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Background. Myocardial ischemia-reperfusion injury (MIRI) has become a thorny and unsolved clinical problem. $e patho-
logical mechanisms of MIRI are intricate and unclear, so it is of great significance to explore potential hub genes and search for
some natural products that exhibit potential therapeutic efficacy on MIRI via targeting the hub genes. Methods. First, the
differential expression genes (DEGs) fromGSE58486, GSE108940, and GSE115568 were screened and integrated via a robust rank
aggregation algorithm. $en, the hub genes were identified and verified by the functional experiment of the MIRI mice. Finally,
natural products with protective effects against MIRI were retrieved, and molecular docking simulations between hub genes and
natural products were performed. Results. 230 integrated DEGs and 9 hub genes were identified. After verification, Emr1, Tyrobp,
Itgb2, Fcgr2b, Cybb, and Fcer1g might be the most significant genes during MIRI. A total of 75 natural products were discovered.
Most of them (especially araloside C, glycyrrhizic acid, ophiopogonin D, polyphyllin I, and punicalagin) showed good ability to
bind the hub genes. Conclusions. Emr1, Tyrobp, Itgb2, Fcgr2b, Cybb, and Fcer1g might be critical in the pathological process of
MIRI, and the natural products (araloside C, glycyrrhizic acid, ophiopogonin D, polyphyllin I, and punicalagin) targeting these
hub genes exhibited potential therapeutic efficacy on MIRI. Our findings provided new insights to explore the mechanism and
treatments for MIRI and revealed new therapeutic targets for natural products with protective properties against MIRI.

1. Introduction

Coronary heart disease (CHD) as a global public health
problem is one of the main causes of decreased quality of life
and death worldwide [1]. Acute myocardial infarction
(AMI) is a kind of acute and critical manifestation of CHD
with highmorbidity and mortality. Early rapid restoration of
coronary blood flow can reduce the size of myocardial in-
farction and prevent further cardiac injury. With the de-
velopment of reperfusion strategies such as thrombolysis
and percutaneous coronary intervention, the mortality rate
of AMI has been greatly reduced [2]. However, myocardial
reperfusion can further cause secondary myocardial injury,
which can account for 50% of the final myocardial infarct

area [3]. $is phenomenon, termed myocardial ischemia-
reperfusion injury (MIRI), has become an unsolved clinical
problem and a major cause of cardiac insufficiency. Cur-
rently, there is no specific treatment for MIRI in pharma-
copeia [4]. $erefore, clinical and basic studies in the
prevention and treatment of MIRI are active areas in the
medical field.

It is currently believed that the pathogenesis of MIRI is a
multi-factorial complex process. $e latest evidence indi-
cates that epigenetic regulation including histone modifi-
cation, DNA methylation, non-coding RNAs, and N6-
methyladenosine (m6A) methylation plays a key role in
MIRI and can be used as new therapeutic targets for MIRI
[5]. Iron, as an essential mineral, is an important player in
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the physiological functions of many tissues and organs in the
human body. Studies in recent years have shown that im-
balance in iron metabolism homeostasis is intimately related
to the pathological process of MIRI [6]. Ferroptosis, a newly
discovered form of regulated cell death, results from the
imbalance in iron metabolism [6]. $e occurrence of fer-
roptosis plays an important role during MIRI and can serve
as a potential therapy for MIRI [7]. Furthermore, there are
numerous other reported pathological mechanisms of MIRI
including immunoreaction, autophagy, cell-derived exo-
somes, dysfunctional mitochondria, different forms of cell
death, inflammation, oxidative stress, intracellular calcium
overload, and so on [4, 8–10]. Although the pathological
mechanisms of MIRI have been extensively explored, its
specific pathogenesis has not been fully elucidated. $ere-
fore, plentiful work is still required to better understand the
potential pathologic mechanism of MIRI at the molecular
level, which may be imperative to develop more effective
treatments and seek early diagnostic markers.

