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Abstract
With the propagation of the Coronavirus pandemic, current trends on determining its individual and societal impacts become 
increasingly important. Recent researches grant special attention to the Coronavirus social networks infodemic to study such 
impacts. For this aim, we think that applying a geolocation process is crucial before proceeding to the infodemic management. 
In fact, the spread of reported events and actualities on social networks makes the identification of infected areas or locations 
of the information owners more challenging especially at a state level. In this paper, we focus on linguistic features to encode 
regional variations from short and noisy texts such as tweets to track this disease. We pay particular attention to contextual 
information for a better encoding of these features. We refer to some neural network-based models to capture relationships 
between words according to their contexts. Being examples of these models, we evaluate some word embedding ones to 
determine the most effective features’ combination that has more spatial evidence. Then, we ensure a sequential modeling of 
words for a better understanding of contextual information using recurrent neural networks. Without defining restricted sets 
of local words in relation to the Coronavirus disease, our framework called DeepGeoloc demonstrates its ability to geolocate 
both tweets and twitterers. It also makes it possible to capture geosemantics of nonlocal words and to delimit the sparse use 
of local ones particularly in retweets and reported events. Compared to some baselines, DeepGeoloc achieved competitive 
results. It also proves its scalability to handle large amounts of data and to geolocate new tweets even those describing new 
topics in relation to this disease.
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1 Introduction

Over the last decade, geographic information that can be 
extracted from location-based social networks (LBSN) 
highlighted its importance for multiple applications like 
socio-environmental studies (Beldad and Kusumadewi 
(2015); Jiang and Ren (2019); Larson et  al. (2019)), 
sentiment analysis (Singh et al. (2018); Martinez et al. 
(2018)) disaster management (De  Albuquerque et  al. 
(2015); Ahmouda et  al. (2018)), etc. Being a popular 
LBSN, Twitter receives an average of 500 million tweets 
from 152 million daily active users. By analyzing geotags 

that are associated with tweets, it becomes easier to 
determine tweets’ contexts. These latter describe human 
activities and interests which are in turn often linked to 
space (Lingad et al. 2013; Ao et al. 2014; Ma et al. 2020). 
In this direction and with the spread of the Coronavirus 
(COVID-19), understanding twitterers’ reactions regard-
ing this disease is primordial to hedge their panic as far 
as the Ebola outburst (Tran and Lee (2016)). In addition, 
regional emergency interventions can be planned more 
effectively after determining current locations of users and 
their movements in the areas of contagion. More general 
concerns like impacts of Coronavirus on economy, social 
mobility and policy can be studied from geotagged tweets 
(Jiang et al. 2020; Xu et al. 2020). Despite the importance 
of spatial dimensions, prior studies demonstrate that the 
rate of geolocated tweets is less than 0.85% (Cheng et al. 
2010; Priedhorsky et al. 2014; Hawelka et al. 2014). We 
explain this low rate by the optional adding of locations 
when creating a Twitter account or when sharing tweets. 
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In addition, due to security issues or unaware prefer-
ences, even declared locations can be fictitious, invalid 
or ambiguous (Hecht et al. 2011; Chang et al. 2012; Zhao 
and Sui 2017). In relation to Coronavirus, such limita-
tions make the tracking of this pandemic more challenging 
considering its wide global spread. In the light of these 
constraints, multiple works are established to extract geo-
graphical information from non-geotagged tweets. While 
some works are developed to determine a tweet’s loca-
tion, the rest tends to estimate a user’s home location. For 
the second class, a set of tweets that are shared by the 
same user are analyzed at a time. For both geolocation 
subproblems, the location of a given tweet is estimated 
based on the geographical distribution of its words. From 
a deep study of these works, we find that they commonly 
share some drawbacks so they might be less adequate to 
manage the Coronavirus infodemic. We think that the 
proposed solutions which are mostly grid-based are less 
adequate to capture geographic boundaries leading then 
to a lack of geolocation accuracy. In addition, these solu-
tions are designed to treat words in a tweet as independent 
sources of spatial evidence. Thus, encoded information by 
the whole tweet can be less effective. Finally, the defini-
tion of restricted sets of local words and the absence of 
dedicated pre-processing methods decrease their perfor-
mance against the diversity of writing styles that char-
acterizes social networks particularly when reporting 
new and global topics such as the spread of Coronavirus. 
Starting from these limitations, we think that we have to 
approach the geolocation task from a more generic per-
spective. Without defining a limited set of local words 
in relation to Coronavirus, we have to develop a strategy 
to estimate locations for tweets that contain even noisy 
texts and OOVs (out-of-vocabulary). To do this, we find 
that deriving geographical knowledge from linguistic fea-
tures is efficient. While we agree that dialects, slang terms 
and regional accents can be effective to track this disease, 
we suppose that their utility is conditioned by taking into 
account topic’s dispersion on social networks. Otherwise, 
considering these features as inherent components in texts 
with potential spatial indications, they may serve to dis-
tinguish between different usages and forms of words and 
then to better differentiate one region from another. We 
also suppose that they enable supporting the diversity of 
writing styles when describing the same topic by users 
from the same region or from nearby regions. Since these 
features necessitate the encoded contextual information to 
comprise tweets’ contents and thus to infer their geograph-
ical appurtenance, we think that word embedding models 
can be effective solutions. We refer also to RNNs (recur-
rent neural networks) in order to maintain word order 
and to ensure sequential modeling of words in tweets on 
the one hand. On the other hand, we explore such neural 

