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Abstract

Objective

A randomized controlled trial was conducted to prospectively compare the therapeutic effec-

tiveness of switching bipolar (SB) radiofrequency ablation (RFA) using cooled-wet elec-

trodes and switching monopolar (SM) RFA using separable clustered (SC) electrodes in

patients with hepatocellular carcinomas (HCCs).

Materials and methods

This prospective study was approved by our Institutional Review Board. Between April 2014

and January 2015, sixty-nine patients with 74 HCCs were randomly treated with RFA using

either internally cooled-wet (ICW) electrodes in SB mode (SB-RFA, n = 36) or SC electrodes

in SM mode (SM-RFA, n = 38). Technical parameters including the number of ablations,

ablation time, volume, energy delivery, and complications were evaluated. Thereafter, 1-

year and 2-year local tumor progression (LTP) free survival rates were compared between

the two groups using the Kaplan-Meier method.

Results

In the SB-RFA group, less number of ablations were required (1.72±0.70 vs. 2.31±1.37, P =

0.039), the ablation time was shorter (10.9±3.9 vs.14.3±5.0 min, p = 0.004), and energy

delivery was smaller (13.1±6.3 vs.23.4±12.8 kcal, p<0.001) compared to SM-RFA. Ablation

volume was not significantly different between SB-RFA and SM-RFA groups (61.8±24.3

vs.54.9±23.7 cm3, p = 0.229). Technical failure occurred in one patient in the SM-RFA

group, and major complications occurred in one patient in each group. The 1-year and 2-
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year LTP free survival rates were 93.9% and 84.3% in the SB-RFA group and 94.4% and

88.4% in the SM-RFA group (p = 0.687).

Conclusion

Both SB-RFA using ICW electrodes and SM-RFA using SC electrodes provided comparable

LTP free survival rates although SB-RFA required less ablations and shorter ablation time.

Introduction

Radiofrequency ablation (RFA) is currently accepted as the treatment of choice for patients

with very early stage or early stage hepatocellular carcinoma (HCC) when liver transplantation

or surgical resection is not feasible [1–4]. According to a recent systematic review, RFA was

shown to provide similar quality-adjusted life expectancy for very early HCCs (single nodule

<2 cm) in Child–Pugh Class A patients at a lower cost compared with surgical resection [5].

However, although RFA provided comparable survival rates to surgical resection in patients

with small HCCs (<3 cm), higher local tumor progression (LTP) rates have also been reported

[6, 7]. Therefore, the creation of a sufficient ablative margin (>5 mm) around the target tumor

is recommended in order to lower the LTP after RFA [8, 9]. Yet, in clinical practice, there is

substantial technical difficulty in covering the entire tumor volume with a sufficient ablative

margin using a single electrode, as it requires multiple overlapping ablations [10]. Under ultra-

sound guidance, repositioning the electrode for overlapping ablations carries technical com-

plexity owing to gas bubble formation, thereby increasing procedure times and the potential of

complications [11]. To overcome these limitations, multiple-electrode RFA approaches using

switching monopolar, or multipolar RF energy delivery modes have been investigated, and

several studies have demonstrated that they indeed provide better local therapeutic efficacy

than the single electrode approach [12–15].

As of now, a monopolar RFA system is most commonly used for image-guided thermal

ablation [10, 16]. In principle, with bipolar RFA, the electrical current flows between a pair of

electrodes and a higher current density is maintained between electrodes [17, 18]. This

electrophysiological feature of the bipolar RF delivery mode can allow rapid heating as well as

less perfusion-mediated heat sink effect [10, 19, 20]. Recently, switching bipolar (SB) or multi-

bipolar RFA using multiple electrodes was demonstrated to create large, regular ablation

zones, potentially resulting in lower local tumor progression rates than switching monopolar

(SM)-RFA in preclinical and clinical studies [20–24]. This may be attributable to the better

heat production efficiency of bipolar RFA at any given current level compared to monopolar

RFA[17]. However, despite of the potential benefit of SB- or multi-bipolar RFA in creating a

larger ablation zone within a shorter ablation time all in a single session, there has not been

any study performed prospectively in the clinical setting.

