†

   1 19 (38%) 11 (22%)

   2 6 (12%) 11 (22%)

   3 8 (16%) 13 (26%)

T2 heterogeneity

   0 2 (4%) 5 (10%) 0.307‡

   1 9 (18%) 5 (10%)

   2 8 (16%) 13 (26%)

   3 31 (62%) 27 (54%)

Perilesional

   Edema 8 (16%) 26 (52%) <0.001†

   Split fat sign 14 (28%) 1 (2%) <0.001†

   Tail sign 5 (10%) 24 (48%) <0.001†

Others

   Deep location 37 (74%) 39 (78%) 0.640†

   NVB invasion 5 (10%) 12 (24%) 0.062†

   Bone invasion 3 (6%) 7 (14%) 0.182†

DWI measurements

   ADCmean < 1.3§ 10 (20%) 31 (62%) <0.001†

   ADCmean ≥ 1.3§ 40 (80%) 19 (38%)

   ADCmin < 0.9§ 14 (28%) 36 (72%) <0.001†

   ADCmin ≥ 0.9§ 36 (72%) 14 (28%)

Table 3.  Demographic and MRI characteristics of non-malignant and malignant soft tissue tumors. NVB, 
neurovascular bundle; DWI, diffusion-weighted imaging; MRI, magnetic resonance imaging; ADC, apparent 
diffusion coefficient. †Chi-squared test. ‡Fisher’s exact test. §10−3 mm2/s.
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inflammatory myofibroblastic tumor, epithelioid hemangioendothelioma, solitary fibrous tumor, myoepitheli-
oma, and angiomatoid fibrous histiocytoma were categorized as non-malignant group. Descriptive characteristics 
for both cohorts are summarized and compared in Table 1. The two cohorts showed similar demographics and 
MRI features without significant statistical differences. Detailed histopathological diagnoses of the cohorts are 
summarized in Table 2.

Estimation of the prediction model.  The results of the univariate analysis for each candidate cutoff 
point are shown in Table 3. An age >50 years; sizemean > 3 cm; sizemax > 4 cm; presence of infiltration, lobulation, 
necrosis, hemorrhage, edema, or the tail sign; an ADCmean < 1.3 × 10−3 mm2/s; ADCmin < 0.9 × 10−3 mm2/s; and 

Variables Odds ratio (95% CI) P

Model I

   Sizemean > 3 cm 4.83 (1.61–14.47) 0.005

   Infiltration 7.89 (2.49–24.96) <0.001

   Edema 3.95 (1.21–12.94) 0.023

   Split fat sign 0.07 (0.01–0.86) 0.038

Model II

   Sizemean > 3 cm 5.01 (1.56–16.06) 0.007

   Infiltration 5.08 (1.51–17.10) 0.009

   Edema 2.89 (0.80–10.50) 0.107

   Split fat sign 0.05 (<0.01–0.71) 0.027

   ADCmean < 1.3† 0.33 (0.06–1.86) 0.210

   ADCmin < 0.9† 0.71 (0.14–3.62) 0.677

Table 4.  Selected variables used to build the models based on the multivariate analysis. CI, confidence interval; 
ADC, apparent diffusion coefficient. †10−3 mm2/s.

Figure 2.  Nomograms for predicting the probability of malignancy in soft tissue tumors by using conventional 
variables only (a: Model I) and by using ADC values in addition to conventional variables (b: Model II). ADC, 
apparent diffusion coefficient.
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absence of the target sign and split fat sign were significant between non-malignant and malignant cases. From all 
combinations of variables with significant candidate cutoffs and other variables including the absence of the target 
and split fat signs, a stepwise logistic regression analysis for Model I revealed that a sizemean > 3 cm, and presence 
of infiltration, edema, or the split fat sign retained independent significance for predicting malignancy. After 
the addition of ADCmean < 1.3 × 10−3 mm2/s and ADCmin < 0.9 × 10−3 mm2/s to these variables, sizemean > 3 cm, 
presence of infiltration, and the split fat sign retained independent significance (Table 4). R2 values were 0.455 
and 0.449, and P-values from the Hosmer–Lemeshow test were 0.598 and 0.874 for Models I and II, respectively. 
Chi-squares from the likelihood ratio for models including all predictors, Model I, and Model II were 70.92, 
54.46, and 59.51, respectively.

Construction of nomograms for predicting malignancy.  Independent variables for predicting malig-
nancy were used to construct nomograms for Models I and II. The conventional nomogram (Model I) was 
formulated using conventional variables only, whereas the DWI nomogram (Model II) was formulated using 
ADCmean < 1.3 × 10−3 mm2/s and ADCmin < 0.9 × 10−3 mm2/s in addition to conventional variables (Fig. 2). By 
determining the score from all variables on a total point scale, probabilities of malignancy could be determined 
by drawing a vertical line to the total score (Figs 3 and 4). In both models, the nomograms showed that the split 
fat sign contributed most to the probability of malignancy. Other variables showed moderate impacts on the 
probability of malignancy except for ADCmin in Model II. Calibration plots presented fair agreements between the 
prediction by nomogram and actual observation of malignancy in the training and the validation cohorts (Fig. 5).