networks to distinguish between local words and nonlocal 
ones regarding the contexts where they appear.

In this paper, our contributions to track Coronavirus from 
tweets are the following:

• We foremost proceed to a real-time collection of a set of 
English geotagged tweets by specifying a set of keywords 
that describes the Coronavirus topic. These tweets are 
retrieved from the UK and the USA so that we can evalu-
ate the performance of our model to distinguish between 
two English variants. We make our code and the resulting 
corpus available for download.

• We evaluate some word embedding models in order 
to determine which combination of linguistic features 
encoded in English tweets has more spatial indications. 
Another model is also involved in making the treatment 
of misspelled forms and OOVs possible.

• Given that a word sense may vary from one region to 
another, we propose a WSD (word sense disambiguation) 
model. The intuition behind this model is to determine 
correct senses of words (nonlocal) and then to capture 
their geosemantic distribution. To do this, we refer to 
RNNs and precisely to bidirectional LSTMs (long short-
term memory) for a sequential modeling of tweets’ 
words.

• Considering the unlimited dispersion of words on Twitter 
that describe the Coronavirus topic, we propose an atten-
tion model that assigns minimal importance to words that 
can disturb our geolocation results. These words (local) 
may be less important when contained in tweets that are 
shared from different regions. Like the WSD model, the 
latter is based on a bidirectional LSTM.

• By developing a distributed version based on a set of 
Apache frameworks, we make our geolocation strat-
egy scalable enough to treat huge amounts of tweets in 
acceptable deadlines. This is especially advantageous 
when training word embedding models that encode sub-
word information.

• We demonstrate that our framework DeepGeoloc 
yields better geolocation accuracy than state-of-the art 
approaches when applied on our Coronavirus corpus. In 
addition, its performance is guaranteed even when treat-
ing new tweets written in a single English variant as we 
deal with linguistic features instead of a delimited set of 
words or topics’ descriptions.

The remainder of this paper is organized as follows: In 
Sect. 2, we give an overview of prior work elaborated for 
the geolocation of tweets and twitterers. Then, our research 
objectives are detailed in Sect. 3. Section 4 elaborates on 
our research context where we describe some neural net-
work-based models as candidate solutions to approach the 
geolocation task. Based on these models, the architecture of 
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DeepGeoloc is detailed in Sect. 5. An experimental design 
for DeepGeoloc and an analysis of obtained results are 
described, respectively, in Sects. 6 and  7. Finally, Sect. 8 
presents the conclusion and future scope of work.

2  Related work

We restrict our study to conducted works that rely purely on 
text content which makes the geolocation task more defiant 
especially when treating short texts like tweets. Note that 
some tendencies toward the resolution of this task by includ-
ing additional metadata (user’s credibility, user’s social 
interactions, temporal effects, etc.) are also emergent but not 
discussed in this paper. The set of studied works adopts the 
assumption that there is a relation between a tweet’s content 
and the location from which it is shared. For more details, 
frequently used words in a given region can be descriptors 
for that region. Hence, checking the presence of such words 
in tweets can be effective to determine user’s mobility (tweet 
geolocation) or user’s home (twitterer geolocation).