In recent years, with the help of bioinformatics and high-
throughput techniques, a comprehensive understanding of
the molecular mechanism and progression of various dis-
eases has become possible [11]. Molecular docking, a very
popular and useful tool, is used to research the interaction
between a small-molecule ligand and a target receptor in the
drug discovery arena [12]. In our previous study, the mo-
lecular docking technique was successfully used to predict
the binding modes between 12 COVID-19 targets and the 20
compounds of Qingfei Paidu decoction that have been
widely used to treat COVID-19 in China [13]. $e analyses
of microarray and RNA-seq gene expression data by bio-
informatics have been extensively used not only to explore
the diagnostic and prognostic biomarkers but also to probe
crucial genes and biological processes in many diseases
[14–17]. However, some reasons, including the limited
sample quantities, the heterogeneity of experimental sam-
ples, the use of different detection platforms, and so on, may
generate deviation in the results [18, 19]. $e integration of
the results of multiple gene expression data sets by a robust
rank aggregation (RRA) algorithm based on a statistical
model that naturally allows evaluating the significance of the
results is a promising strategy to overcome these short-
comings [20]. RRA has been widely used in the compre-
hensive analysis of multiple data sets for both oncology and
non-oncology diseases [18, 19, 21]. However, there are no
reports on the use of the RRA algorithm in MIRI.

In this study, expression profile analyses and bio-
informatics methods were combined to explore hub
genes and their functions in MIRI. We subsequently
performed the validation of the results via the functional
experiment of the MIRI mice. Meanwhile, we retrieved
the natural products in Chinese herbal medicine exerting
protection for MIRI from the PubMed database. Finally,
molecular docking simulations between natural products
and hub genes were performed (Figure 1). To sum up, the
ultimate goal of the research is to provide novel insights
into new potential therapeutic targets and the patho-
genesis of MIRI and develop more effective anti-MIRI
drugs.

2. Materials and Methods

2.1. Affymetrix Microarray Data. We collected the expres-
sion profile data of GSE58486 (GPL18802), GSE108940
(GPL7202), and GSE115568 (GPL16570) from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/). GSE58486 contains six MIRI samples
and three sham surgery samples. GSE108940 contains six
MIRI samples and six sham surgery samples. GSE115568
contains three MIRI samples and three sham surgery
samples. All samples were collected from murine hearts.

2.2. Screening for Differential Expression Genes (DEGs) and
Functional Enrichment Analyses. GEO2R online analysis
(https://www.ncbi.nlm.nih.gov/geo/geo2r/) was firstly used
to obtain the .txt files of the DEGs for the three microarray
data sets. $e p-value <0.01 and the absolute fold-change
(FC) >1.5 were set to determine DEGs. $en, multi-list
enrichment analysis of the three gene lists was performed
using Metascape (https://metascape.org) [22]. p< 0.01, a
minimum count of 3, and the enrichment factor >1.5 were
set as the thresholds for enrichment analyses.

2.3. Integration of DEGs in�ree Data Sets. $e TXT files of
all gene lists ranked by logFC in three data sets were collected
for RRA analysis (https://www.icesi.edu.co/CRAN/web/
packages/RobustRankAggreg/) in R version 3.5.3 (https://
cran.rproject.org/), and the p-value <0.01 was set to define
the significant integrated DEGs. $e code used for the RRA
analysis is presented in Supplementary Table 1. Gene on-
tology (GO) and pathway enrichment analyses of integrated
DEGs were performed using Metascape. For pathway en-
richment analyses, the KEGG pathway, Reactome gene sets,
and WikiPathways were employed. $e bubble plots were
drawn with the ggplot2 package.

2.4. PPI Network and TFs Analysis. $e interaction network
of the integrated DEGs was performed based on the Search
Tool for the Retrieval of Interacting Genes (STRING) [23] to
mine their target genes, and interaction pairs with a com-
bined score of >0.4 were considered significant. $en,
Cytoscape (version 3.2.1) [24] was applied to visualize the
molecular interactions. Next, MCODE analysis [25] was
carried out to find densely connected modules in the PPI
network. Finally, transcription factors (TFs) analysis of the
MCODEmodules were analyzed by the iRegulon plugin [26]
of Cytoscape with the default criteria. $e top five TFs of
each module with the higher normalized enrichment scores
(NES > 4) were listed.

2.5. Hub Protein Analysis. CytoHubba app [27] was used to
identify the top 20 ranking genes using the degree, closeness,
edge percolated component (EPC), maximum neighbor-
hood component (MNC), and maximal clique centrality
(MCC). $e overlapping genes from five algorithms were
taken as hub genes. At last, the functional enrichment an-
alyses of hub genes were performed in Metascape, using GO
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biological processes, KEGG pathway, Reactome gene sets,
and WikiPathways.