Thus, the purpose of this randomized clinical trial was to prospectively compare, in a ran-

dom fashion, the therapeutic effectiveness and safety of SB-RFA versus those of SM-RFA in

patients with HCCs.

Materials and methods

This study received a research grant from RF Medical Co. (Seoul, Republic of Korea). All

authors had complete control of all the data and information submitted for publication at all

times.
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Study population

The institutional review board of Seoul National University Hospital approved this prospec-

tive, randomized single center study (#1310-051-526), and written informed consent was

obtained from all patients. This study was conducted by Seoul National University Hospital,

Korea and was additionally registered at ClinicalTrials.gov (NCT02675894). Although registra-

tion before patient enrollment was recommended, we did not register this study at the begin-

ning, but to declare our study for the researcher, we registered our study on follow-up period.

The authors confirm that all ongoing and related trials for this intervention are registered.

As far as we know, this study was the first explorative study to therapeutic effectiveness and

safety of SB-RFA and SM-RFA. The primary endpoint of the current study was the rate of

LTP of the treated lesions, as there have been no studies of direct head to head comparison

of two different RFA modes regarding LTP in a randomized clinical trial format. In our

institution, approximately 150 patients with HCCs were treated by RFA annually. We

assumed that among those patients, 70 patients could be enrolled in this study. And assum-

ing the drop rate as 10%, size of the target population was determined as 77. Between April

2014 and January 2015, 77 patients who met our inclusion criteria below were enrolled in

this study. We used the stratified permuted block randomization method on the size of larg-

est HCC in each patient (small (1~2.5 cm) and medium (�2.5 cm) HCC) with the fixed

block size of 4. Patients were randomly assigned (1:1) into the SB-RFA group and SM-RFA

group. Randomization process was performed using electrically generated random numbers

and managed by our medical research collaboration center. Our inclusion criteria were as

follows: (1) pathologic or typical imaging-based diagnosis of HCC; (2) dynamic CT or MRI

scan within 60 days prior to RFA; (3) no more than three tumors, with with a diameter

ranging from 1.0 cm to 5.0 cm; (4) Child–Pugh A or B liver function status; (5) no contrain-

dication to conventional RFA such as uncooperative patients, intractable ascites, and uncor-

rectable coagulopathy bleeding; (6) absence of extrahepatic metastases on CT or MRI scan

prior to RFA; (7) patients whose ages ranged from 20 to 75 years old; (8) no interventional

treatment for hepatic index tumors such as transarterial chemoembolization, percutaneous

RFA, or ethanol injection prior to RFA; and (9) patients who are going to undergo RFA for

curative purposes. Patients were kept blinded to which group were allocated to, i.e. the

SB-RFA group or SM-RFA group. In addition, outcome assessors were also kept blinded to

the allocated treatment group.

Among the 77 enrolled patients, 8 patients were excluded from the study for the follow-

ing reasons: (a) patients withdrew their informed consent prior to RFA treatment (n = 4);

(b) LN metastasis diagnosed on immediate post-RFA CT scan (n = 1); (c) previous treat-

ment for the index tumor revealed after RFA treatment (n = 2); and (d) biopsy confirmed

cholangiocarcinoma (n = 1). Finally, 69 patients with 74 HCCs comprised our study popula-

tion. Thirty-three patients with 36 HCCs and 36 patients with 38 HCCs were included in

the SB-RFA and SM-RFA groups, respectively (Fig 1). Additionally, tumors were subclassi-

fied according to tumor size into small (1~2.5 cm) and medium (�2.5 cm) HCC groups for

subgroup analyses. Baseline characteristics of all of the study patients are summarized in

Table 1.