2.1  Tweet geolocation

Since the encoded information in a single tweet is limited, 
the set of established approaches to geolocate tweets remains 
reduced. For instance, Melo and Martins (2015) propose 
a supervised classification-based approach where train-
ing tweets are represented by feature vectors. These latter 
are composed of weights of a tweet’s words. To do this, 
the TF-IDF (term frequency-inverse document frequency) 
weighting measure is applied. A recursive subdivision of 
the earth’s surface into curvilinear and quadrilateral regions 
is then performed where each cell corresponds to a region 
with a set of representative textual descriptions. As for the 
classification process, support vector machine (SVM) mod-
els are selected to infer new documents’ locations based on 
their similarities with the defined set of classes (cells). The 
application of TF-IDF for a limited period of time was also 
approached in (Paraskevopoulos and Palpanas 2015). For 
example, a location l of a given tweet T that is shared dur-
ing [ ti , tn ] can be estimated by measuring its similarity with 
other geolocated tweets that are shared during the same time 
interval. Since the encoded information by a single tweet is 
relatively limited, it may be useful to treat this entry with a 
certain amount of redundancy. This reasoning is adopted in 
(Priedhorsky et al. 2014). Firstly, a GMM (Gaussian mixture 
model) is created for each n-gram wj whose occurrence rate 
exceeds a fixed threshold. This model determines the prob-
ability distribution of the n-gram in question in the set of 
the training tweets: g(l| wj ). Then, the weighted sum of the 
corresponding GMMs is used to estimate the geolocation 
of new tweets. Unlike (Priedhorsky et al. 2014), Lee et al. 

(2014) find that the value carried by a tweet is not limited to 
its size but rather to indications of its words. They believe 
that the combination of location and its semantic descrip-
tions can better serve the geolocation of tweets. In this 
regard, they refer to Foursquare1 as a location-based service 
that supports semantic descriptions of locations of interest. 
For each location, Lee et al. (2014) create a language model 
from its associated semantic descriptions. Finally, TF-IDF 
is applied and the naive Bayesian classifier is trained to esti-
mate the geolocation of a new tweet considering the most 
important local words that it contains.

2.2  Twitterer geolocation

Differently to the fore-mentioned works, those established 
to estimate a twitterer’s home location treat a set of tweets 
at a time. In fact, the geolocation of a single tweet may serve 
to determine the twitterer’s mobility. But, since the home 
location is permanent, it necessitates more data to predict 
it. In this regard, Zola et al. (2019) calculate frequencies 
of country nouns that are identified in tweets to geolocate 
users. For tweets with non-explicitly known geographic con-
texts, word distribution of past user’s tweets is analyzed. In 
this context, generic nouns in addition to country nouns are 
considered. For either named or non-named entities, Cheng 
et al. (2010) present a probabilistic framework to predict 
a given twitterer’s location at a city level. To do this, the 
authors refer to a spatial variation model in (Backstrom 
et al. 2008). This probabilistic model was applied on a set 
of geolocated data to determine the dispersion for each word 
as well as its geographical center and its central frequency. 
Then, these parameters are used by a classifier as features to 
identify words with a local geographic scope and then to cal-
culate the location of a given twitterer. The main drawback 
of such approach is the manual selection of local words to be 
processed by the model. Compared to (Cheng et al. 2010), 
Han et al. (2012) develop a more flexible approach that is not 
limited to a predefined set of words. For more details, Han 
et al. (2012) refer to a variety of feature selection methods 
in order to extract LIW (location indicative words) and then 
to predict twitterer’s location at a city level. To do this, they 
combine both TF (term frequency) and ICF (inverse city fre-
quency) proprieties. Thus, a word is considered either a LIW 
or not based on its TF-ICF score. In (Eisenstein et al. 2010), 
another popular geolocation strategy is presented. Here, the 
geolocation problem is resolved by employing a multilevel 
generative model that is able to determine the geographic 
lexical variation. In fact, Eisenstein et al. (2010) demonstrate 
that some methods such as supervised LDA (Wang et al. 
2007; Sizov 2010) are not suitable to include uninformative 

