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Hypothermia is a life-threatening condition where the temperature of the body

drops below 35°C and is a key source of concern in Intensive CareUnits (ICUs). Early

identification can help to nudge clinical management to initiate early interventions.

Despite its importance, very few studies have focused on the early prediction of

hypothermia. In this study,we aim tomonitor andpredictHypothermia (30min-4 h)

ahead of its onset using machine learning (ML) models developed on physiological

vitals and to prospectively validate the best performing model in the pediatric ICU.

We developed and evaluated ML algorithms for the early prediction of hypothermia

in a pediatric ICU. Sepsis advanced forecasting engine ICU Database (SafeICU) data

resource is an in-house ICU source of data built in the Pediatric ICU at the All-India

InstituteofMedical Science (AIIMS), NewDelhi. Each time-stampat 1-min resolution

was labeled for the presence of hypothermia to construct a retrospective cohort of

pediatric patients in the SafeICU data resource. The training set consisted of

windows of the length of 4.2 h with a lead time of 30min-4 h from the onset of

hypothermia. A set of 3,835 hand-engineered time-series features were calculated

to capture physiological features from the time series. Features selection using the

Boruta algorithm was performed to select the most important predictors of

hypothermia. A battery of models such as gradient boosting machine, random

forest, AdaBoost, and support vectormachine (SVM)was evaluatedutilizing five-fold

test sets. The best-performing model was prospectively validated. A total of

148 patients with 193 ICU stays were eligible for the model development cohort.

Of 3,939 features, 726 were statistically significant in the Boruta analysis for the

prediction of Hypothermia. The gradient boosting model performed best with an

Area Under the Receiver Operating Characteristic curve (AUROC) of 85% (SD = 1.6)

and a precision of 59.2% (SD = 8.8) for a 30-min lead time before the onset of

Hypothermia onset. As expected, the model showed a decline in model

performance at higher lead times, such as AUROC of 77.2% (SD = 2.3) and

precision of 41.34% (SD = 4.8) for 4 h ahead of Hypothermia onset. Our

GBM(gradient boosting machine) model produced equal and superior results for

the prospective validation, where an AUROC of 79.8% and a precision of 53% for a

30-min lead time before the onset of Hypothermia whereas an AUROC of 69.6%

and a precision of 38.52% for a (30min-4 h) lead time prospective validation of

Hypothermia. Therefore, this work establishes a pipeline termed ThermoGnose for

predicting hypothermia, a major complication in pediatric ICUs.
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1 Introduction

Hypothermia is a major complication associated with sepsis

in the ICUs and is especially in children (Rumbus et al., 2017).

Hypothermia is a situation when the human body temperature is

below 35°C (95°F) (Fears, 2011). It arises when the human body

loses more heat compared to what it is producing, thus leading to

a drop in the core body temperature. There may be some warning

signs such as Shivering, Confusion, and Slurred speech, whereas,

in the worst scenario, this may eventually lead to organ failure

and may also cause death. In resource-limited situations,

hypothermia is increasingly identified as a major cause of

newborn illness and mortality (Ibrahim et al., 2021). Also,

children are particularly vulnerable to hypothermia than

adults because children have a larger body surface area in

proportion to their bodily weight, allowing them to lose heat

more quickly (Singer, 2021).

Pathophysiology of Hypothermia involves cold diuresis

which can result in loss of fluid culminating in the risk of

hypovolemia (Brown et al., 2012). The treatment for this

circulatory malfunction involves medication with

vasopressors. A repeated and prolonged usage of these

medications may result in worsened outcomes (Martin

et al., 2015; Vincent et al., 2018). A regulated rewarming is

recommended in hypothermia; however, a quick rewarming

can result in a shift in electrolyte balance of the body resulting

in arrhythmias and cardiac arrest (Dietrichs et al., 2020),

therefore a decision support system for an early assessment

is required for regulating the rewarming cycles.

