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Abstract: This review paper focuses on recent progress in optical biosensors using self-ordered
nanoporous anodic alumina. We present the fabrication of self-ordered nanoporous anodic alumina,
surface functionalization, and optical sensor applications. We show that self-ordered nanoporous
anodic alumina has good potential for use in the fabrication of antibody-based (immunosensor),
aptamer-based (aptasensor), gene-based (genosensor), peptide-based, and enzyme-based optical
biosensors. The fabricated optical biosensors presented high sensitivity and selectivity. In addition,
we also showed that the performance of the biosensors and the self-ordered nanoporous anodic
alumina can be used for assessing biomolecules, heavy ions, and gas molecules.

Keywords: nanoporous anodic alumina; optical biosensor; immunosensor; aptasensor; peptide-based
biosensor; enzyme-based biosensor

1. Introduction

In recent years, three-dimensional nanostructures offer a new chance for researchers in the field of
nanoscience to improve the performance of biodevices [1–3].

Self-ordered porous metal oxides (SOPMOs) are three-dimensional nanostructure platforms that
are made with an electrochemical anodization method, such as tantalum [4–9], titanium [10–13],
niobium [14–17], iron [18–20], stainless steel [21–23], silicon [24–27], aluminium [28–31], in acidic
solutions. Among them, the self-ordered nanoporous aluminium oxide called nanoporous anodic
alumina (NAA) has many advantages such as a durable platform, easy functional ability, high surface
area, biocompatibility, and low-cost [32–42].

Several parameters should be optimized for the fabrication of NAA such as applied potential,
temperature, and electrolyte. Both the inorganic acid (selenic acid [43,44], sulfuric acid [45,46],
phosphoric acid [40,47]) and organic acid (oxalic acid [48–51], malonic acid [51,52], citric acid [53],
etidronic acid [54,55], tartaric acid [56]) can be used as an electrolyte for the NAA fabrication.

Various applications have been reported for NAA such as biosensors [57–65], sensors [36,66–71],
drug release [72–76], template-based nanowire, and nanotube fabrication [77–80]. Among the various
sensors and biosensors that have been reported based on NAA, optical biosensors are the more
interesting because of their remote sensing ability and properties such as being small and lightweight,
having high sensitivity, and being immune to electromagnetic interference [81–86].

Up to now, several optical methods have been reported when using an NAA such as
surface plasmon resonance (SPR) [87–95], interference localized surface plasmon resonance
(ILSPR) [36,82,96–101], photoluminescence spectroscopy (PLS) [32,102–107], surface-enhanced Raman
scattering (SERS) [84,108–114], and interferometric reflectance spectroscopy (IRS) [59,115–117].
Among them, IRS is a common optical method that has been applied as the basis for the NAA-based
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biosensors and sensors. With this method, a white light beam is illuminate toincident the SOPMO, and
Fabry–Pérot (FP) interferences are obtained from the two main interfaces: (1) the interface between the
incident medium and the thin film constituted by the porous structure (interface-a) and (2) the interface
between the porous thin film and the substrate (usually the remaining aluminum, interface-b). In a
this FP interferometer, the incident beam splits at interface-a with one part reflected back and another
part transmitted into the thin film. This transmitted part of the beam travels within the thin film until
it reaches interface-b, where it is reflected back. The beam travels back again to interface-a where it
is split again into a transmitted portion and reflected back into the thin film portion. This process
repeats itself until no energy is remaining in the beam, and a number of beams are generated in the
same direction as the first reflected beam. Two consecutive reflected beams have a difference in their
optical paths that depends on the angle of incidence, the effective refractive index of the thin film and
its thickness.

A charge-coupled device (CCD) spectrometer is used to collect and analyze these multiply
reflected beams. The signal registered by the CCD depends on the optical path difference between
two consecutively reflected beams. When the wavelength is such that the optical path difference is
an integer number of wavelengths, the measured spectrum shows a maximum at that wavelength.
On the other hand, if the optical path difference is one half of any odd integer, the specrum shows a
minimum. These maxima and minima in the spextrum are known as FP fringes. Figure 1 shows the
schematic of the IRS detection system.
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Figure 1. Schematic representation of the interferometric reflectance spectroscopy (IRS) detection system.

The effective refractive index is a function of the different refractive indices composing the thin
film: the oxide, the filling medium, and the attached molecules. When the pores are filled with
the liquid medium and different molecules attach to the pore surfaces, the effective refractive index
changes, causing a resulting shift in the FP fringes. The effective refractive index is a function of the
different refractive indices composing the thin film: the oxide, the filling medium, and the attached
molecules. When the pores are filled with the liquid medium and different molecules attach to the
pore surfaces, such effective refractive indes changles which causes a resulting snift in the FP fringes.
The amount of change depends on the concentration of the analyte in the sample.

In the next sections, first, we explain the electrochemical fabrication and functionalization of
NAA. Then, we address some of the most recent papers that prove that various optical biosensors and
sensors are made using NAA such as immunosensors, aptasensors, enzyme-based sensors, gas sensors,
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smalll biomolecule sensors, and ion sensors. We also discuss their structure, surface functionalization,
method of detection, and performance parameters such as sensitivity, range of linearity, and limit
of detection.