HCCs were diagnosed using one of the following criteria: (1) liver biopsies with pathologic

confirmation (n = 8) or (2) typical imaging features as described by The American Association

for the Study of Liver Diseases (AASLD) guidelines [2, 25] or Liver Imaging Reporting and

Data System (LI-RADS)[26] (n = 66). HCCs were classified as perivascular tumors, if the index

tumor had any contact with the first- or second degree branches of a portal or hepatic vein

that was 3 mm or greater in axial diameter [27].
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RFA procedure

One experienced radiologist (J.M.L) with over 2000 cases of experience in image-guided RFA,

performed all RFA procedures with one clinical fellow or senior radiology resident. Intrave-

nous procedural sedation was induced for the ablation procedure using fentanyl citrate (Hana

Pharm, Seoul, Korea), Midazolam (Hana Pharm, Seoul, Korea), and Ketamine (Huons, Hwa-

seong, Kyunggi, Korea) administered by a special nurse anesthetist with continuous monitor-

ing of vital signs. After disinfection of the skin above the upper abdomen, local anesthesia of

2% lidocaine hydrochloride was applied to the region of electrode insertion. The electrodes

were percutaneously inserted under ultrasound guidance with a real-time fusion of ultraso-

nography (US) and CT or MR images.

Fig 1. (A) Study protocol of the RFA procedure and intervals between the pre-RFA study, treatment, and follow-up.

(B) Flowchart showing the consequences of the study flow. RFA, radiofrequency ablation; HCC, hepatocellular

carcinoma; SB, switching bipolar; SM, switching monopolar, F/U, follow-up.

https://doi.org/10.1371/journal.pone.0192173.g001

Table 1. Baseline characteristics of 69 patients with HCCs treated with radiofrequency ablation.

Overall SB-RFA SM-RFA p-value

M/F ratio 52/17 24/9 28/8 0.781

Age (mean, range, years) 61.4 (33~75) 60.3 (33~75) 62.4 (40~75) 0.36

Child-Pugh: A/B 68/1 33/0 35/1 1.000

Tumor size 2.00 ± 0. 69 1.99 ± 0.54 2.02 ± 0.42 0.894

Etiology of HCC(HBV/HCV/alcoholic/none) 52/9/4/4 27/3/1/2 25/6/3/2 0.655

Number of tumors(single/two) 64/5 30/3 34/2 0.275

Serum AFP(mean ± SD, ng/mL) 25.7 ± 67.1 38.4 ± 88.5 12.9 ± 31.1 0.125

Serum PIVKA(mean ± SD, ng/mL) 30.9 ± 32.6 33.0 ± 42.5 28.8 ± 19.3 0.632

Note.—SM = switching monopolar, SB = switching bipolar, RFA = radiofrequency ablation, HCC = hepatocellular carcinoma, HBV = hepatitis B virus, HCV = hepatitis

C virus, AFP = alpha-fetoprotein, PIVKA = protein induced by vitamin K absence/antagonist-II

https://doi.org/10.1371/journal.pone.0192173.t001
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In the SB-RFA group, three 17-gauge ICW electrodes and a multichannel RF generator

(M-3004; RF Medical Co., Seoul, Republic of Korea) were used. The ICW electrode used in

our prospective study contains two tiny side holes (0.02 mm in diameter) at the active tips

in which less than 1% of the perfused normal saline remains within the electrode for elec-

trode cooling which is then infused into tissue through these holes, at a rate of approxi-

mately 1 cc/min, (Fig 2). Sterilized, chilled, 0.9% isotonic saline was used for cooling and

tissue perfusion.

In the SM-RFA group, a separable clustered electrode with three internally cooled elec-

trodes (Octopus RF Electrode, STARmed, Goyang, Kyunggi, Korea), and another multichan-

nel RF generator (Viva RF System, STARmed) were used. Each generator has a maximum

power of 200W and performs automatic switching of RF energy among the three electrodes

according to impedance changes in an electrode or a pair of electrodes. In both groups, the tip

temperature of the electrodes was maintained at a range of 10–20˚C by perfusing chilled 0.9%

isotonic saline in the electrodes using peristaltic pumps (RFP-300; RF Medical Co., Seoul,

Korea and VIVA Pump; STARmed, Goyang, Korea).

The prices of all RFA electrodes are set at the same price, according to the insurance policy

of Korea, so the treatment cost of approximately 2000$ for each patient was same in both treat-

ment groups.