In critically ill patients, the temperature is not only an

important clinical indication of illness severity but is also an

independent predictor of morbidity and mortality. Hypothermia

may be a significant and modifiable factor linked to a higher risk

of death in critically ill individuals. Close monitoring and

regulation of body temperature to minimize extremes are

especially vital in severely ill patients (Faulds and Meekings,

2013). Also, preventive measures must be taken to avoid the

grueling consequences of hypothermia (Paal et al., 2018). A poor

prognosis can increase the risk of Hypothermia occurrence and

associated complications. Thus, to avoid delayed identification,

Hypothermia monitoring needs to be advanced with the use of

artificial intelligence (AI). AI is already transforming medicine,

where algorithms have been surpassing the clinical accuracy of

disease prediction in ICU (Bohr and Memarzadeh, 2020).

However, none of the studies, to our knowledge, have

developed Hypothermia prediction models despite the higher

association of mortality with hypothermia (Fatteh et al., 2021).

Early detection using predictive modeling of hypothermia can

save lives.

Artificial intelligence algorithms such as machine-learning

can automatically rebuild associations between variables and

response values from big data and enhance the interpretation

of conventional techniques, such as support vector machines,

random forest algorithms, and regression techniques in

pinpointing crucial predictors (Jiang et al., 2017).

The abundance of continuous monitor data is complemented by

applicable data from the EHR (electronic health record) or the

increasingly widespread wireless wearable devices that assess

physiologic signals (Rush et al., 2019). The analytic tools of

machine learning can both help the workflow of reading vital

signs and provide insights into data patterns and complexities

beyond the perceptual capacity of the average human clinical

observer (Chen and Asch, 2017; Obermeyer and Lee, 2017). In

data-rich situations, machine-learning (ML) algorithms excel at

analysing complicated signals (Krumholz, 2014; Tomašev et al., 2019).

Disease categorization and prediction models can be

improved using machine learning techniques. These methods

might be beneficial in the clinic for automatically identifying

individuals with extremely morbid illnesses who could benefit

from intensive risk factor treatment (Ross et al., 2016). In earlier

research, machine learning and statistical modeling techniques

were used to address the issues related to sepsis detection and

care management (Henry et al., 2015). Several researchers

employed machine learning algorithms to identify those who

were most likely to die from sepsis (Gultepe et al., 2014; Mayhew

et al., 2018; Taylor et al., 2016).

This research developed a real-time hypothermia prediction

model using physiological vitals time-series data and ML

techniques. We defined the onset of hypothermia as a time-

point when core body temperature is <35C. We tested a battery

of machine learning models and selected the best one for the

prospective validation in our pediatric ICU. Therefore, our study

ThermoGnose aimed at building predictive models for

hypothermia prediction, which can be used in an ICU setting

for real-time decision making.

2 Methods

2.1 Study data and pre-processing

The ICU data stated in this investigation work were gathered

from the Paediatric ICU at AIIMS. The patient’s non-public

information was not required amid information warehousing,

additionally, there was no modification that drained the patient’s

care, consequently, the Ethics committee of the medical institute

allowed an assent for this investigation (IEC/NP-211/08.05.2015)

(Sethi et al., 2017). No data was discarded during this process as
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segregation of data was not done. Pediatric ICU consists of eight

beds which also includes infant beds. Phenotype deeply, Capture

Reliably, enable decisions, and Systemic Approach are the four

principles that constitute Sepsis Advanced Forecasting Engine for

the ICU’s System. The SafeICU data warehoused between the

months of January 2019 to January 2020 contained 193 ICU stays

(884 days) from a total of 148 patients. Additionally, the ICU

data collected from the month of February 2020 to November

2020 had been used for prospective validation.