Performance of the two models and validation.  In the training cohort, sensitivity, specificity, positive 
predictive value, negative predictive value, and accuracy for Model I were 0.78, 0.86, 0.85, 0.80, and 0.82 using a 
nomogram cutoff of 176; those for Model II were 0.80, 0.86, 0.85, 0.81, and 0.83 using a nomogram cutoff of 188, 
respectively. Applying these nomogram cutoffs to the validation cohort, the Model I sensitivity, specificity, posi-
tive predictive value, negative predictive value, and accuracy were 0.72, 0.72, 0.71, 0.73, and 0.72; those for Model 
II were 0.73, 0.76, 0.74, 0.75, and 0.75, respectively. C-index values for Models I and II were 0.886 (95% confidence 
interval [CI], 0.821–0.951) and 0.899 (95% CI, 0.841–0.958) in the training cohort, respectively; those for Models 
I and II were 0.757 (95% CI, 0.675–0.839) and 0.791 (95% CI, 0.715–0.867) in the validation cohort, respectively. 
Cross-validation showed C-index values of 0.853 (95% CI, 0.776–0.930) and 0.878 (95% CI, 0.811–0.946) for 

Figure 3.  A 53-year-old woman with spindle cell lipoma. (a) Axial T1- and (b) T2-weighted images of the left 
shoulder showing a deep-located mass with mean size of 6.4 cm. Scattered areas of high signal intensity on T1-
weighted image are noted, suggesting intratumoral fat component (arrows). (c) Axial fat-suppressed contrast-
enhanced T1-weighted image revealed heterogeneous enhancement. (d) Split fat sign was observed between 
the tumor and triceps brachii muscle on sagittal T2-weighted image (arrowheads). (e) The mean and minimum 
ADC values of the lesion were measured to be 2.60 × 10−3 mm2/s and 1.90 × 10−3 mm2/s, respectively. The 
probability of malignancy was calculated to be less than 0.1 by both models I and II.
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Figure 4.  A 20-year-old man with alveolar rhabdomyosarcoma. (a) Axial T1- and (b) T2-weighted images of the 
left hand showing a lobulated mass with mean size of 2.9 cm and peritumoral edema (not shown). Split fat sign 
was not evident. (c) Heterogeneous enhancement was seen on the axial fat-suppressed contrast-enhanced T1-
weighted image. Infiltration along the extensor tendon (arrows) and tail sign (arrowheads) were noted. (d) The 
mean and minimum ADC values of the lesion were measured to be 0.85 × 10−3 mm2/s and 0.46 × 10−3 mm2/s, 
respectively. The probability of malignancy was calculated to be between 0.8–0.9 by both models I and II.

Figure 5.  Calibration plots of the probability of malignancy in the (a) training and (b) validation cohorts. The 
nomogram-predicted probability of malignancy is plotted on the x-axis; the actual probability of malignancy is 
plotted on the y-axis. The 45-degree line through the origin represents the perfect calibration model in which 
the predicted probabilities are identical to the actual probabilities.
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Models I and II, respectively. P-values for analyzing C-index differences between the models were 0.284 and 0.020 
in the training and validation cohorts, respectively, with statistical significance only in the validation cohort.

Discussion
Despite superior soft tissue contrast and resolution, MRI had limited STT characterization and differential diag-
nosis ability, with conflicting conclusions reported by previous studies18–20. Berquist et al.11 reported a sensitivity 
of 90–96% and specificity of 82–96% for malignancy prediction using traditional imaging features including size, 
margins, and signal intensity heterogeneity. However, Kransdorf et al.18 concluded that MRI was incapable of reli-
ably distinguishing between benign and malignant STTs; a specific diagnosis was made in only 24%. Crim et al.20  
reported that MRI had insufficient accuracy in differentiating benign from malignant STTs. Considering no sin-
gle imaging feature was sufficient to distinguish benign from malignant STTs in most previous investigations, 
we combined individual measurements and formulated nomograms to diagnose STTs simply in daily clinical 
practice with high diagnostic performance.

Our study demonstrated that the mean size and presence of infiltration, edema, and the split fat sign were 
independent predictors in differentiating non-malignant and malignant STT. Adding DWI measurements includ-
ing ADCmean and ADCmin improved diagnostic performance significantly only in the validation cohort. Moulton 
et al.25 reported that lesion size, margination, and edema were the best predictors using a stepwise logistic regres-
sion analysis; adding any fourth imaging feature did not improve accuracy. Except for the split fat sign, which they 
did not evaluate, these findings are comparable to ours.