2.6. Establishment of MIRI Model in Mice. $e animal ex-
periments were approved by the Experimental Animal
Welfare Ethics Review Committee of the First Affiliated
Hospital of Henan University of CM (approval number,
YFYDW2020004) and followed the National Institutes of
Health Guide for the Care and Use of Laboratory Animals

(NIH Publications No. 8023, revised 1978). Male C57BL/6 J
mice (6–8 weeks) were purchased from Huaxing Experi-
mental Animal Farm (Zhengzhou, China; qualified pro-
duction number, SCXK-(Yu)-2019-0002).$emice were fed
under a 12 h cycle of light/dark in IVC condition and had
free access to food and water. Before modeling, the mice
were randomly divided into two groups (n� 9/group),
namely sham group and MIRI group. MIRI mouse model
was established by ligating the left anterior descending
coronary artery, as previously described [28]. After ischemia

Procedure Results

�ree microarray datasets (GSE58486,
GSE108940 and GSE115568) were selected.

�e DEGs were identified in the GSE58486,
GSE108940 and GSE115568, respectively.

Common terms: inflammatory response,
vasculature development, focal adhesion,
contractile fiber, AGE–RAGE signaling pathway
in diabetic complications, etc.

230 integrated DEGs, including 129 upregulated
and 101 downregulated genes.

193 nodes and 1203 edges in the PPI network
4 significant modules (score > 5)
Key TFs: Pura, Srf, Dbp, Stat4, etc.

9 hub genes were found.

Emr1, Tyrobp, Itgb2, Fcgr2b, Cybb and Fcer1g
were significant higher in the MIRI group.

75 natural products were discovered.
�e binding score values of araloside C,
glycyrrhizic acid, ophiopogonin D, polyphyllin I,
punicalagin were the highest

Microarray data selection

Screening for DEGs

multi–list enrichment meta–analysis

Integration of DEGs using RRA

Protein–Protein interaction network
and transcription factors analysis

Hub protein analysis

Validation through MIRI model

molecular docking between
natural products and hub genes

Figure 1: Flowchart of the study design. First, the differential expression genes (DEGs) from three arrays were screened for myocardial
ischemia-reperfusion injury (MIRI) and integrated to explore the potential pathogenesis of MIRI using the RRA algorithm. Second, protein-
protein interaction network and transcription factors analysis of the integrated DEGs were performed.$en, themost significant DEGs were
identified and verified by the functional experiment of the MIRI mice. Finally, natural products exerting protection for MIRI were retrieved
and molecular docking simulations were performed.
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for 30min, the ligation was released to allow reperfusion.
Mice were sacrificed following reperfusion 24 h. Sham-op-
erated mice underwent the same procedure without ligation.
Blood samples were collected for measurement of lactate
dehydrogenase (LDH) activities using a kit (Nanjing Jian-
cheng Bioengineering Institute, Nanjing, China) following
the manufacturer’s instructions. $e infarct area was de-
termined by staining the heart tissues with 2% triphenyl
tetrazolium chloride (TTC; Beijing Solarbio Science &
Technology Co. Ltd., Beijing, China) for 15min at 37°C. $e
infarct size was evaluated according to the method reported
in previous literature by Image-Pro Plus 6.0 software (Media
Cybernetics, Silver Spring, MD, USA) [29, 30].

2.7. Verifying of Hub Genes by Quantitative Real-Time Po-
lymerase Chain Reaction (RT-qPCR). Total RNA was
extracted from each myocardial tissue using TRIzol (Invi-
trogen Corporation, CA, USA). cDNA was synthesized
using NovoScript® Plus1st Strand cDNA Synthesis Super-
Mix (Novoprotein Scientific Inc., Shanghai, China). RT-
qPCR was performed using SYBR High-Sensitivity qPCR
SuperMix (Novoprotein Scientific Inc., Shanghai, China).
$e primers were synthesized by Shanghai Sangon Bio-
logical Engineering Technology (Shanghai, China; Table 1).
$e mRNA expression level was normalized to that of
β-actin in the same sample. $e relative mRNA expression
level was calculated using the 2−ΔΔCT method.

2.8. Molecular Docking Simulation. $e natural products in
Chinese herbal medicine exerting protection for MIRI were
retrieved from the PubMed database (https://pubmed.ncbi.
nlm.nih.gov/). $en, the 2D chemical structures of natural
products were obtained from PubChem (https://pubchem.
ncbi.nlm.nih.gov/). $e 3D structures of hub genes were
obtained from the Protein Data Bank (PDB) database
(https://www.rcsb.org/). Molecular docking simulation of
each hub gene with natural products was performed using
AutoDock Vina software.