2.1.1 Physiological vitals records
Health Level 7 (HL7) Standards-based querying of the multi-

parameter Central Monitoring Station (CMS) MindrayTM

monitors was extracted using in-house software. Physiological

vitals data i.e., Respiratory rate (RR), systolic and diastolic blood

pressure (Sys-bp, Dia-bp), Heart-rate (HR), Oxygen saturation

(SpO2), and temperature records, were used. T1 and

T2 temperature probes were used for the abdomen and foot,

respectively. The HL7 format data obtained from the monitoring

station was stored on the server. The data were parsed to

analyzable tabular forms and pre-processed for analysis and

model building. Notification messages generated by

Pushbullet™ and RPushbullet have been dispatched to the

android phones in case of data loss i.e., on the off chance that

there’s any interference in the data streaming.

2.1.2 Treatment-charts
The in-house doctors maintain a proper note of the treatments in

the word document. The backup of these files was planned at a few

settled hours each day. Parsing of textfiles was done using theDocx-2-

txt pythonmodule and then it is converted into the tabular form so as

to make it easier for text mining.

2.2 Imputation

Pre-processed Safe-ICU stay data were imputed using

Kalman Smoothing utilizing the structural time-series

(StructTS) model using the imputeTS package in R (Moritz

and Bartz-Beielstein, 2017).

2.3 Data preprocessing and cohort-
generation

2.3.1 Cohort construction
The cohort was constructed using the SafeICU data with a

case-crossover design (Navidi, 1998), whereas multiple instances

were taken from each subject at 30 min to 4 h ahead of the onset.

All patients with continuous vitals monitoring for greater than

4.2 h of their stay in ICU were included for cohort construction.

The exclusion criteria included the following. 1) Patients

with <4.2 h of ICU stay, 2) patients with non-availability of

temperature monitoring within the observation window, or 3)

patients with non-availability of age and gender, 4) patients

already in hypothermia within the first 4 h of admission based

upon temperature recordings 5) patients with missing data

in >10% of the observation period.

2.3.2 Data pre-processing and scoring
Temperature (T1), Systolic Arterial Blood-Pressure, Oxygen

Saturation, Respiratory Rate, and H eart rate, were utilized as the

physiological predictors. Minimal pre-processing of the vitals

data was done. Data imputed using the Kalman filter was used for

further modeling on the patients eligible for the development

cohort. Each timestamp of the vitals time series at a 15-s

resolution was evaluated, and binary labels for hypothermia

(yes/no) were assigned to 30-min time epochs. The onset time

of hypothermia was taken as the start time of an epoch when the

median binary label of temperature (T1) value was less than 35

(Musi et al., 2021) (Figure 1). Observational windows

of length 256 min were taken 30 min to 4 h ahead of the

onset time.

2.3.3 Non-linear times series feature extraction
and selection

A set of 3,939 TS features (time-series features) consisting

of linear and nonlinear physiological features say Wavelet-

transform coefficients, discriminative power, Fourier-

transform coefficients, statistics, and other complex

features had been extracted utilizing “tsfresh” python-

package (Christ et al., 2018). Further, the Boruta feature

selection algorithm was utilized to carry out the variable

selection. Boruta uses a top-down approach to find

important characteristics, comparing the value of original

attributes to the importance achievable at random,

calculating using their permuted duplicates, and gradually

removing unnecessary information. TS features are

explainable and also capture physiological domain

understanding, as contradicted to black-box features

utilizing deep learning. Variable selection was performed

using the Boruta algorithm with OOB, which was

optimized using grid search for their n-features and n-tree

combination, carried out in R.

2.4 Model development and evaluation

The development cohort consisted of patients who

developed Hypothermia withinside the subsequent 4 h of

the index time. The outcome variable is Hypothermia

status withinside the subsequent 4 h as described by

Hypothermia Binary labels. Five-fold cross-validation sets

were built and hyperparameter tuning was performed to

attain the best performance on the validation set utilizing

grid search. We have named our pipeline as ThermoGnose
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and have incorporated it in the figure and text (Figure 5). To

overcome the problem of class imbalance, we undersampled

the majority class for training the models (Bach et al., 2019).

The greatest technique for overcoming the problem of class

imbalance was to undersample the majority class’s training.