The split fat sign was described to suggest a slow-growing tumor originating from the intermuscular space 
around the neurovascular bundle13. Although nonspecific, it is a common finding in benign peripheral nerve 
sheath tumor13,29. In our study, of 34 STTs (training and validation cohorts) showing the split fat sign, 30 were 
non-malignant and four were malignant. Because of high proportions of schwannomas in the non-malignant 
groups of both the training (23/50, 46%) and validation (26/72, 36%) cohorts, contribution of the split fat sign to 
the malignancy probability might be overestimated, which is a study limitation. All four malignant STTs showing 
the split fat sign had slow-growing characteristics30–32, suggesting that slowly enlarging STTs may demonstrate 
this sign despite malignancy. Our result is comparable to that of Murphy et al.13, who stated that the split fat sign 
might be noted in malignant peripheral nerve sheath tumor. They found that fat rims of malignant peripheral 
nerve sheath tumors were more frequently incomplete because of its aggressive and infiltrative growth pattern, 
which might improve malignant STT diagnoses showing the split fat sign.

Although some authors found that size was not useful in distinguishing benign from malignant STTs20, size 
was consistently a statistically significant predictor of malignancy in most studies1,3,5–8,33–35. However, it is unclear 
from most reports whether they used the maximum or mean tumor diameter. Our results suggested that the 
mean size was more significant than the maximal size in predicting malignancy, which corresponds with a report 
by Harish et al.3.

Since Rydholm6 and Myhre-Jensen7 described that most malignant STTs are deep whereas only about 1% of all 
benign STTs are deep, deep location has been regarded as an established risk factor for malignancy1,2,33. However, 
some authors recently reported that depth relationship to fascia is less important as a predictor of malignant poten-
tial8,36, which were also comparable to our results. Considering that the previous literatures by Rydholm6 and 
Myhre-Jensen7 were reported in the early 1980s, we supposed that these contrasting results might have been resulted 
from advances in diagnostic modality including MRI which helped detecting more deep-seated benign STTs.

We designed and conducted this study hypothesizing that adding DWI measurements could improve accu-
racy. However, diagnostic accuracy gains were marginal and showed statistical significance between the models 
only in the validation cohort. These results were partially comparable to those reported by Jeon et al.24. Although 
they concluded that adding DWI to conventional MRI can improve the diagnostic performance for the differen-
tiation between malignant and benign STTs, the accuracy were the same for an experienced reader regardless of 
whether DWI was used or not. Considering their results together with those of our study, we supposed that the 
added value by using DWI might be limited for experienced readers.

A strength of our study is that we developed systematic imaging approach based on predictive models for over-
all STT differentiation using nomograms, in contrast to the previous studies which used subjective method11,17,20 
or evaluated only specific subtypes of STTs3,4,9,10,24. Further investigations to compare the diagnostic performance 
of prediction models and conventional non-quantified approach might be necessary.

Our study has several limitations. First, MRI parameters were variable because of the retrospective analysis. 
Second, our prediction model validity was imperfect with a small difference in diagnostic performance between 
training and validation cohorts. The C-index values were lower in the validation cohorts, possibly owing to het-
erogeneous and diverse pathology in the two groups. Additionally, because of randomization when constructing 
the training and validation cohorts, which is different from true temporal validation, the generalizability of our 
models might be limited. Nonetheless, we randomized patients to minimize the possibility of bias. All the MRIs 
were obtained using machines of the same manufacturer, which also could be one of the limitations in terms of 
generalizability. Third, we excluded lipomas, well-differentiated liposarcomas, and cystic tumors without solid 
components, which may have resulted in selection bias. Moreover, a high proportion of schwannomas in both 
cohorts could cause a selection bias, as described above. Fourth, the use of consensus precluded inter-observer 
variability evaluations. Despite the fact that inter-observer agreement is a significant variable in MRI diagnostic 
accuracy, we sought to increase confidence for each imaging variable by using three experienced readers’ con-
sensus analyses; quantitative measurements were evaluated by only one reader, which is another limitation. Fifth, 
the use of 0 s/mm2 for the first b-value instead of 50 s/mm2 might lead to perfusion related contribution to the 
ADC measurement27. Sixth, STT with intermediate malignancy (e.g., ‘locally aggressive’ and ‘rarely metastasiz-
ing’) were classified as ‘non-malignant’ tumors with benign lesions, although they may require specific treatment 
strategies.
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In conclusion, nomograms using MRI features as variables can be utilized to predict the probability of malig-
nancy in patients with STTs. There was no definite gain in diagnostic accuracy for differentiating non-malignant 
and malignant STTs when additional DWI features were used.
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