1 https://foursquare.com/.
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words in the geolocation process. To overcome this limit, 
their cascading models identify topics through a global 
topic matrix in addition to their regional variants. Infer-
ring locations for new documents is then performed based 
on their similarities with modeled topics that are already 
geotagged. Note that every single document consists of a 
set of concatenated user’s tweets. The location of a given 
document is equal to the first valid GPS-generated location 
and is referred to as "the gold location." Wing and Baldridge 
(2011) consider that the described approach in Eisenstein 
et al. (2010) is not scalable enough to handle large amounts 
of training documents (tweets). In this regard, they propose 
another competitive language model-based approach where 
two data sources (Twitter and Wikipedia) are considered. 
The earth’s surface is represented through a uniform geo-
desic grid where equal-sized cells are composed of a set 
of concatenated documents that share common locations. 
Using the KL-divergence measure, the similarity between 
already geolocated documents and new ones is calculated. 
Following (Wing and Baldridge 2011), an adaptive grid is 
defined to avoid the problem of document dispersion over 
the earth in (Roller et al. 2012). This grid is constructed 
using k-d trees, and it allows to perform a supervised geolo-
cation task on larger training sets. The concept of gold loca-
tions, as described in (Eisenstein et al. 2010), is also adopted 
in this work. Another grid-based approach is proposed by 
(Wing and Baldridge 2014). The authors present a hierar-
chical discriminative strategy to geolocate tweets. At first, 
they start by representing the earth’s surface as a root cell. 
According to this hierarchy, they test both uniform and adap-
tive grids. Note that K-d trees are used to construct the latter 
as described in (Roller et al. 2012). Next, they proceed to 
the construction of logistic regression classifiers. Treated 
as fixed-size feature vectors that correspond to words and 
their frequencies, new tweets are finally geolocated based 
on their similarity with the predetermined set of classes. 
New trends that investigate the power of neural networks to 
resolve NLP (natural language processing) tasks got more 
attention over the past few years. For example, Rahimi et al. 
(2017) geolocate users by applying a multilayer perceptron 
(MLP) with one hidden layer as a classifier. For a given 
user, inputs of this classifier are l2 normalized bag-of-words 
features of his tweets, while the output is this region that is 
predicted using k-means or k-d tree. The authors assume also 
that a semantic knowledge is requisite to distinguish special 
meanings of words that may vary across regions. For this 
aim, they employ the Word2vec embedding model (Mikolov 
et al. 2013b) to capture word relationships and then to distin-
guish dialects. This work motivates us to study further neural 
network-based models and to evaluate their potential contri-
bution to resolve the geolocation task. In contrast to recent 
approaches (Miura et al. 2016; Lau et al. 2017; Elaraby and 
Abdul-Mageed 2018; Ebrahimi et al. 2018; Do et al. 2018), 

we evaluate some neural networks only on tweets’ contents 
which makes the geolocation task more complex.

3  Research objectives

When studying the previously mentioned works, we find 
that their performances are limited by common drawbacks. 
First, grid-based approaches are less adequate to capture 
geographic boundaries which impact the geolocation accu-
racy especially for global topics like the spread of Coro-
navirus. Besides, they are based on rigid methods that we 
think are unable to support the massive production of new 
tweets. Precisely, they necessitate the reconstruction of 
grids to include new words. The same problem persists for 
works that use weighting metrics since weights of words 
have to be recalculated when extending the training data. 
In this context, we think that these limitations are empha-
sized when considering the consecutive discoveries around 
Coronavirus and its consequences on individual and col-
lective lives (economy, public health, policy, etc.). Second, 
users of social networks have diverse writing styles so that 
they can express the same idea differently. In this regard, 
limiting topics’ descriptions to a predefined set of words is 
insufficient. Third, we suppose that all discussed works are 
designed to treat correct and misspelled variants of the same 
word as different components since we note the absence of 
a normalization process or dedicated pre-processing meth-
ods (lemmatization, stemming, etc.). For more details, noisy 
texts are massively produced on Twitter due to the absence 
of writing rules. However, by studying these works, we 
note that there is no explicit statement about the potential 
contribution of misspelled variants in the geolocation task. 
Other challenges that are not discussed yet have also to be 
addressed. Principally, when reporting events that are pro-
duced in a different region, users may include local words 
(named or non-named) of that region in their tweets. This 
leads to the dispersion of words or events’ descriptions in the 
space and then to the degradation of the geolocation accu-
racy. Even nonlocal words may be wrongly weighted if they 
have multiple meanings that vary from one region to another. 
These problems become deeper when dealing with words in 
a single tweet as independent sources of spatial evidence. 
In another way, we have to distinguish different usages of 
words (local) from words with different usages (nonlocal).