The AUROC, Precision, and Recall had been accessed at the

test-set. Comparison of model performance were the

indicators for different lead times. Normalization of TS

features was done by the z-scores computation. Random-

Forest (Breiman, 2001), Adaboost (Hastie et al., 2009),

Gradient boosting machine (GBM) (Chen and Guestrin,

2016), and the SVM (Noble, 2006) models had been

constructed upon TS-features utilizing R libraries (Ihaka

and Gentleman, 1996).

2.5 Shapley additive exPlanations value
analysis for model interpretability

Shapley Additive exPlanations (SHAP) is a method that

assigns significant weight to each feature using game-theory

principles (Rodríguez-Pérez and Bajorath, 2020). The SHAP

values are utilized to describe how features affect the model

prediction. Each feature’s SHAP value allocation for all test sets

was determined. The top 20 essential features and their

relationship with SHAP values were plotted on the test sets.

On the test sets, the top 20 essential features and their

relationship with SHAP values are plotted.

3 Results

3.1 Data characteristics

The cohort consisted of 193 ICU stays with 2,723 multiple

episodes of hypothermia. Although Pneumonia (24.2%),

Shock (23.4%), and Sepsis (19.7%) were the most frequent

diagnoses in our cohort, there was a diverse representation of

other diagnoses such as Congestive Heart Failure,

Tuberculosis, Liver Failure, etc. The complete list of

diagnoses and their percentage is listed in the

Supplementary Table S1. Further, the relatively high

prevalence (28%) of Hypothermia in this cohort reflects

the necessity of early preventive measures in pediatric

ICU. The temperature, respiratory rate, and oxygen

saturation were found to be significantly different 1 h

before the onset of Hypothermic and non-hypothermic

events. (Table 1). It is evident that the median temperature

of the hypothermic subject was 1.17 C lower than the non-

hypothermic subject 1 h before its onset, p-value = 0.0001,

FIGURE 1
Physiological variables for prediction of Hypothermia in pediatric-ICU.
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while the respiratory rate was lower in the hypothermia by

1.62 bps, p-value 0.0005. Further, we note that the length of

stay (LOS) is associated with the length of stay in

hypothermia. A 10-min increase in Hypothermia duration

can increase the length of stay (LOS) by 68 min (0.0038) in a

wide range of patients with comorbidities. This conclusion

from our observational design of ThermoGnose will form the

basis of an interventional design to directly assess the impact

of the model on clinical decision-making and hard outcomes

such as mortality and LOS.

3.2 Model performance on time-series
features

A total of 726 time-series features were found to be

statistically noteworthy for variable significance z-scores in the

Boruta feature selection analysis for 30 min-4 hours different lead

times. Out of the Gradient boosting classifier, Adaboost, Random

Forest, and Support vector machine models trained upon these

TS-features, the Gradient boosting classifier performed best

[Figure 2A,B] with an AUROC of 85% (SD = 1.6) and a

precision of 59.2% (SD = 8.8) for a 30-min lead time before

the onset of hypothermia (Figure 2D,E). The Average AUROC of

74.28 (SD = 2.26) and AUPRC of 47.56% (SD = 4.4) were

achieved for (30 min-4 h) ahead of prediction, with 79.88%

(SD = 9.62) of all hypothermia events identified 4 h ahead of

their onset. As expected, the model showed a decline in model

performance at higher lead times, such as AUROC of 77.2%

(SD = 2.3) and precision of 41.34% (SD = 4.8) for 4 h ahead of

Hypothermia onset. The findings of all proposed models for

predicting hypothermia/non-hypothermia based on

physiological factors are presented in Supplementary Table S2.

The best model performance indicator (Figure 2C) with an

AUROC of 84.2% (SD = 2.1%) is in the age group of

“0–5” years. Whereas it slightly decreased in the age group

“10–15” years and “5–10” years with an AUROC of 82.3%

(SD = 2.9%) and 77.2% (SD = 5.8%) respectively.