2.9. Statistical Analysis. All data were presented as mean-
± SEM and analyzed using IBM SPSS statistics 21.0 software.
$e Student’s t-test was utilized to compare data between
two groups. A p value< 0.05 was accepted as statistically
significant.

3. Results

3.1. Identification and Functional Enrichment Analyses of
DEGs. After screening with the threshold of |FC| >1.5 and
p< 0.01, 1986, 1703, and 402 DEGs were identified in the
GSE58486, GSE108940, and GSE115568, respectively
(Figure 2(a)–2(c)). To facilitate the understanding of the
functional mechanisms that are shared between, or selec-
tively ascribed to, specific gene lists, a multi-gene-list meta-
analysis was performed. Figure 2(d) shows that eight GO
terms were common in all studies. Figure 2(e) shows that
eight pathways were common in all studies.

3.2. Identification of Integrated DEGs in MIRI. Table 2
presents that 230 integrated DEGs were identified using
the RRA (p< 0.01). $e top 20 up- and downregulated hub
genes were drawn into a heatmap (Figure 3(a)). $e top
five BP terms showed that integrated DEGs were mainly
related to inflammatory response, cell chemotaxis, and so
on (Figure 3(b)). $e top five CC terms showed that
integrated DEGs were mainly related to the extracellular
matrix, external encapsulating structure, and so on
(Figure 3(b)). $e top five MF terms showed that inte-
grated DEGs were mainly related to extracellular matrix
structural constituent, cell adhesion molecule binding,
and so on (Figure 3(b)). We enriched 35, 55, and 15
pathways from the KEGG, Reactome, and WikiPathways
databases, respectively, setting a p-value < 0.01, a mini-
mum count of 3, and an enrichment factor >1.5 as
screening thresholds. $e top 10 enriched Reactome
pathways closely associated with MIRI were mainly
neutrophil degranulation, extracellular matrix organiza-
tion, collagen degradation, and so on (Figure 3(c)). $e
top 10 enriched KEGG pathways closely associated with
MIRI were mainly IL-17 signaling pathway, AGE-RAGE
signaling pathway, ECM-receptor interaction, and so on
(Figure 3(d)). $e top 10 enriched WikiPathways closely
associated with MIRI were mainly focal adhesion, PI3K-
Akt-mTOR signaling pathway, inflammatory response
pathway, and so on (Figure 3(e)).

3.3. PPI Network and TFs Analysis. $ere were 193 nodes
and 1,203 edges in the PPI network of the 230 integrated
DEGs in MIRI (Figure 4). MCODE analysis showed that
four meaningful functional modules were selected
(score > 5). $e top 5 TFs were predicted to target these
MCODEmodules, including Pura, Srf, Dbp, Stat4, and so on
(Figure 5(a)–5(d)).

Table 1: Primer sequence of RT-qPCR.

Gene name Primer sequence

β-actin Forward 5’-CCCATCTACGAGGGCTAT-3’
Reverse 5’-TGTCACGCACGATTTCC-3’

Fcer1g Forward 5’-CGTGATCTTGTTCTTGCTCCT-3’
Reverse 5’-TTCGGACCTGGATCTTGAGT-3’

Cybb Forward 5’-GCTATGAGGTGGTGATGTTAGT-3’
Reverse 5’-GCTGAGGAAGTTGGCATTGT-3’

Fcgr2b Forward 5’-AATCCTGCCGTTCCTACTGAT-3’
Reverse 5’-AGTGTCACCGTGTCTTCCTT-3’

Cd68 Forward 5’-CCTTCACGATGACACCTACAG-3’
Reverse 5’-AACAGTGGAGGATCTTGGACTA-3’

Itgb2 Forward 5’-TGTCCTCCTCCTGGTCATCT-3’
Reverse 5’-CCGTTGTCGTAGCACTCTTG-3’

Ptprc Forward 5’-GGTTGTTCTGTGCCTTGTTCA-3’
Reverse 5’-ATCCTGCTTGCCTCCATCC-3’

Emr1 Forward 5’-CAGGAGTGGAATGTCAAGATGT-3’
Reverse 5’-CACAGAGTTAGAGCAGTTGGAA-3’