We think that in order to overcome these limitations, 
deriving geographical knowledge from linguistic features 
is efficient. We consider that such features can be qualified 
as inherent components with potential spatial indications. 
Such components can be exploited to differentiate one region 
from another. Basically, we suppose that it is effective to 
estimate the geosemantic distribution similarly to Ballatore 
et al. (2013); Hu et al. (2017) with consideration to tweets’ 
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particularities. For instance, pasty, pop, carriage and grinder 
are examples of dialects that are used differently across the 
USA. We also consider that exploring regional accents and 
phonetic substitutions makes the identification of regional 
appurtenance more possible. For example, Americans pro-
nounce "crayon," "layer" and "caramel" differently. In addi-
tion to slang terms, we assume that accents are the key factor 
in the production of misspelled variants in tweets. In fact, 
users of social networks tend to write words the same way 
they are pronounced which may differ from correct variants. 
At a larger scale and in relation to Coronavirus, we could 
notice some differences between two variants of English like 
American and British ones through the following examples :

• It is clear that the state policy is a bit naff to hedge the 
Covid-19: This is an example of British English which 
is marked by the word “naff” that is commonly used in 
the UK.

• In self-quarantine bcozzzz of the li’l Rona ! : By analyz-
ing some samples of our corpus, we notice that Ameri-
cans tend to use “self-quarantine” instead of “self-iso-
lation” which is the case of Britains. The word “Rona” 
is also present in American tweets as an alternative to 
Coronavirus.

• Officially, airlines cancel flights and the airspace is closed 
in the UK after the infection of 9 workers in the airplane: 
While this sentence reports an event in the UK, it is clear 
that it is written in the USA. In fact, due to the spelling 
differences, Britains use commonly the word “aeroplane” 
instead of “airplane.”

• No more bangs, the streets are all empty, I enjoy my cof-
fee on the balcony. Thank you corona :) : The meaning of 
the word “bangs” differs in the USA and refers to cutted 
hair across the forehead.

According to these reflections and examples, we formulate 
our main research questions as follows:

• RQ1 The use of a given language is not geographically 
bounded that different variants (e.g., British English, 
American English, Canadian English, etc.) can be dis-
tinguished. At a country level, regional linguistic features 
may be associated with a given language variant. How 
to determine these features and how to employ them in 
favour of the Coronavirus tracking?

• RQ2 Two users belonging to the same region are sup-
posed to have similar writing styles compared to another 
user from another region. This is due to some factors 
(grammar rules, spelling, etc.). How to quantify these 
similarities from Coronavirus related tweets?

• RQ3 When reporting a given topic like the spread of 
Coronavirus, users of the same region have approxi-
mately similar writing styles but only a few differences 

occur due to diverse preferences of writing. That is to 
say, in a given region, multiple misspelled variants can 
be associated with a single correct variant. Is it possible 
to determine the common location of users of that region 
despite the variety of their writing styles?

• RQ4 To perform the Coronavirus tracking, we have to 
train our model on a corpus of geolocated data in rela-
tion to this topic. Is it necessary to select local words for 
each region? How to deal with local words with a sparse 
usage outside its predefined geographic boundaries? Is it 
possible to extract geographic knowledge from nonlocal 
words?

• RQ5 Proportionally, amounts of noisy texts can increase 
with the emergence of new topics in relation to the Coro-
navirus or with the alteration of this disease description 
in time. Is it possible to guarantee the applicability of our 
geolocation strategy on unseen topics and OOV?

Practically, we support the choice of subword and word 
embedding models in Miura et al. (2016); Rahimi et al. 
(2017); Lau et al. (2017) to address RQ1. To the best of our 
knowledge, there are no prior studies to select the most per-
tinent combination of linguistic features that can be encoded 
by such models for the same aim. Hence, we proceed to the 
evaluation of certain ones. Through this evaluation, we try to 
answer RQ2. The applicability of word embedding models 
to address the rest of our research questions is conditioned 
by some factors that correspond to the rest of our research 
objectives:

• RO1 Support of the different writing styles: Our practical 
choices have to be made with consideration to: (i) multi-
ple descriptions of the same topic which corresponds to 
Coronavirus in our case and (ii) misspelled variants that 
characterize tweets.