2. Fabrication and Functionalization of NAA

The electrochemical fabrication of NAA is achieved following a two-step anodization method in
electrolyte solution under stirring conditions at low temperature (5 °C) [25–28]. To fabricate NAA,
first, an aluminum sample should be electropolished in an ethanol solution containing perchloric
acid (25%) to remove most of the irregularities on the Al surface. After that, the electropolished Al is
immersed in an organic or inorganic electrolyte solution for the first step of the anodization process.
During the first step, the Al sample corrodes and converts to disordered nanoporous anodic alumina.
In order to obtain a porous thin film with good enough properties, the disordered nanoporous alumina
is immersed in a phosphoric acid solution containing chromic acid to remove the porous aluminum
oxide matrix leaving the aluminum surface with a highly ordered array of nano-concaves on its surface.
According to reports, by anodizing Al with highly ordered nano-concaves in the same condition that
is applied in the first step (second step), a highly ordered nanoporous alumina will be fabricated.
The nano-concaves on AL play as the pore nucleation sites during the second step anodization. Finally,
the pore widening process should be done in a phosphoric acid solution to increase the pore size.
The schematic fabrication of NAA is shown in Figure 2.
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alumina (NAA).

The effect of the pore widening time on the pore diameters of NAA can be studied using scanning
electron microscopy (SEM) techniques. Figure 3 shows SEM images of the NAA fabricated in 0.3 M
oxalic acid as electrolyte solution at 40 V at various pore widening times. As can be seen, the pore
diameters of the NAA increased by increasing the widening time (A–D). Also, some cross-sectional
images of thee NAA are shown in Figure 3E,F. In all the cases it can be seen the uniformity of the
cylindrical nanopores. By considering the top views and cross-sectional view of an NAA, it can be
concluded that an NAA is a three-dimensional nanoplatform.
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Figure 3. SEM images of an NAA: top views (A–D) and cross-sectional views (E,F).

Since NAA does not have any functional group to interact with its biomolecules, it should first
be functionalized. For this purpose, NAA was dipped into a 3.0 M hydrogen peroxide solution
(H2O2) (T = 70 °C) for 1 h to generate a hydroxide (−OH) group. The generated −OH group
can interact with the silane coupling agents, such as 3-aminopropyltriethoxysilane (3-APTS) [118]
3-mercaptopropyl-tirethoxysilane (3-MPTES) [119], 3-glycidoxypropyltrimethoxysilane [120], and
3-isocyanatopropyl triethoxy (3-ISCN) [121], inducing the functional group on the pores of the NAA.
Then, the silanized NAA can interact with various biomolecules such as antibodies [60], amino-terminal
aptamers [122,123], enzymes [105], and peptides [124,125].
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3. Biosensors (Biorecognizer-Based Sensors)

A biosensor consists of a bio-recognizer and a transducer that detects an analyte quantitatively
and selectively. The bio-recognizers binds or reacts with an analyte specifically, causing a biological
event. After that, the biological event is converted by a transducer into a diagnostic signal such as an
optical signal [126].

3.1. Immunosensor

An immunosensor is a highly affinity-based bioanalytical device that works based on interactions
between an immobilized antibody (bio-recognizers) on a transducer and an analyte in the solution [127].

Kumeria et al. showed that their microchip IRS-based immunosensor (NAA-biotinylated
anti-epithelial cell adhesion molecule antibody (anti-EpCAM)) can be used for sensing circulating
tumor cells (CTCs) within 5 min [128]. To fabricate the immunosensor, they first coated the surface
of the NAA with a thin layer of gold (NAA-Au). Then, 11-mercaptoundecanoic acid (MUA) was
self-immobilized on the surface of the NAA-Au. Afterward, the carboxylic acid group of the MUA was
activated with EDC/NHS to interact with streptavidin. Finally, the biotinylated anti-EpCAM antibodies
were immobilized on the surface of the NAA-Au-streptavidin based on the avidin–biotin interaction.

As the CTC cell solution was injected to measure cells, they interacted with anti-EpCAM antibodies
on the surface of NAA-Au. This interaction caused a redshift in the wavelength of the reflected light
to the CCD detector. The amount of redshift depended on the CTC concentration in the sample.
The proposed biosensor could detect the cancer cell in the concentration range of 1× 103–1× 105 cells/mL
and with a detection limit of <1000 cells/mL. The schematic representation for the fabrication of the
NAA-anti-EpCAM antibody and the sensing mechanism is shown in Figure 4.
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In another work, Lee et al. studied the fabrication of a biosensor to detect serum amyloid A1
(SAA1) as a lung cancer-specific biomarker [98]. To detect this biomarker, the surface of the NAA was
coated with Ni/Au, and then they immobilized the related antibody on it. After the injection of the
SAA1 solution for measuring cells, the wavelength of the reflected light redshifted, indicating the
interaction of SAA1 antigen with the immobilized antibody on the top of the NAA-Au. The results
showed that the fabricated immunosensor could be used from 1 fg/mL to 1µg/mL. The LOD was found
to be 100 ag/mL.

They also showed that the same strategy can be used for the determination of C-reactive protein
(CRP) [129]. The linear response of the biosensor ranged from 0.1 fg/mL to 1 µg/mL, and the LOD was
100 ag/mL.