Tyrobp Forward 5’-TCTGTTCCTTCCTGTCCTCCT-3’
Reverse 5’-CTCAGTCTCAGCAATGTGTTGT-3’

Fcgr1 Forward 5’-TCAGGACAGTGGCGAATACAG-3’
Reverse 5’-GAATGGCGACCTCCGAATCT-3’
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3.4. Hub Protein Analysis. $e hub genes were identified by
CytoHubba from 230 integrated DEGs. $e top 20 ranking
genes, which were selected based on closeness, degree, EPC,
MCC, and MNC, are displayed in Figure 6(a)–6(e). $ere
were 9 intersection genes (Tyrobp, Itgb2, Emr1, Fcer1g,

Fcgr1, Fcgr2b, Cybb, Cd68, and Ptprc) among 5 algorithms
(Figure 6(f )). $ese genes, also known as hub genes, were
selected for further validation in the MIRI model. In ad-
dition, Metascape results showed that 9 genes were mainly
related to neutrophil degranulation, inflammatory response,
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Figure 2: Identification and functional enrichment analyses of DEGs: (a)–(c) volcano plot for GSE58486, GSE108940, and GSE115568;
(d) heatmap visualization of the results of GO enrichment analyses across multiple gene lists; and (e) heatmap visualization of the results of
pathways enrichment analyses using KRGG, Reactome, and WikiPathways databases across multiple gene lists. $e gray color indicates a
lack of significance.
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Table 2: Integrated DEGs in MIRI by RRA.

DEGs Gene names

Upregulated

Timp1, Serpina3n, Lox, Ccl6, Ccl7, Postn, Ccl9, Ccl2, Ctgf, Fn1, Bcl2a1b, Angptl4, Clec4n, Ms4a6d, Nmrk2, $bs4,
S100a6, Cd53, Hmox1, Col3a1, Adam8, Emp1, Ctss, Ltbp2, Sprr1a, Spp1, Cdkn1a, Col1a1, Mmp14, Aldh1a2, Aebp1,
Lcn2, Ugdh, Fxyd5, Efhd2, Mpeg1, Lgals3, Col8a1, Lilrb4, Il4ra, Ccl8, Il33, Uck2, Fgl2, Ptprc, Ccr2, Tmem173, Car13,
Mt2, Tnc, Snora75, Hp, Fcgr2b, Ch25h, Myo5a, Col1a2, Anxa1, Fcer1g, Fbn1, Alox5ap, Col5a2, Clic1, $bs1, Ly86, Il1r1,
Saa3, Cd68, Cybb, Pla2g4a, Tyrobp, Clec4d, Cxcl5, Nckap1l, Myof, Ifi30, Igsf6, Pdpn, Cd84, Vcan, Emr1, Chil3, Lcp1,
Loxl1, P2ry6, Fstl1, Tnfaip6, Col12a1, Tlr13, Adamts2, Fcgr1, Mmp3, Il1b, Selplg, Col5a1, Clec7a, Mki67, Cyth4, Sulf1,
C3ar1, Wisp1, Anxa2, Mfap5, Frzb, Apobec1, Nppb, Itgb2, Serpinb1a, Trem2, Ccna2, Loxl2, Retnlg, Loxl3, Soat1, Itgam,

Eif1a, Tgfbi, S100a8, Hbegf, Wfdc17, Runx1, S100a9, Fgr, Emb, Bst1, Mmp8, Msr1, Fhl1, Acta1, Wfdc21

Downregulated

Kcnd2, Gpr22, Ldhd, Il15, Ces1d, Kcnip2, 1700040L02Rik, Cdnf, Epm2a, Pfkfb1, Dusp18, A530016L24Rik, Lrrc39,
Asb15, Hrasls, Mccc1, Rtn4ip1, Kcnj2, Actr3b, Plxnb1, Tarsl2, Letm2, Fsd2, P2ry1, Dnajc28, Intu, Kcnv2, Ccdc141,
Magix, Asb14, Rbm20, Kcnj3, Cmya5, Acacb, Angpt1, Suclg2, Dbt, Wnk2, Rpl3l, Abcc9, Gm10336, Efcab2, Cpeb3,
A930018M24Rik, Gca, Slc38a3, Adra1a, Itgb6, Ppm1k, Pdpr, Mylk4, Mettl7a1, Arhgap20, Rnf207, Krt222, Mccc2,