3.3 Model interpretability analysis

The best model captured interpretable and clinically

meaningful features such as minimum temperature, age of the

patient, mean of absolute change in temperature, and fast Fourier

transforms coefficients of respiratory rate (Table 2) as the top

predictors for future Hypothermia (Figure 3). Detailed plots of

individual top predictors for future hypothermia are available in

Supplementary Figure S1. A detailed description of each of the

top nonlinear feature’s predictors for future Hypothermia is

available in Supplementary Material.

3.4 Prospective validation of model

Gradient boosting classifier performed best with an AUROC

of 79.8% and a precision of 53% for a 30-min lead time before the

onset of Hypothermia whereas an AUROC of 69.6% and a

precision of 38.52% for a (30-min-4 h) lead time prospective

validation of Hypothermia (Figure 4A,B. The findings of

prospective validation of a model for predicting hypothermia/

non-hypothermia based on physiological factors are presented in

Supplementary Table S3.

4 Discussion

Hypothermia in severe cases can result in mortality; studies

have suggested that hypothermic subjects have a significantly

higher rate of mortality when compared to non-hypothermia

subjects (Kiekkas et al., 2018). Early decision-making can

mitigate the risk of hypothermia and associated outcomes, yet,

none of the studies has attempted to predict hypothermia. This

work presents a first-of-its-kind Hypothermia prediction model

in pediatric patients. We leverage a SafeICU (Sethi et al., 2017)

resource of pediatric Intensive care unit patients database to

build a real-time ML model for the prediction of hypothermia.

Our ThermoGnose pipeline predicted the Hypothermia event

TABLE 1 Characteristics of SafeICU-cohort observational window captured (30 min-4 hours) earlier to Hypothermia. Unless otherwise stated, all
values are mean (SD), *significance level at p-value >= 0.01, W represents Wilcoxon rank-sum test (non-parametric), this is utilized once the
normalcy assumption has been tested. The Chi-squared test of proportions is denoted by the letter C in the table.

Variable Hypothermia Mean (sd) Non-hypothermia Mean (sd) p- value (Significance,
p-value < 0.01)

Age (months) 50.63 (52.12) 40.67 (51.15) 1.75 × 10–12 (W)

Arterial-Diastolic BP (DBP), mm Hg 86.8 (6.67) 87.2 (6.43) 0.0592 (W)

Heart rate, per min 129.69 (8.55) 129.84 (8.15) 0.9836 (W)

Respiratory rate, per min 31.45 (5.35) 33.07 (5.5) 0.0005*(W)

Oxygen Saturation 93.37 (3.1) 92.71 (3.31) 0.01269 (W)

Temperature 36.36 (0.51) 37.53 (0.8) 0.0001*(W)

Gender (F%) 43.6% 32.2% 0.0018*(C)
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with an AUC of 85% 30 min ahead of its onset and with an

average AUC of 77.6% for 30 min to 4 h ahead of onset. An early

therapy decision can help ICU management to initiate therapy

such as rewarming to mitigate the risk of hypothermia

(Giesbrecht, 2001). The GBM-model performed best at 30 min

lead-time and the performances declined during the higher lead

times, however, a 30-min window can provide sufficient time for

early therapy such as rewarming (Mendrala et al., 2021). Our

pipeline produced equal and superior results for the prospective

validation, where an AUC of 79.7% was achieved for a lead-time

of 30 min to 4 h. Our models were trained on a heterogeneous set

of the population having different comorbidities are shown in

Supplementary Table S1, enabling our prediction system to

generalize to a wide range of Intensive care patients. We also

evaluated the interpretability of our models. Since artificial

intelligence models suffer from black-box prediction, we kept

FIGURE 2
(A) AUROC for different models with lead times or times before hypothermia forecast in the next 30 min to 4 h (B) AUPRC for different models
with lead times or times before hypothermia forecast in the next 30 min to 4 h (C) AUROC for the Hypothermia prediction in the next 30 min (D)
AUPRC for the hypothermia prediction in the next 30 min. (E) Results of the AUROC and AUPRC Models for various age groups.