In more recent work, an IRS-based immunosensor for the determination of tumor necrosis
factor alpha (α-TNF) was reported by G. Rajeev et al. [121]. The first step was the fabrication and
functionalization of the NAA with 3-isocyanatopropyl triethoxy silane. The 3-isocyanatopropyl
function group can interact with the primary amine of antibody, immobilizing it on the NAA. After that,
they injected various concentrations of α-TNF. The results demonstrated that the wavelength of the
reflected light to the CCD redshifted as the concentration of TNF increased in the sample. When
α-TNF interacted with the immobilized antibody, the effective refractive index of the NAA increased,
and this phenomenon caused a shift to a longer wavelength and, consequently, a shift in the effective
optical thickness (EOT) according to the Fabry–Perot equation: mλ = 2 nL = EOT. In this equation, λ
is the wavelength of the maximum constructive interference of order m, n is the effective refractive
index of the porous film and its contents, and L is the geometric thickness of the porous thin film.
To calculate the amount of change in the EOT, they applied a fast Fourier transformation to the recorded
interference spectra. The results showed that the change in the EOT of NAA could be used as a signal
for the measurement of α-TNF in the concentration of 100 to 1500 ng/mL. The calculated LOD was
0.13 µg/mL. The schematic representation for the fabrication of the NAA-anti-TNF and the sensing
mechanism is shown in Figure 5.
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3.2. Aptasensor

Aptasensors are a type of biosensors that use the synthesized nucleic acid sequences named
aptamer as a detection element. [130]. The size of the aptamer is smaller than the antibody; therefore,
in the same surface area, the amount of the immobilized detection element in the aptasensor is higher
than the immunosensor and, subsequently, the linear response range of aptasensors, in the most of the
times are wider than immunosensor [131]. In addition, instead of immunosensors that can be used
for sensing the limited number of targets, aptasensors can be used for a large number of targets from
cancer cells to ions. In this section, some of the more interesting aptasensors that have been made
using NAA are collected.

Silicon nanoporous substrates are common materials that have been used for molecular
gate-based aptasensing purposes [132]. In these kinds of sensing strategies, silicon nanoporous
particles should be first loaded with dye molecules such as rhodamine B. Then, the entrance of the
pores of the silicon nanoporous particles are functionalized with a silane coupling agent, such as
(3-isocyanatopropyl)triethoxysilane, to attach the short single-stranded DNA sequences (normally
from 4 to 12 oligonucleotide sequences). The first oligonucleotide sequences and last oligonucleotide
sequences of the aptamer probe can interact complementary to the single-stranded DNA, immobilizing
the aptamer probe, therefore aptamer. To explain it more clearly, in this sensing strategy, nanoporous
particles and an aptamer play like a pot and a lid, respectively, and inside the pot (nanoporous particles)
is filled with dye. If any analyte can interact with the aptamer probe selectively, so, the dye will release
on nanoporous particles and then the color of the solution will change. If the length of the aptamer
probe is smaller than the pore diameter of the nanoporous substrate, the dye molecule will not remain
inside the porous and will release into solution. Hence, the length of the aptamer probe must be long
enough to cover the pore diameter of the nanoporous substrate. Since the length of the aptamer is small
(up to 10 nm), meso-sized porous substrates can be used for molecular gate-based sensing. Among the
different nanoporous materials, NAA is a good candidate.

Nanoporous anodic alumina (NAA) fabricated in a sulphuric acid electrolyte can have a porous
structure with an average pore size of 8 nm, making it a good candidate for molecular gate-based
sensing. In this context Martínez et al. used NAA and molecular gates for the detection of cocaine using
rhodamine B and the photoluminescence spectroscopy (PLS) method as a molecular probe and a sensing
device, respectively [129]. The sequence of short single-stranded DNA (i.e., 5′-AAAAAACCCCCC-3′)
was immobilized in the entrance of the nanopore using (3-isocyanatopropyl) triethoxysilane, and the
sequence of the aptamer probe of cocaine was TTTTGG GGGGGG GAG ACA AGG AAA ATC CTT
CAA TGA AGT GGG TCT CCA GGGGGGTTTT-3.

As demonstrated, the first oligonucleotide sequences and last oligonucleotide sequences of an
aptamer probe interacted complementarily to single-stranded DNA, immobilizing the aptamer probe
in the entrance of the pores of NAA. As the aptamer probe interacted with the cocaine, it removed from
the NAA, and then rhodamine B was released into the solution. The amount of the released rhodamine
B increased with the increase in the concentration of cocaine. The signal of the released rhodamine B
was detected by the fluorescence spectrometer. The results showed that the proposed method could
detect cocaine concentrations of 0.5 µM to 1 mM. The LOD was 0.5 µM and the sensor had a higher
affinity to cocaine than morphine and heroin. The schematic representation for the fabrication of the
aptasensor is shown in Figure 6.
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In another work, an interferometric reflectance spectroscopy (IRS)-based aptasensor for the
determination of thrombin (TB) [123] has been reported by Pol et al. For that purpose, NAA was
silinzed with 3-APTS. The amino-functionalized NAA then interacted with the sulfo-NHS-biotin.
According to previous reports, the amino-functional group can interact with streptavidin. To immobilize
the aptamer probe, they used a biotinylated aptamer probe to interact with immobilized streptavidin.
The results showed that the wavelength of the reflected light from the proposed aptasensor to the CCD
shifted to a high wavelength (redshift) in the presence of TB, indicating the change in the effective
optical index of NAA after the incubation of the TB with aptamer. The proposed sensor can be used
for sensing TB in a concentration range of 0.54–2.70 µM. The experimental detection limit was 7.2 nM.

Recently, a novel strategy for the quantitive measurement of a target using the IRS technique
was reported by Tabrizi et al. [130]. The sensitivity of the aptasensor would be higher if the intensity
of the reflected light could be changed during the sensing process instead of the wavelength of the
reflected light.