We chose the length of the active tip among 2.0 cm, 2.5cm, and 3.0cm according to the

tumor size, shape, location and adjacent large vessels. If necessary, artificial ascites using a 5%

dextrose solution was instilled to prevent adjacent organ injury to the subcapsular tumor or to

improve the sonic window for the tumor not clearly visible on planning ultrasonography. For

placement of the electrode in the target tumor, and for monitoring of the RFA procedures,

real-time US-CT/MR fusion imaging systems (eSie Fusion: Acuson S3000, Siemens Health-

care, Erlangen, Germany; PercuNav: EPIQ 7, Philips, Best, Netherland) were used. In general,

each of the three electrodes was placed in a triangle formation with an interelectrode distance

of 1.5~2 cm. If a sufficient peritumoral margin was not created around the index tumor after

one session of RF energy delivery for 8~12 minutes, additional ablations were performed after

repositioning the electrodes. The RFA procedure was terminated when the hyperechoic abla-

tion zone was considered to be sufficiently larger than the index tumor on US-CT/MR fusion

imaging (Fig 3) [28]. Technical parameters such as the number of ablations, ablation time and

total delivered energy were recorded for each target lesion. Additionally, a room occupying

time, the time from patient in to patient out for the immediate post-RFA imaging study, was

also recorded.

Fig 2. Photograph of an internally cooled wet electrode with two tiny (0.02 mm) side holes in the active tip.

https://doi.org/10.1371/journal.pone.0192173.g002
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Evaluation of treatment success, efficacy, and complications

Treatment success and efficacy. Immediately after RFA procedures, all patients under-

went contrast-enhanced liver CT including arterial and portal venous phases in order to evalu-

ate the technical success of the procedure and development of any possible complications.

Technical success was defined as complete coverage of the index tumor by the ablation zone

without any residual unablated tumors on immediate follow-up liver CT [10]. If technical suc-

cess was not achieved, an additional RFA session was done immediately. Complete ablation

with achievement of a sufficient peritumoral margin (>5 mm) was determined by the one of

the authors with 6 years of experience in clinical imaging (W.C.) using a prototype temporal

registration software (HepaCare, Siemens Healthcare) which performs non-rigid registration

between the pre-RFA images (CT or MRI scans) and post–RFA CT images [9]. Technique

Fig 3. HCC in a 62-year-old man. (A) Axial MR images during arterial phase, portal phase and hepatobiliary phase after administration of gadoxetic acid show a 2.6 cm

HCC with definitive arterial hypervascularization, venous washout, and hepatobiliary phase hypoenhancement. (B) Real-time US/MRI fusion image before ablation

shows a slightly hyperechoic HCC on US image with virtual tumor margin and two electrodes (arrows) placed in the tumor and in the peritumoral area, respectively. (C)

PostRFA US/MRI fusion image demonstrates that the virtual tumor margin suggesting the tumor location is covered by hyperechoic ablation zone with sufficient

peritumoral margins. (D) Axial (left) and Coronal (right) immediate post-RFA CT images show complete ablation of the target tumor with sufficient peritumoral

margins.

https://doi.org/10.1371/journal.pone.0192173.g003
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efficacy was defined by the absence of nodular enhancement within or around the ablation

zone on 1-month follow-up CT after the RFA procedure [10].

Measurements of ablation size and volume. Referencing previous studies [29, 30], the

diameters and volume of the RFA-induced ablation zone were evaluated on immediate post-

RFA contrast-enhanced, multiphasic liver CT scans which included unenhanced, arterial, por-

tal venous, and 3-min delayed phase images. Maximum (Dmx), minimum (Dmi) and vertical

(Dv) diameters were measured on the axial and coronal images of the portal phase which

showed the largest ablation area showing no contrast enhancement. The volume of the non-

enhancing ablation zone on CT was calculated with the assumption of the ablation zone as an

ellipsoid using the following formula: ablation volume = π(Dmx x Dmi x Dv)/6 [10, 19, 31]

Complications. All procedure-related complications were recorded, and classified into

major and minor complications according to the Society of Interventional Radiology Guide-

lines [10, 16]. In addition, any additional treatments given to the patients to manage the com-

plications were also recorded.