Gm31251, Klf9, Epha4, Tcp11l2, Aldh4a1, Efnb3, Akr1c14, Ppp2r3a, Tmem143, Isoc2a, Btnl9, Fyco1, Jmy, Helt, Tcaim,
Pank1, Osbpl3, Slc16a10, Klra21, Pkd2l2, Cacna1c, Osbp2, Ppm1l, Cyfip2, Hlf, Gm30307, Lmod3, Slc2a12, Nebl, Pm20d1,
Ppara, Mmp15, C1qtnf9, Tmem25, Ank2, Mitf, Colgalt2, Pitpnc1, Mlxipl, Ppargc1b, Lrtm1, Rps6ka2, Apol10b, Dsg2,

Ucp3
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superoxide anion generation, leukocyte mediated cytotox-
icity, and so on (Figure 6(g)).

3.5. �e Successful Establishment of the MIRI Model in Mice.
As illustrated in Figure 7(a)–7(b), the infarct areas of hearts
in the MIRI group were significantly larger than those in the
sham group. Moreover, the serum LDH activities were
significantly increased in mice subjected to MIRI
(Figure 7(c)). Taken together, the obtained data suggested
that the MIRI mouse model was successfully established.

3.6. �e mRNA Expression Levels of Six Hub Genes Were
Upregulated in the MIRI Model. To verify the results of
bioinformatics analysis, we detected the mRNA expression
level of hub genes by RT-qPCR in the myocardial tissues.
Compared with the sham group, the mRNA expression
levels of Emr1, Tyrobp, Itgb2, Fcgr2b, Cybb, and Fcer1g were
higher in the MIRI group (Figure 7(d)). Unexpectedly,
CD68, Ptprc, and Fcgr1 were not markedly differentially
expressed. However, the changing trend was consistent with
the result of bioinformatics results (Figure 7(d)).

3.7. Molecular Docking Results. A total of 75 natural
products were discovered, and their multiple mechanisms of
action for treating MIRI were complex (Supplementary
Table 2). To verify the effect of natural products on hub
genes, molecular docking was performed. Unfortunately, the
3D structure of Emr1 was not obtained from the PDB da-
tabase. $e molecular docking results showed that there
were different degrees of binding between natural products
and hub genes, and most of the natural products showed a
good ability to bind the hub genes, particularly araloside C,
glycyrrhizic acid, ophiopogonin D, polyphyllin I, and
punicalagin (Figure 8).

4. Discussion

MIRI, as an inevitable phenomenon, is a major challenge to
the treatment of AMI and plays a crucial role in the damage,
repair, and remodeling of myocardial tissue. MIRI not only
can contribute to myocardial infarction but also can lead to
myocardial stunning, the no-reflow phenomenon, reperfu-
sion arrhythmia, lethal reperfusion injury, coronary capil-
lary rupture, and hemorrhages [10, 31]. Despite remarkable
progress in understanding the pathogenesis of MIRI, the
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Figure 3: Identification and functional enrichment analyses of integrated DEGs. (a) Heatmap of top 20 up- and downregulated DEGs of
three microarrays screening by RRA. Red boxes represent upregulated genes and green boxes represent downregulated genes. $e values in
the boxes represent logFC values. (b) $e top five enriched GO terms for integrated DEGs in biological process, molecular function, and
cellular component categories. (c)$e top ten enriched Reactome pathways for integrated DEGs. (d): $e top ten enriched KEGG pathways
for integrated DEGs. (e) $e top ten enriched WikiPathways for integrated DEGs.
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optimal treatment strategies to effectively restrict MIRI
remain elusive [32]. It has been very disappointing to
translate effective strategies that have been proven in many
preclinical studies into better clinical outcomes [32].$ere is
an undisputed unmet need between therapy and under-
standing the pathophysiological mechanism of MIRI. Only
with a better understanding of the mechanisms of MIRI,
more appropriate strategies to reduce myocardial damage
can be developed. $erefore, researching the mechanisms
underlying MIRI development is very important.