• RO2 Disambiguation of the multiple meanings of words: 
Spatial indications of words depend on their senses. 
Unlike prior works, co-occurrences of words have to be 
calculated with consideration to their context and their 
meanings.

• RO3 Delimitation of local words dispersion: Given the 
presence of retweets and the reported actualities on Coro-
navirus, we have to delimit the dispersion of local words 
that may interfere with our geolocation results.

• RO4 Scalability and applicability on new datasets: 
Unlike grid-based models, we have to develop a scalable 
approach that is able to treat huge amounts of data on 
one hand. The proposed approach has also to handle new 
tweets probably containing new words and topics on the 
other hand.

Our research differs from related works in the way we treat 
words in tweets. We suppose that spatial indications of 
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words depend on their context and also on their order in 
tweets. Thereby, we think that boosting our word embed-
ding-based approach with a sequential modeling allows a 
better exploitation of the contextual information from the 
whole tweet and then a better encoding of linguistic features. 
To do this, we refer to recurrent neural networks mainly 
Bi-LSTMs. Implicitly, contributions of local and nonlocal 
words in the Coronavirus tracking task are non-static and 
can be used to distinguish between tweets, retweets and 
local/distant reported actualities. Additionally, based on a set 
of Apache frameworks, we propose a distributed architecture 
of DeepGeoloc that makes the treatment of huge amounts of 
data more practical. By extracting more linguistic features 
from these data, the applicability of DeepGeoloc on OOVs 
and new misspelled variants becomes more efficient.

4  Research context

As cited above, we refer to two types of neural networks 
(word embedding models and RNNs) to resolve the Coro-
navirus tracking task. Further details about their principles 
are provided in the following subsections.

4.1  Word embedding models

During the last decade, the computer science field witnessed 
a considerable resort to word embedding models Arora and 
Kansal (2019), Tshimula et al. (2020), Guellil et al. (2020), 
Kejriwal and Zhou (2020).The principle of these models 
(also referred to as distributed word representation) is to map 
related words to nearby points in the space given a corpus of 
relationships. That is to say, words occurring in similar con-
texts have similar vector representations and geometric dis-
tances between them reflect the degree of their relationships.

4.1.1  Word2vec

Recently, a prominent word-based model was proposed: Word-
2vec (Mikolov et al. 2013b). By applying Word2vec, the infer-
ence of contexts of a given word in which it appears is possible 
by embedding its co-occurrence information indirectly. Syn-
tactic/semantic relationships between words are also preserved 
when constructing their vector representations. In each con-
text, the number of words is limited by the "window size"(w) 
parameter. According to (Levy and Goldberg 2014), the larger 
w is the more the model tends to capture semantic information. 
Inversely, small values of w allow a better understanding of the 
words themselves and then to encode syntactic information. 
Another parameter denoted by "dimensionality" (D) is also 
required to set sizes of embedding vectors. Generally, dimen-
sions of embeddings are between 50 and 500. While small 
dimensions cause a lack of potentially significant relationships 

between words, large ones allow the construction of a com-
plete co-occurrence vector with each word of the corpus. Some 
dimensions are therefore likely to produce redundant informa-
tion without added value (Mikolov et al. (2013a)).

Note that two variants of Word2vec have been proposed 
based on Skip-gram and CBOW (continuous bag of words). 
Algorithmically, these variants are similar: While CBOW 
predicts the target word (e.g., "home") from the words of its 
context (“go back to [...]”), Skip-gram does the opposite.

CBOW variant. In general, the accuracy of CBOW is 
slightly better for frequent words. Less frequent ones will 
only be part of a collection of context words C that are used 
to predict the target word wi . Therefore, the model will assign 
low probabilities to the former. Mathematically, the aim of 
CBOW is to maximize the objective function f (� ) as indicated 
in Equation 1:

where |T| is the size of the vocabulary and ct is the set of 
words surrounding wi in both left and right sides.