Evaluation of LTP, intrahepatic distant recurrence, and extrahepatic

metastases

To evaluate the development of LTP or intrahepatic or extrahepatic metastases (EM), contrast-

enhanced multiphase liver CT or MR was performed in all patients every 3~4 months follow-

ing RFA treatment. Tumor recurrence was assessed in cases which achieved technical success

and technique efficacy. The primary endpoint was LTP rate in both treatment groups. LTP

was defined as the appearance of any new tumor foci showing arterial enhancement and wash-

out on the portal or delayed scans at the site of the original tumor or adjacent to the ablation

zone at follow-up scans [10, 16, 32]. Intrahepatic distant recurrence (IDR) was defined as the

emergence of new HCCs in the liver which were not adjacent to the treated site [33, 34].

Statistical analysis

All statistical analyses were performed using a statistics software IBM Statistical Package for

Social Sciences 24.0 version (Chicago, IL, USA) and Excel 2016 version (Redmond, WA,

USA). Continuous variables that could not pass the Shapiro-Wilk normality test were com-

pared using the Z-test or Mann-Whitney test according to whether the number of each group

was larger than 30 or not. Other continuous variables were compared using the t-test with

unequal variances and Fisher’s exact test was used for the comparison of categorical variables.

For the RFA parameters and ablation volumes, adjusted P values were calculated using Holm-

Bonferroni Method to correct for multiple tests. The cumulative incidences of LTP, IDR and

EM at 6, 12, and 24 months were evaluated using the Kaplan-Meier method with the log-rank

test. A P value of less than .05 was considered to indicate a significant difference.

Results

Technical parameters and ablation volumes

The number of ablations was significantly lower (1.72 ± 0.70 vs 2.31 ± 1.37, p = 0.039) and

ablation time was significantly shorter (10.9 ± 3.9 vs 14.3 ± 5.0 minutes, p = 0.004) in the

SB-RFA group compared with the SM-RFA group. Delivered energy was also lower in the

SB-RFA group (Table 2). Mean ablation volume was not significantly different between the

two groups (Table 2). In addition, although sufficient peritumoral ablation margin greater

than 5 mm was more often achieved in the SB-RFA group, no significant difference was
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observed (72.2% vs 55.3%, p = 0.153) (Table 2). Room occupying time in the SB-RFA group

and the SM-RFA group were 59.7 ± 25.2 vs 64.7 ± 23.4 minutes, respectively (p = 0.393).

Technical success, technique efficacy, and complications

Among the 74 HCCs, 73 tumors were treated in a single session and one tumor in the

SM-RFA group was treated in two sessions. Technical success was achieved in 100% (36/36) of

cases in the SB-RFA group and 97.4% (37/38) of cases in the SM-RFA group. A residual tumor

was noted on the immediate follow-up CT scan in the technical failure case of the SM-RFA

group. The residual lesion was not visualized on planning ultrasonography confidently due to

poor sonic windows, and was treated by transarterial chemoembolization (Table 2). Technique

efficacy was achieved in 97.2% (35/36) and 97.3% (36/37) of cases in the SB-RFA and SM-RFA

groups, respectively.

There were no RFA-related deaths observed in this study. Two major complications had

occurred including one hepatic abscess requiring percutaneous drainage in the SB-RFA group

(2.7%, 1/36) and one active bleeding from an intercostal artery requiring embolization in the

SM-RFA group (2.6%, 1/38) (Table 2).

Local tumor progression, intrahepatic recurrence, and metastases

LTP. Mean follow-up periods were 777.0 ± 210.4 and 764.3 ± 170.1 days in the SB-RFA

and SM-RFA groups, respectively. No deaths occurred during follow-up. The overall

Table 2. Comparison of RFA variables and technique efficacy between SB-RFA and SM-RFA groups.