For this purpose, an IRS-based biosensor was fabricated using NAA and functionalized with
3-APTS. A guanine-rich aptamer was used as a probe and methylene blue as a photo-probe.
Amino-terminal guanine-rich aptamers were immobilized on the NAA-NH2 using glutaraldehyde
(Glu) as the cross-linking agent. Following this, methylene blue (MB) was intercalated in the aptamer
and generated the first MB/G-quadruplex complex-based IRS biosensor. A guanine-rich aptamer can
fold into a G-quadruplex structure in the presence of K+ ion. The G-quadruplex has a very high binding
ability towards MB. Besides, an MB that has a high absorption coefficient (ε = 95000 L ×mol−1

× cm−1)
can absorb light in the range of 550–725 nm. Therefore, the intensity of the reflected light from the
MB/G-quadruplex complex-based IRS biosensor would be low compared with a common aptamer-based
IRS biosensor.

Amyloid β (Aβ) oligomers were selected as a model analyte. To measure the Aβ oligomers’
concentration, the first step was to record the signal of the MB/G-quadruplex complex-based IRS
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biosensor in the absence of analyte. After the injection of the Aβ oligomers solution, the intensity of
the reflected light to the CCD detector increased because of the release of MB on the MB/quadruplex
complex. The decrease in light intensity led to a decrease in the peak area in the range of 450–1050 nm.

In this study, the slope of the calibration curve obtained with this method was compared with
the slope of the calibration curve obtained with a common method based on the change in the EOT.
The results indicated that not only was the slope of the plot obtained with the new method higher,
but also the linear range of plot was wider. Consequently, the analytical performance of the sensor
would be better if the ∆peak area, as a signal, was used to detect the analyte. The sensor showed a
determination of Aβ oligomers in the range of 0.5 to 50.0 µg ×mL−1, and the LOD was 0.02 µg/mL.
The proposed sensor has two advantages: first, the sensitivity of the sensor-based IRS was improved;
and second, the data processing step for obtaining the signal was simpler. The schematic representation
for the fabrication of the NAA-Aptamer/MB and the sensing mechanism is shown in Figure 7.
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DNAzyme is an artificial enzyme that is made of hemin and aptamer [133]. Like peroxidase
enzyme, DNAzyme that has hemin cofactor can oxidase ABTS2− ion to ABTS− (Figure 8).
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Recently, a DNAzyme-based IRS biosensor to detect Pb2+ ion concentration in the nanomolar range
was reported [134]. In this work, NAA was fabricated using a two-step anodization process, silanizng
the NAA pores with 3-APTS, and followed by immobilizing the glutaraldehyde cross-linker. Therefore,
they put the functionalized nanosubstrate into an amino-terminal G-rich aptamer solution containing
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hemin and potassium ions. According to the previous reports [96,135], the G-rich aptamer has been
folded into a G-quadruplex structure named the K+-stabilized G-quadruplex. The K+-stabilized
G-quadruplex shows a high binding ability towards the hemin cofactor. Therefore, in the presence
of the G-rich aptamer, K+ ion, and hemin, an artificial peroxidase enzyme-based biosensor was
fabricated. Peroxidase enzymes can oxidize 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
(ABTS) solution in the presence of hydrogen peroxide, generating a green colored ABTS− anion
radical solution which can absorb light in the 45–850 nm wavelength range. The idea is to record the
artificial enzyme-based biosensor K+-stabilized hemin-G-quadruplex DNAzyme using the IRS method.
The results showed that the intensity of the reflected light from the biosensor to the CCD detector
decreased when hydrogen peroxide was injected into the solution. It proved that the DNAzyme-based
IRS biosensor worked properly. The generated green colored ABTS− anion radical solution absorbed
the white light and, therefore, the intensity of the reflected light from the biosensor to the CCD
decreased. However, in the presence of Pb2+ ions, the catalytic property of the proposed biosensor
decreased. As they added Pb2+ ions into the solution, the intensity of the reflected light to the CCD
detector increased. In the presence of Pb2+ ion, the K+-stabilized hemin-G-quadruplex DNAzyme
re-designed to the Pb2+-stabilized G-quadruplex. During this process hemin, the cofactor left the
structure and washed away. Therefore, compared to the K+-stabilized hemin-G-quadruplex DNAzyme,
the Pb2+-stabilized G-quadruplex did not show any peroxidase-like activity to oxide ABTS. Hence,
the signal intensity increased. The results demonstrated that the fabricated biosensor can be used
for the determination of Pb2+ ion in the nanomolar to the micromolar range (50–3200 nM). The low
detection limit was calculated at 12 nM. The sensitivity of the proposed IRS-based sensor was higher
than previous IRS-based sensors that have been used for heavy metal sensing [136–141]. It was also
investigated the selectivity of the Pb2+ ion sensor towards interfering ions, such as Zn2+, Cu2+, Ni2+,
Bi3+, Sn2+, Co2+, and Hg2+, in the presence of SCN− ions as a masking agent and also as a biosensor for
the determination of Pb2+ ions in seawater. The proposed IRS biosensor presented a good selectivity,
and the obtained recoveries were in the range of 93.8–110.2%. To sum up, the prepared biosensor
exhibited high sensitivity, good selectivity, and applicability to Pb2+ ion in real samples. The schematic
representation for the fabrication of the NAA-DNAzyme and the sensing mechanism is shown in
Figure 9.
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3.3. Genosensor

Like an aptasenor, a genosensor uses synthesized nucleic acid sequences as a biological recognition
element. But they are applied for sensing the RNA or DNA of targets such as bacteria [142] and
viruses [143].