In this study, GSE58486, GSE108940, and GSE115568
data sets were firstly downloaded from the GEO database,
and DEGs were determined. $en, the multi-gene-list meta-
analyses were performed to find the commonGO and KEGG
terms of the DEGs. Moreover, the three data sets were
analyzed using the RRA method, and integrated DEGs were
found. Function annotation and pathway enrichment ana-
lyses of integrated DEGs were then conducted.$e results of
the above functional enrichment analyses showed that DEGs
might be mainly involved in regulating the extracellular

0 2 4 6 8 10 12
–log10(P)

GO:0001909: leukocyte mediated cytotoxicity
GO:0042554: superoxide anion generation
GO:0055094: response to lipoprotein particle
GO:0006954: inflammatory response
GO:0002712: regulation of B cell mediated immunity
R–MMU–6798695: Neutrophil degranulation
WP3626: Microglia Pathogen Phagocytosis Pathway

(g)

Figure 6: Identification and functional enrichment analysis of hub genes; (a–e) top 20 genes were calculated from the PPI network of the 230
integrated DEGs by the closeness, degree, EPC, MCC, andMNC, respectively; (f ) the Venn diagram showing the hub genes identified by the
CytoHubba plugin; and (g) functional enrichment analysis of the hub genes.
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matrix, cell adhesion, cell chemotaxis, inflammatory re-
sponse, AGE-RAGE signaling pathway, and PI3K-Akt-
mTOR signaling pathway. MIRI induces a series of sterile
inflammatory reactions, which can lead to further myo-
cardial injury. Many risk factors, including chemokines,
inflammatory cytokines, inflammatory cells, complement
cascades, inflammatory pathways, and so on, play important
roles in the inflammatory response during MIRI through
multiple interacting pathways [33, 34]. Adhesion molecules
are transmembrane glycoproteins with a variety of biological
activities, which are produced by cells. $ey can mediate the
interaction and binding between cells and cells and between
cells and extracellular matrix. Adhesion molecules E-selectin
and intercellular cell adhesion molecule-1 expressed on
activated endothelial cells can regulate the leukocyte ad-
hesion cascade and thus aggravate tissue inflammation in the
pathological process of MIRI [35]. A study has shown that
HMGB1/TLR4 signaling, as an inflammatory signaling
pathway, promotes the release of inflammatory factors and
aggravates MIRI by regulating the migration, adhesion, and
aggregation of dendritic cells to the myocardium [36].
Substantial evidence implies the AGE-RAGE signaling
pathway plays a crucial role in MIRI [37]. AGE-RAGE
pathway can regulate ventricular arrhythmias,

cardiomyocyte apoptosis, and contractile impairment fol-
lowing MIRI, which is a potential therapeutic strategy for
ameliorating MIRI [37]. More recent evidence suggests that
PI3K/Akt/mTOR signaling pathway protects cardiac injury
from MIRI by regulating apoptosis and autophagy in car-
diomyocytes [38, 39]. $us, it can serve as a potential target
in the setting of MIRI. According to the above studies, the
results of the identified enrichment analyses in the current
research play a recognized role in the pathogenesis of MIRI.

We also constructed a PPI network with integrated
DEGs and identified the following nine hub genes: Tyrobp,
Itgb2, Emr1, Fcer1g, Fcgr1, Fcgr2b, Cybb, Cd68, and Ptprc.
Consistent with the bioinformatics results, MIRI mouse
model results proved that Emr1, Tyrobp, Itgb2 (synonym:
CD18), Fcgr2b, Cybb, and Fcer1g were significantly higher
in the MIRI group. $e changing trend of CD68, Ptprc, and
Fcgr1 was consistent with the bioinformatics results. $ese
results suggest that the results of our bioinformatics analysis
may provide a reliable basis for the study of the mechanism
of MIRI. $e results of pathway and process enrichment
analysis showed that hub genes were mainly related to
microglia pathogen phagocytosis pathway, neutrophil de-
granulation, regulation of B-cell-mediated immunity, in-
flammatory response, response to lipoprotein particle,
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Figure 8: $e Molecular Docking Results.
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superoxide anion generation, leukocyte mediated cytotox-
icity, and so on. Neutrophils, as the primary responders of
MIRI, represent an important component in the protracted
inflammatory response and severity related to MIRI [40].
Early research suggested that specific neutrophils degran-
ulation within the ischemic myocardium occurred in MIRI
[41]. In addition, superoxide anion generation that occurs
during MIRI can further augment MIRI by enhancing the
pro-oxidant activity of aconitase [42]. In summary, the
enriched pathway and process of these hub genes were, in
part, consistent with the pathological process of MIRI shown
in previous studies.