Small HCC (1~2.5 cm) Medium HCC (�2.5 cm) Overall

SB- RFA

(n = 25)

SM-RFA

(n = 26)

p-value SB- RFA

(n = 11)

SM-RFA

(n = 12)

p-value SB- RFA

(n = 36)

SM-RFA

(n = 38)

p-value

Tumor size 1.58 ± 0.46 1.66 ± 0.40 0.462 2.93 ± 0.40 2.78 ± 0.34 0.342 1.99 ± 0.54 2.02 ± 0.42 0.894

No. of ablations 1.64 ± 0.70 2.23 ± 1.39 0.432† 1.91 ± 1.22 2.75 ± 1.86 0.295† 1.72 ± 0.70 2.31 ± 1.37 0.039‡

Ablation time (minutes) 9.9 ± 4.0 13.0 ±5.0 0.058† 13.2 ± 5.1 17.3 ± 6.5 0.349† 10.9 ± 3.9 14.3 ± 5.0 0.004‡

Energy (kcal) 11.8 ± 6.4 22.2 ± 13.0 0.002† 16.3 ± 3.8 28.0 ± 11.9 0.016† 13.1 ± 6.3 23.4 ± 12.8 <0.001‡

Ablation Volume (cm3) 53.1 ± 19.5 50.6 ± 20.9 0.669 77.9 ± 25.6 64.6 ± 26.3 0.464 61.8 ± 24.3 54.9 ± 23.7 0.229

Technical success 100.0% (25/25) 96.2% (25/26) 1.000 100.0% (11/11) 100.0% (12/12) 1.000 100.0% (36/36) 97.4% (37/38) 1.000

Technique efficacy 96.0% (24/25) 96.0% (24/25) 1.000 100.0% (11/11) 100.0% (12/12) 1.000 97.2% (35/46) 97.3% (36/37) 1.000

Sufficient peritumoral

margin (�5mm)

80.0% (20/25) 57.7% (15/26) 0.132 54.5% (6/11) 50.0% (6/12) 1.000 72.2% (26/36) 55.3% (21/38) 0.153

Major complication 4.0% (1/25) 3.8% (1/26) 1.000 0.0% (0/11) 0.0% (0/12) 1.000 2.7% (1/36) 2.6% (1/38) 1.000

Follow-up(mean ± SD, days) 766.2 ± 211.5 739.0 ± 222.8 0.656 801.5 ± 98.7 751.6 ± 148.5 0.35 777.0 ± 210.4 764.3 ± 170.1 0.448

Note.—SM = switching monopolar, SB = switching bipolar, RFA = radiofrequency ablation, HCC = hepatocellular carcinoma

† Adjusted p-values of the Mann-Whitney test using Holm-Bonferroni Method

‡ Adjusted p-values of the Z-test using Holm-Bonferroni Method

https://doi.org/10.1371/journal.pone.0192173.t002

Table 3. Local tumor progression in 71 HCCs after successful RFA.

Overall Small HCC (1~2.5cm) Medium HCC (�2.5cm)

Months 6 12 24 6 12 24 6 12 24

SB-RFA 0.0% 6.1% 15.7% 0.0% 9.1% 13.6% 0.0% 0.0% 19.2%

SM-RFA 2.8% 5.6% 11.6% 4.2% 4.2% 9.0% 0.0% 8.3% 16.7%

p-value 0.697 0.721 0.721

Note.—SM = switching monopolar, SB = switching bipolar, RFA = radiofrequency ablation, HCC = hepatocellular carcinoma

https://doi.org/10.1371/journal.pone.0192173.t003
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cumulative incidences of LTP at 6, 12 and 24 months were estimated as 0.0%, 6.1%, 15.7% in

the SB-RFA group, and 2.8%, 5.6% and 11.6% in the SM-RFA group and were not significantly

different between the two groups (p = 0.697) (Table 3, Fig 4). Subgroup analysis according to

tumor size also did not reveal any significant differences. There were eight perivascular tumors

(8/ 74, 10.8%): five in the SB-RFA group (5/36, 13.9%) and three in the SM-RFA group (3/38,

7.9%) (p = 0.4737). Among them, one case of LTP (1/8, 12.5%) developed in the SB-RFA

group.

IDR and EM. Among the 66 patients who achieved treatment success, IDR developed in 9

(9/32, 281%) and 17 patients (17/34, 50.0%) in the SB-RFA and SM-RFA groups, respectively.

The estimated cumulative incidences of IDR at 6, 12 and 24 months were estimated as

9.5%, 19.2%, 25.6% in the SB-RFA group, and 8.8%, 29.4% and 50.5% in the SM-RFA group

(p = 0.114) (Fig 5). Extrahepatic metastasis occurred in only one patient of the SM-RFA group,

715 days after RFA treatment.