Candida albicans is one of the most common infectious fungi that can live inside the human
body. Ribes et al. presented a molecular gate-based sensing method for the determination of Candida
albicans-specific DNA fragments [144]. The proposed genosensor could detect Candida albicans within
a20 min in the range of 7−2 × 102 CFU/mL. The LOD was 8 CFU/mL.

In another recent paper, Tabrizi et al. designed a novel IRS-based genosensor for sensing
Salmonella-specific DNA fragments as a model for DNA targets [145]. To fabricate the genosensor,
first they immobilized the amino-terminal DNA probe inside the pores of the NAA using Glu as a
crosslinker. Next, a known concentration of Salmonella-specific DNA fragment was added into the
flow cell. After washing with deionized water, methylene blue solution was added into the flow cell.
Finally, the fabricated aptasensor (NAA-Aptamer-MB) was washed several times to remove all the
loosely attached MB. According to previous reports [146,147], methylene blue can intercalate between
cytosine and a guanine bond, immobilizing on the genosensor. The intercalated methylene blue then
absorbs the illuminating white light to the genosensor. Therefore, the intensity of the reflected light
from genosensor to the CCD detector decreased. The decrease in the intensity of the reflected biosensor
that was considered a signal had a logarithmic relationship within the range of 0.25–50.0 nM. The limit
of detection was found to be 0.01 nM. A schematic representation for the fabrication of the genosensor
is shown in Figure 10.
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3.4. Peptide-Based Biosensor

A peptide-based biosensor is a type of biosensor where the synthesized peptide fragments or
natural proteins, as biorecognition elements, are used as bio-recognizers to interact with the target.
These kinds of sensors can be used for various targets [148].

Nemati et al. reported an IRS-based biosensor using a gelatin-modified NAA for the determination
of trypsin enzyme as a protease enzyme [124]. Gelatin is a polypeptide that trypsin can cleave to
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in small fragments at the carboxyl-terminal side of lysine and arginine residues. To fabricate the
biosensor, 3-APTS and glutaraldehyde were used to immobilize gelatine on the pore of the NAA.
The measurements showed that the length of the reflected light shifted to a high wavelength, as gelatin
immobilized on the pore of the NAA. However, as enzyme trypsin was injected into the measuring cell,
the wavelength of the reflected light blueshifted, indicating the cleavage of the gelatine and release
the small peptide fragments into solution. The results demonstrated that the fabricated sensor can be
used for the determination of trypsin enzymes in a concentration range of 0.0125–1 mg/mL and with
0.025 mg/mL. This result indicates that the sensitivity of the biosensor is still low for the determination
of trypsin in real samples and further developments are needed.

Another interesting example is the development of an IRS biosensor for sensing a protease enzyme
named cathepsin B (Cat B) [149]. For this purpose, the NAA surface was modified with 3-APTS and
human serum albumin labeled with thionin (HSA-TH). The HSA-TH played the main role in the
proposed biosensor. Because the absorption coefficient of TH is so high (5.85 × 104 dm3

·mol−1
·cm−1)

and can absorb light in the range 510–640 nm. Therefore, the immobilized TH adsorbed the light and
the intensity of the reflected light from biosensor (NAA-HSA-TH) to the CCD detector was low in the
absence of Cat B. In the presence of Cat B, peptides like HSA-TH cleaved to small peptide fragments.
As the TH-peptide fragment washed away from the measuring cell, the intensity of the reflected light
to the CCD detector increased. A schematic diagram of the sensing process is shown in Figure 11.
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The proposed sensor can be used for the measurement of Cat B in the range of 0.5–64.0 nM.
The limit of the detection of the biosensor was 0.08 nM. The good selectivity towards Cat B was
also demonstrated by analyzing the interfering effect of some biomolecules such as proteases trypsin
enzyme, urokinase enzyme, urea, glucose, and dopamine. The schematic representation for the
fabrication of the NAA-HSA-TH and the sensing mechanism is shown in Figure 12.

3.5. Enzyme-Based Biosensor

An enzyme-based biosensor was considered the first biosensor that was fabricated. In these
types of biosensors, an enzyme is immobilized on the surface of the transducer. An enzyme is a
bio-recognizer that can catalyze a target selectively [150].
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A highly sensitive enzyme-based biosensor was proposed for IRS sensing of cytochrome c (Cyt C)
by immobilizing trypsin (Tryp) enzyme on NAA [151]. To fabricate the enzyme-based biosensor, it was
silanized NAA with 3-APTS (NAA-NH2). Then, the NAA-NH2 was immersed in a glutaraldehyde
solution. After that, the Tryp enzyme solution was dropped on it to immobilize the Tryp on the pores of
the NAA. According to previous reports, the Tryp enzyme can cleave Cyt C to the short peptide [152]
fragments, and some of those fragments have a hemin cofactor. The structure of hemin–peptide
fragments which are generated by Tryp is as follows:
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In the presence of hydrogen peroxide, the heme–peptide fragments oxidized
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) to a green colored ABTS·− anion
radicals [153]. The generated green colored ABTS− anion radical solution adsorbed the light. Hence,
the intensity of the reflected light from NAA to the CCD decreased. The results revealed that the
biosensor can be used for sensing Cyt C in the range of 1–100 nM, and the limit of detection is 0.5 nM.
In addition, the analytical performance of the biosensor in real samples exhibited high selectivity,
sensitivity, and good stability. The recovery of the analysis was 97.6%. A schematic representation of
the design of the NAA-Try biosensor and the sensing mechanism is shown in Figure 13.
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Figure 13. Schematic design of the nanoporous anodic alumina-trypsin (NAA-Try) biosensor for the
determination of cytochrome c (Cyt C) using IRS.