It is noticeable that the role of several hub genes in MIRI
has been reported in the literature. Palazzo et al. [43] found
that CD18-/- mice subjected to MIRI showed a marked
reduction in neutrophils accumulation and myocardial
necrosis. $e results clearly demonstrate that deficiency of
CD18 protects MIRI. Cybb expression levels were found to
increase with MIRI [44]. Fortunately, myocardial ischemic
postconditioning, melatonin, and RIPerC have protective
effects on the myocardium by decreasing Cybb expression in
the rat model of MIRI [45]. Fcer1g, adapter protein con-
taining an immunoreceptor tyrosine-based activation motif,
plays a pivotal role in the extension of MIRI at least partly
through mediating collagen-induced platelet activation [46].
Tyrobp expressed in circulating immune cells is a cell
membrane-associated protein, which has been reported to
be involved in ischemia-reperfusion injury including the
liver, lung, and kidney, but not the heart [47–49]. $ere are
no reports on the involvement of Emr1 and Fcgr2b in MIRI.
However, our findings suggest otherwise. $us, Emr1,
Tyrobp, and Fcgr2b are fascinating therapeutic targets, the
inhibition of which may protect the myocardium from is-
chemia-reperfusion injury. Moreover, some important TFs,
such as Pura, Srf, Dbp, and Stat4 were uncovered in the
present study. Among these TFs, Srf has been reported to
mediate MIRI by regulating its target genes (Tagln, Fos,
NCX1, Slc8a1, and Egr1) [50]. To sum up, these TFs can
further enhance our understanding of MIRI pathogenesis
and have the potential to offer novel treatment strategies for
MIRI.

Currently, there remains an unmet clinical need for the
treatment methods and drugs for MIRI. Natural products
especially the extracts of Chinese herbal medicine have been
an important source of medicines and drug templates with
proven success, which has increasingly drawn widespread
attention [51, 52]. In the study, we searched the natural
products in Chinese herbal medicine exerting protection for
MIRI and discovered 75 natural products. To validate the
therapeutic efficacy of natural products against MIRI via
targeting the hub genes identified in this research, molecular
docking simulations were performed. $e results showed
that most of the natural products showed a good binding
ability to the hub genes, and the binding score values of
araloside C, glycyrrhizic acid, ophiopogonin D, polyphyllin
I, and punicalagin were the highest. We summarized the
mechanism of action of natural products for the treatment of
MIRI and found that anti-apoptosis, anti-inflammatory,
anti-oxidative stress, regulating energy metabolism,

reducing Ca2+ overload, and so on were principal mecha-
nisms, especially araloside C, glycyrrhizic acid, ophiopo-
gonin D, polyphyllin I, and punicalagin (Supplementary
Table 2). Interestingly, the pathways and processes of the
hub genes enrichment analyses were basically consistent
with the mechanism of action of natural products. In
summary, these natural products (especially araloside C,
glycyrrhizic acid, ophiopogonin D, polyphyllin I, and
punicalagin) provide a broad application prospect for de-
veloping more effective anti-MIRI drugs and will un-
doubtedly deserve in-depth investigation in the future.

$e following are the novelties and multiple strengths of
our current research. First, the RRA algorithm, a promising
strategy used in the integrated analysis of multiple data sets,
was first applied to explore DEGs in MIRI. Second, the
functional experiment of the MIRI mice was accomplished
to validate the obtained hub genes, which could avoid the
bias from the results of pure bioinformatics analysis and thus
yield more reliable results. $ird, the molecular docking
simulations of hub genes and natural products retrieved
from the PubChem database were performed to analyze the
potential binding effects, which could lead to better pre-
vention and treatment for MIRI. However, our results had
several limitations, which should be taken into consider-
ation. On the one hand, our findings are based on currently
available gene expression data from the microarray. Some
genes, although playing potential roles in pathological
processes of MIRI, were ignored in our study because they
were not detected by the microarray. On the other hand,
further molecular biology experiments are required to
validate the function of hub genes in the progression ofMIRI
and the protective effects of natural products that showed a
good ability to bind the hub genes against MIRI.

In conclusion, this study identified several key candidate
genes, TFs, and biological pathways and searched for some
natural products that exhibited potential therapeutic efficacy
onMIRI via targeting the hub genes.$rough our research is
a preliminary investigation, the findings help us acquire a
better understanding of pathogenesis, biomarkers discovery,
and therapeutic targets for MIRI, reveal new therapeutic
targets for natural products with protective properties
against MIRI, and develop more effective anti-MIRI drugs.
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