Discussion

Our study demonstrated that both SB-RFA using ICW electrodes and SM-RFA using SC elec-

trodes provided comparable LTP free survival rates although SB-RFA required fewer ablations

and a shorter ablation time. Previous preclinical studies had demonstrated that SB-RFA could

create a larger ablation volume at any given time compared to SM-RFA, and it was expected

that SB-RFA would achieve an adequate peritumoral ablation margin and therefore would

have a lower LTP compared with SM-RFA [17, 20]. However, according to our study results,

the rates of achieved sufficient ablation margins around the target tumor were not significantly

different between the two groups. The discrepancy between previous preclinical studies and

our human study could be attributed to the use of a real-time US-CT/MR fusion imaging sys-

tem for in situ monitoring of the ablation zone during RFA procedures in our study. With the

use of a real-time US-CT/MR fusion imaging system, we could better monitor the three-

dimensional relationship between the echogenic ablation zone and the index tumor during the

RFA procedure, which would be difficult to achieve with B-mode US [35]. Thus, the operator

was able to terminate the procedure when the echogenic ablation area covered the index

tumor with greater confidence. As a consequence, even if SB-RFA could create a larger abla-

tion zone per any given time compared to SM-RFA, the operator may terminate the procedure

Fig 4. Cumulative local tumor progression rates after RFA of (A) overall, (B) small HCCs and (C) medium HCCs.

https://doi.org/10.1371/journal.pone.0192173.g004
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when the ablation zone was deemed sufficiently larger than the index tumor. Therefore, the

ability to secure a sufficient peritumoral margin could be more dependent on the accuracy of

the fusion imaging system rather than the difference of efficiency in creating larger ablation

zones according to RF energy delivery mode, which probably would also lead to no significant

difference in LTP. This is somewhat similar to previous meta-analysis results showing that

both microwave ablation and RFA in the management of HCC had similar 1–5 year overall

survival, disease-free survival, local recurrence rates and adverse events, although microwave

ablation should have clear advantages over RF ablation, such as an improved convection pro-

file, higher intratumoral temperatures, faster ablation times, larger ablation volumes, and less

susceptibility to the heat-sink effect [36]. To the contrary, the shorter procedure time may

indeed be beneficial for both patients and for the operator.

Fig 5. Cumulative intrahepatic distant metastasis after RFA.

https://doi.org/10.1371/journal.pone.0192173.g005
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The technical success rates of our study were 100.0% and 97.4% in the SB-RFA and

SM-RFA groups, respectively. All tumors were treated in a single session except for one tumor

which had been treated in two sessions. The high technical success rates observed in both of

our study groups could be attributed to the better efficiency of the multiple electrode approach,

in either switching monopolar or bipolar modes, compared with conventional monopolar

RFA using a single electrode in delivering RF energy to the target tissue, thereby allowing the

creation of larger ablation zones [19, 29, 31, 37]. Another factor for the high technical success

observed in our study could be attributed to the fact that compared with the multiple overlap-

ping ablation approach using a single electrode which has great technical difficulty with US

guidance, there was much less demand to relocate the electrode when multiple electrodes were

used [38]. However, the cumulative 2 year LTP rates of SB-RFA and SM-RFA were still higher

than 10%, which is much higher than the reported results of surgical resection [39]. This could

be mainly attributed to the fact that a sufficient peritumoral ablation margin greater than 5

mm in three dimensions was achieved in 72.2% of tumors in the SB-RFA group, and 55.3% in

the SM-RFA group. Indeed, the creation of a sufficient peritumoral margin in three-dimen-

sions with RFA was quite challenging in several cases with advanced liver cirrhosis due to the

poor sonic window, even under the guidance of a real-time US-CT/MRI fusion system [35].

Furthermore, registration accuracy of real-time US-CT/MRI fusion has been reported to be

approximately 3 mm ~5 mm, and therefore, this misregistration could have resulted in the cre-

ation of an insufficient peritumoral safety margin [40]. Considering that the creation of an

ablative margin of at least 5 mm is widely accepted to be one of the most important factors for

reducing LTP in HCC after RFA [8, 39, 41], further improvement of the efficiency of multiple

electrode RFA in creating large ablation zones and the development of an accurate in situ

monitoring tool to better show the relationship between the index tumor and the ablation

zone may further decrease the LTP after RFA.