Another example of an enzyme- and IRS-based sensor is the urea biosensor [154]. The authors
showed that the change in the intensity of the reflected light can be used for the determination of
small molecules such as urea. In particular, fluorescein 5(6)-isothiocyanate (FLITC) attached to the
urease enzyme could be used for the measurement of urea in the real sample. As per previous reports,
in a high pH of the solution, FLTC can adsorb a greater intensity of light and, therefore, a limited
fluorescence light of it would be high in compensation in high pH solution. Therefore, FLITC is
considered a pH-sensitive photo probe.

As a consequence, a urease enzyme was immobilized on NAA and then attached to FLITC on
an enzyme. Since the isothiocyanate functional group can interact with –NH2, –SH, and OH groups,
therefore FLITC can attach to enzymes that have a massive number of these groups. During the
catalytic process of urea by urease enzymes, ammonia is generated [155]. As ammonia is considered
a base, the pH of the solution will increase too. Consequently, the absorption light property of the
attached FLITC on a biosensor (NAA–Urease–FLTC) will change. Because of that, the intensity of
the reflected light from the NAA–urease–FLTC sensor to the CCD detector decreases. The proposed
biosensor can be used for sensing urea in the range of 0.12 to 3.0 mM with a limit of detection of
0.06 mM.

The analysis of the results also demonstrated that the catalytic activity of the urease enzyme
in the presence of trypsin as the protease enzyme would change [156]. In the presence of trypsin,
the activity of urease decreased and the amount of the catalyzed urea to hydroxide ion and carbon
dioxide decreased. Since the amount of the generated hydroxide ion decreased, the pH solution of the
solution did not increase. In this condition, the FLITC did not absorb more light and, consequently,
the CCD detector detected more light. The proposed biosensor exhibited a good response to a
concentration of trypsin in the range of 1.0–6.0 µg/mL. The limit of detection (LOD) for trypsin was
0.23 µg/mL, respectively. The Michaelis-Menten constant (Km) was calculated to be 0.078 mM for
urea. The half-maximal inhibitory concentration of trypsin (IC50) for the proposed biosensor was
6.2 µg/mL. The proposed biosensor exhibited good selectivity, linear range responsibility, and stability.
The schematic representation for the fabrication of the NAA–Urease–FLITC and the sensing mechanism
is shown in Figure 14.
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Figure 14. Schematic illustration showing the fabrication of the nanoanodic alumina-Urease-
fluorescein 5(6)-isothiocyanate (NAA-Urease-FLITC) biosensor for the determination of trypsin using
interferometric reflectance spectroscopy (IRS).

4. Sensors

4.1. Gas Sensor

Kumeria et al. reported the use of NAA in an IRS-based gas sensor for the determination of
hydrogen sulfide (H2S) and hydrogen (H2) gas [115]. The authors proved that if the surface of the NAA
was coated with gold and platinum using a sputtering method, the fabricated sensor could be used for
H2S and H2 sensing respectively. The optimum pore size and thickness of the porous layer were 30 nm
and 4 µm, respectively. The fabricated sensor could detect the concentration of gas in the air up to 2%.

4.2. Non-Biorecognizer-Based Sensor

Teramae et al. designed and fabricated NAA to detect bovine serum albumin (BSA) by using
nanoporous optical waveguide (NPWG) spectroscopy [86]. In the NPWG, like the conventional surface
plasmon resonance (SPR), the changes in reflection spectra of the SOPMO film are measured in the
Kretschmann configuration. The authors engineered two kinds of NAA substrate. The thickness
and pore size of the substrate A was 220 nm and 39 nm, respectively, and its porosity was 34%.
The thickness and pore size of the substrate B was 670 nm and 33 nm, respectively, and its porosity
was 45%. According to the results, the sensor response of the NAA film B that had more porosity was
about seven times larger than NAA film A due to the fact of its large adsorption capacity. The results
confirmed that the wavelength of the recorded signal redshifted in the presence of BSA. The fabricated
sensor could detect BSA concentration from 60 nM to 60 µM and the limit of detection is was 5.7 pg/mm2.
The schematic representation for the NPWG sensing of BSA is shown in Figure 15.
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Figure 15. Schematic representation of the nanoporous optical waveguide (NPWG)-based sensing of
bovine serum albumin (BSA) using nanoporous anodic alumina (NAA).

In another article, Chen et al. reported an IRS-based sensor for the determination of vitamin C [157].
To fabricate the sensor, first, the NAA was functionalized with 3-APTS, and then glutaraldehyde
was immobilized on the NAA pores. The sensing was obtained when the vitamin C interacted with
glutaraldehyde, changing the EOT of the NAA. The fabricated sensor showed a detected concentration
of vitamin C ranging from 0.125 µM to 0.5 µM and a limit of detection of 20 nM.