TABLE 2 Important non-linear features.

SI.
No.

Nonlinear feature Definition

1 Absolute Energy (abs) Returns the time series’ absolute energy

2 Continuous Wavelet Transform
Coefficients (CWT)

A time scale illustration of a signal is proposed by CWT. The length of the examined signal will aid in
dynamically detecting nonlinearities

3 Fast Fourier Transformation Coefficient (FFT) The Fourier coefficients for the one-dimensional discrete FT are calculated using the Fourier transform
algorithm

4 Lag At lag = 0, a complete correlation will exist for every time series. The correlation value will drop as the time series
shifts

5 Mean The mean of x will be returned by this feature

6 Minimum The least value among the given collection of values is the minimal number

7 Quantile The q quantile of x is calculated. Where the quantile divides the sample into equal-sized adjacent subgroups

8 Sum The sum of the time series values will be calculated

9 Sum of reoccurring data points This feature will return the total of all time-series data points that appear more than once
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FIGURE 3
SHAP values of the top 20 Nonlinear features (descending order) generated from the five-fold test set on pediatric data.

FIGURE 4
(A) Average AUROC performance for xgboost model with lead times or times before for prospective validation of Hypothermia in the next
30 min to 4 h (B) AUROC and AUPRC performance for xgboost model with lead times or times for prospective validation of Hypothermia in the next
30 min to 4 h.
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our approach interpretable using SHAP analysis, which suggests

the influence of each predictor on the model output (Lundberg

and Lee, 2017). Our analysis suggests that minimum temperature

in a 420-min window is the best predictor of future risk of

hypothermia (Figure 4).

Since our main aim was to reduce the delay in early

identification, we kept our choice predictors on the readily

available physiological vitals. These allowed us to make real-time

predictions as we have installed in-house software to collect real-

time vital data from the bedside at 15 s resolution. Many studies in

the intensive care unit suffer from generalizability issues due to the

large number of predictors variables required to make predictions

and the complexity of the data integration (Wellner et al., 2017).

Studies have shown the potential of physiological vital signs for real-

time prediction of sepsis. Minimal models have shown good

potential for generalizability. We have, therefore, used only five

physiological vitals available at the bedside in our models.

Early risk prediction of hypothermia is critical as it can act as

a surrogate marker for prognostication of cold diuresis-related

hypovolemia (Brown et al., 2012), and early assessment can be

helpful for regulating the rewarming cycles (Martin et al., 2015;

Vincent et al., 2018) and reducing the length of stay. As we found

out that the length of stay (LOS) is associated with the length of

stay with hypothermia (Supplementary Figure S2). Therefore,

reducing hypothermia by proactive management can help in

reducing LOS, Thus, our prediction model can be useful in a

wider perspective for clinical practice.

Prediction of hypothermia can reduce the risk of adverse

outcomes and mortality in intensive care patients. Early warning

systems can help in early treatment and therapy decisions for

hypothermia. Our prediction models trained on the cohorts

extracted from three million patient hours of data have shown

the potential of prospective validation AUC of 79.8% on patients

with a wide range of comorbidities; thus, our predictionmodels have

the potential to improve patient care and save lives. The current

study and the model, being observational are not geared to evaluate

the impact on clinical decision making, which remains the main

limitation of our work. However, therapeutic decisions for

hypothermia are expected to be less complex, such as the use of

warmers and fluids, thus the current model lays the basis for future

studies for assessing the clinical impact and outcomes in hypothemic

patients based uponThermoGnose predictions. Importantly, despite

continuous monitoring of temperature, the most straightforward

vital, predicting hypothermia has remained un-addressed and

ThermoGnose provides a starting point for enabling clinical

decisions to prevent and proactively treat hypothermia in the

pediatric ICUs.
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