Although bipolar RFA has better heat producing efficiencies, tissue dehydration and char-

ring around the electrodes more commonly occurs in the bipolar mode than in the monopolar

mode due to the higher current density around the electrodes, resulting in less efficiency in

delivering RF energy to the target tumor [42]. In order to circumvent this problem, we used

ICW electrodes for SB-RFA, which allow simultaneous internal cooling and interstitial perfu-

sion of normal saline in our study [20]. Although internally cooled electrodes can preferen-

tially decrease the heating of tissue nearest to the electrode, effectively preventing the charring

of tissue in monopolar RFA [16], this technique does not sufficiently prevent overheating of

the tissue around the electrode in the bipolar mode, which requires rapid switching of the

active electrodes or elongation of the RF ablation time [23, 24]. In this regard, additional infu-

sion of saline into the tissue can increase the electrical conductivity at the electrode-tissue

interface and further decrease the heat generated by the electrical current flow through the tis-

sue with high electrical impedance [43–46]. Furthermore, it can also increase thermal conduc-

tivity and the heat is more easily carried away from the electrode [17]. Our results of a lesser

number of required ablations and shorter ablation times are largely owed to this ability of large

and regular ablations using SB-RFA with ICW electrodes.

As for adverse events, both SB-RFA using ICW electrodes and SM-RFA using separable

clustered electrodes showed low rates of complications (< 3%), similar to the results (4.1%) of

a previous systematic review [47]. Theoretically, complication rates related to the RFA proce-

dure can be increased in accordance with the number of electrode insertions, but in our study,

safe and precise planning of the electrode insertion route, taking care to avoid bile ducts and

major vessels, was possible under the guidance of fusion imaging, and the potential increase in

complication rates related with the electrodes was able to be minimized. Furthermore,
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although there were no cases of skin burn in the SM-RFA group, SB-RFA has an advantage of

not requiring grounding pads, and therefore, no risk of skin burns.

Recently, several studies [22, 48] showed the feasibility of RFA using the “no-touch” abla-

tion technique with multiple electrodes in the multipolar mode, and also reported its promis-

ing outcomes including low LTP rates. The multiple electrode approach used in our study,

especially in bipolar mode, can allow the “no-touch” ablation technique. In addition, consider-

ing that drainage vessels change in HCC from hepatic veins to peritumoral sinusoid or portal

veins [49, 50], electrode insertion into the peritumoral area or peripheral portions of the target

tumor can induce more extensive thrombosis in the draining peritumoral vessels which would

be beneficial in decreasing the risk of intrahepatic metastases through the vessels. Indeed, in

our study, the IDR rate was lower in the SB-RFA group, albeit without statistical significance.

Experimental evidence that tumorogenic factors facilitating unwanted tumor recurrence may

be produced after RFA treatment in the residual tumor and surrounding liver parenchyma

have been raised up and these factors could differ in different modes of ablation[51–54]. And

this might be another reason for lower IDR rate in the SB-RFA group. This phenomenon

should be further evaluated in following studies.

There are several limitations to our study. First, this study compared the two groups using

two different electrodes and two different RFA modes. Thus, compounding effects could not

be completely avoided. Second, we did not perform the sample size calculation, and power

analysis for this study and only a small number of patients were enrolled in our study for the

explorative purpose. Therefore some results such as the differences in the LTP, rates of com-

plete ablations, number of ablations in the subgroup analysis, and IDR were not confirmed in

terms of statistical significance. Further study with a larger number of patients with longer fol-

low-up periods is warranted.

In conclusion, both SB-RFA using ICW electrodes and SM-RFA using SC electrodes pro-

vided comparable LTP free survival rates although SB-RFA required less ablations and a

shorter ablation time. In addition, as there were no clear differences between SB-RFA and

SM-RFA, either technique can be favorably used for the percutaneous ablation of HCCs,

depending on the operator’s familiarity and preference.
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