4.3. Ion Sensor

Kumeria et al. presented a nanoporous interferometric sensor for label-free detection of gold
(III) [138]. Nanoporous anodic alumina (NAA) was used as a nanoporous material and was
functionalized with 3-mercaptopropyl-triethoxysilane. The selectivity of gold (III) ion was evaluated
in the presence of some heavy metals such as Fe3+, Mg2+, Co2+, Cu2+, Ni2+, Ag+, and Pb2+ ions.
The fabricated sensor detected the concentration of Au3+ (III) ion in the range of 0.1–80 µM with a
lower detection limit of 0.1 µM. The interaction of the thiol (–SH) group of 3-MPTES with Au3+ (III)
ion played a key role in this sensor. According to their report, the experimental data were fitted with
Langmuir isotherm model binding better than Freundlich isotherm, suggesting absorption of Au3+

ions on NAA-3-MPTES.
Furthermore, they also reported that the immobilized 3-mercaptopropyl-tirethoxysilane on

the NAA with rugate structure could be used for the determination of Hg2+ ion in the range of
1–100 µM [136]. The schematic representation for the fabrication of the NAA-3-MPTES and the sensing
mechanism of Au3+ or Hg2+ ions is shown in Figure 16.
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Figure 16. Schematic representation for the fabrication of the interferometric reflectance spectroscopy
IRS based sensor for mercury (II) Hg2+ or gold ion (III) Au3+ ion sensing.

5. Conclusions

This review article highlights recent advances in optical biosensors based on nanoporous anodic
alumina. Detailed information was presented about the fabrication, structure, surface modification,
and biosensing properties of nanoporous anodic alumina. We also provided fundamental aspects
of optical techniques, such as interferometric reflectance spectroscopy, surface plasmon resonance,
and photoluminescence spectroscopy, in combination with NAA platforms and discussed some
relevant examples of optical NAA-based immunosensors, aptasensors, peptide-based biosensors,
and genesensors.

In general, the optical sensors and biosensors based on NAA and new sensing strategies, such
as plasmonic and interferometric spectroscopy, offer high sensitivity and low detection limits and
present interesting features such as being remote, cheap, and integratable into lab-on-chip systems.
The NAA-based sensors and biosensors have a high potential for the determination of a wide size
range of analyte from big bio-components, such as cancer cells, to small ones such as glucose.

Advances and developments in NAA optical structures and the versatility to modify the surface
of NAA for new functionalities with specific selectivity will provide a new generation of NAA-based
sensing systems with better performance and their use as a point-of-care testing devices. Finally,
Table 1 summarizes an updated list of reported NAA-based optical biosensors and sensors

Table 1. The analytical performance of the optical biosensors and sensors by using NAA.

Sensor Type of Recognizers Analyte Method Linear
Range LOD Ref.

Nanoporous anodic alumina - Human
serum albumin-Thionine

Labeled Peptide
(Human serum albumin-Thionine) Cathepsin B

Interferometric
reflectance

spectroscopy
0.5–64.0 nM 0.08 nM [137]

Nanoporous anodic alumina -Urease-
Fluorescein 5(6)-isothiocyanate

Labeled Enzyme
(Urease- Fluorescein
5(6)-isothiocyanate)

Trypsin
Interferometric

reflectance
spectroscopy

0.25–20µg/mL 0.06µg/mL [156]

Nanoporous anodic alumina-Gelatin Peptide
(Gelatin) Trypsin

Interferometric
reflectance

spectroscopy
1–7 mg/mL 1 mg/mL [124]

Nanoporous anodic alumina-Trypsin Enzyme (Trypsin) Cytochrome c
Interferometric

reflectance
spectroscopy

1–100 nM 0.5 nM [151]
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Table 1. Cont.

Sensor Type of Recognizers Analyte Method Linear
Range LOD Ref.

Nanoporous anodic alumina -ssDNAsal Short chains of nucleotides (ssDNAsal) Salmonella-specific
DNA fragment

Interferometric
reflectance

spectroscopy
0.25–50.0 nM 0.01 nM [145]

Nanoporous anodic alumina -AptamerTB
Short chains of nucleotides

(AptamerTB) Thrombin
Interferometric

reflectance
spectroscopy

0.54–2.70 nM 7.2 nM [123]

Nanoporous anodic alumina -AptamerAβ
Short chains of nucleotides

(AptamerAβ)
Amyloid β
oligomers

Interferometric
reflectance

spectroscopy
0.5–50.0µg/mL 0.02 µg/mL [122]

Nanoporous anodic alumina -Anti- Tumor
necrosis factor alpha

Antibody (Anti- Tumor necrosis factor
alpha)

Tumour necrosis
factor-alpha

Interferometric
reflectance

spectroscopy

100–1500
ng/mL 100 ng/mL [121]

Nanoporous anodic alumina- Anti-
Epithelial cell adhesion molecule antibody

Antibody (Anti- Epithelial cell
adhesion molecule antibody)

Circulating tumor
cells

Interferometric
reflectance

spectroscopy
103–105 >1000 [128]

Nanoporous anodic alumina-Anti- human
immunoglobulin G

Antibody (Anti- human
immunoglobulin G)

Human
immunoglobulin

G

Interferometric
reflectance

spectroscopy
10–100µg/mL 1 µg/mL [158]

Nanoporous anodic alumina -Streptavidin Peptide (Streptavidin) Biotinylated
thrombin

Interferometric
reflectance

spectroscopy
10–100µg/mL 10 µg/mL [159]

Nanoporous anodic alumina gradient-index - Glucose
Interferometric

reflectance
spectroscopy

0.025–1 M 0.025 M [160]

Nanoporous anodic alumina
-3-Aminopropyltriethoxysilane

-Glutaraldehyde
Small molecule (Glutaraldehyde) Vitamin C

Interferometric
reflectance

spectroscopy
0.125–0.5 µM 20 nM [157]

Nanoporous anodic alumina - Glucose
Interferometric

reflectance
spectroscopy

0.0125–1 M 0.0125 [161]

Nanoporous anodic alumina - Glucose

Interferometric
reflectance

spectroscopy
0.01–1.2 M 100 mM [162]

Photoluminescence
spectroscopy 0.01–1.2 M 10 mM

Nanoporous anodic alumina - L-cysteine

Interferometric
reflectance

spectroscopy
0.005–0.1 M 5 mM [162]

Photoluminescence
spectroscopy 0.005–0.1 M 5 mM

Nanoporous anodic alumina - Glucose Photoluminescence
spectroscopy 0.01–1.1 mM 0.01 mM [163]

Nanoporous anodic alumina
-3-Mercaptopropyl-tirethoxysilane

Small molecule
(3-Mercaptopropyl-tirethoxysilane) Mercury(II) ion

Interferometric
reflectance

spectroscopy
1–100 µM 1 µM [136]

Nanoporous anodic alumina -
Polyethylenimine-

Glutaraldehyde-Polyethylenimine

Polymer
(Polyethylenimine - Glutaraldehyde -

Polyethylenimine)
Copper (II) ion

Interferometric
reflectance

spectroscopy
1–100 mg/L 0.007 mg/L

(7 ppb) [137]

Nanoporous anodic alumina
-3-Mercaptopropyl-tirethoxysilane

Small molecule
3-Mercaptopropyl-tirethoxysilane Glod (III) ion

Interferometric
reflectance

spectroscopy
0.1–80 µM 0.1 µM [138]

Nanoporous anodic alumina -DNAzyme Short chains of nucleotides and heme
group (DNAzyme) Lead ion (II)

Interferometric
reflectance

spectroscopy
50–3200 nM 12 nM [134]

Nanoporous anodic alumina-Bovine serum
albumin-5- Fluorouracil

Labeled Protein (Bovine serum
albumin-5- Fluorouracil)

Fluorouracil
antibody

Interference
localized surface

plasmon resonance

10–104

ng/mL
10 ng/mL [96]

Nanoporous anodic alumina-Human serum
albumin Protein (Human serum albumin) Quercetin

Interferometric
reflectance

spectroscopy

0.25–0.5
mg/mL 0.14 mg/mL [164]

Nanoporous anodic alumina- poly(acrylic
acid) [poly(acrylic acid)/protonated

poly(allylamine)]3

poly(acrylic acid)/protonated
poly(allylamine)

Cy5-labeled
human

immunoglobulin
G

Photoluminescence
spectroscopy

0.02–1
ng/mL 0.02 ng/mL [165]

Nanoporous anodic alumina - Bovine serum
albumin

Nanoporous optical
waveguide 60 nM–6 µM 5.7 pg/mm2 [86]

Nanoporous anodic alumina-short
aptamer/Rhodamine B

sequence/AptamerCocaine probe

Short chains of nucleotides
(aptamerCocaine probe) Cocaine photoluminescence

spectroscopy 0.5–10 µM 0.5 µM [166]

Nanoporous anodic alumina-short
aptamer/Rhodamine B sequence/Aptamer

probe
Short chains of nucleotides

Mycoplasma
species
genome

Photoluminescence
spectroscopy

20–80
copies/mL 20 copies/mL [102]

Nanoporous anodic alumina-short
aptamer/Rhodamine B

sequence/AptamerCandida albicans species probe

Short chains of nucleotides
(AptamerCandida albicans

speciesprobe)

Candida albicans
species
genome

Photoluminescence
spectroscopy

7−2 × 102

CFU/mL
8 CFU/mL [144]

Nanoporous anodic alumina-short
aptamer/Rhodamine B sequence/Aptamer

Staphylococcus aureus species genome probe

Short chains of nucleotides (Aptamer
Staphylococcus aureus species)

Staphylococcus
aureus species

genome

Photoluminescence
spectroscopy

2–100
CFU/mL 2 CFU/mL [167]

Nanoporous anodic alumina
-biotin-Stripavidin/Aptamer probe Short chains of adenines Timine rich

oligumer Optical waveguide 50 pM–1 nM 20 pM [91]
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Acronyms

SOPMO Self-ordered porous metal oxides
Al Aluminum
NAA Nanoporous anodic alumina
3-APTS 3-Aminopropyltriethoxysilane
3-MPTES 3-Mercaptopropyl-tirethoxysilane
3-ISCN 3-Isocyanatopropyl triethoxy
PLS photoluminescence spectroscopy
IRS Interferometric reflectance spectroscopy
SERS Surface-enhanced Raman scattering
CCD Charge-coupled device
α-TNF Tumor necrosis factor alpha
anti-EpCAM Anti- Epithelial cell adhesion molecule antibody
CTC Circulating tumor cells
Glu Glutaraldehyde
MB Methylene blue
TB Thrombin
EOT Effective optical thickness
Aβ Amyloid β
ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
CFU Colony-forming unit
Cat B Cathepsin B
Cyt C Cytochrome c
FLITC Fluorescein 5(6)-isothiocyanate
Km Michaelis-Menten constant
H2S Hydrogen sulphide
H2 Hydrogen
PEI Polyethylenimine
Rh B Rhodamine B
OWG Optical waveguide
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