Skip-gram variant. Differently to CBOW, Skip-gram 
learns to predict context words from a given word. In the case 
where two words (one appearing rarely and the other more fre-
quently) are placed side by side, they will be treated similarly. 
Otherwise, each word will be considered as a target and as a 
context at the same time. The objective function of this model 
is formulated as follows:

Mikolov et al. (2013b) introduced negative sampling algo-
rithms to learn more accurate representations for frequent 
words. For more details, given a word at the position i, the 
set of context words consists of positive examples. Negative 
examples N ic consist in turn of a set of randomly selected 
words from the vocabulary. According to this reasoning, the 
objective function is formulated in Equation 3:

Given the words wi and wc , the scoring function s(wi , wc ) is 
the scalar product between their vectors Vwi and Vwc:

(1)f (�) =
1

|T|

|T|∑

i=1

log[(wi|wi±ct)
]

(2)j(�) =
1

|T|

|T|∑

i=1

∑

c=i−ct ;c≠i

log p(wc|wi)

(3)log(1 + e−s(wi,wc)) +
∑

n∈Nic

log(1 + e−s(wi,n))

(4)s(wi,wc) = VT
wi
Vwc
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4.1.2  Word embedding models encoding subword 
information

Subword information such as characters is not supported by 
Word2vec. Some subword embedding models are developed 
latterly to emphasize the particularity of this information. 
Among these models, we find that FastText and Char2vec 
are examples of the most popular ones:

• FastText This model generates vector representations 
even for infrequent words by considering the smallest 
semantic units in words: the morphemes (Bojanowski 
et al. 2017). In fact, generated vector representations of 
words are the result of summing the vectors of all their 
n-grams. Then, described scoring function in Equation 4 
is transformed as follows: 

 where Gw ∈ {1,..., G } denotes the set of n-grams appear-
ing in wi and Zg is the vector representation of the n-gram 
g. Note that besides the word itself, FastText treats each 
word as a bag of character n-grams. For n-gram=3, 
"tweet" is represented as: <tw, twe, wee, eet, et> as well 
as the sequence <tweet>. By dint of this strategy, this 
model is able to distinguish all possible suffixes and pre-
fixes in addition to OOVs. Embeddings of the latter are 
obtained by averaging out those of their n-grams.

• Char2vec: Similarly to FastText, this model explicitly 
incorporates morphology into character-level composi-
tions (Cao and Rei 2016). For more details, each char-
acter k is mapped to a unique id. Given a corpus with d 
unique characters, a vector representation with D dimen-
sions is associated to k in a 1-hot format. After initializ-
ing the context lookup table using Word2vec , Char2vec 
splits words into prefixes, morphemes and suffixes and 
memorizes its sequence of characters using two LSTMs. 
This means that a forward LSTM memorizes word pre-
fixes and roots, while a backward LSTM encodes pos-
sible suffixes. As for OOV, Char2vec generates vector 
representations based on the similarities of these words 
with those in the training data.

• Mimick: Recently, Pinter et al. (2017) propose "Mimick" 
as a model for generating vector representations for OOVs 
by adopting the principle of imitation. The incorporation 
of new words is approached in a quasi-generative way. For 
more details, this model is able to learn the vector repre-
sentation of a given word only from its shape. Implemented 
to work at the character level, this model does not need 
to split words and it is based on a bidirectional design by 
employing two LSTMs like in Char2vec. In addition to 
characters, Mimick refers to embeddings that are gener-

(5)s(wi,wc) =
∑

g∈Gwi

ZT
g
Vwc

ated by another model (FastText, Word2vec, etc.) and uses 
them as input for a mimic training phase. Whatever trained 
model, obtained embeddings will be coupled with char-
acter embeddings that are randomly initialized to capture 
both shape and lexical features of words.

4.2  Sequence modeling with recurrent neural 
networks

A major problem arises when dealing with word embedding 
models which are static and context-independent. In fact, such 
models are not able to keep the order of words in a sentence 
when constructing vector representations. They only consider 
their occurrences as described above. So, the same vector 
representation is assigned to a given word regardless of its 
meaning that may differ from a context to another. In this 
regard, RNNs as context-dependent neural networks prove 
to be interesting since they support sequential modeling and 
even dependencies between words. They can, therefore, be 
used as an intermediate layer to perform NLP activities on pre-
trained embeddings. After feeding vector representations to an 
RNN as inputs, a set of matrix operations are performed. Then, 
based on a looping mechanism, the representation of previous 
inputs called hidden state is retained and utilized to output the 
prediction. Depending on the storage characteristics, long-term 
dependencies are more required by hidden-layer neurons pro-
portionally with a longer iterative process which can lead to 
the vanishing gradient problem (Hochreiter 1998).

4.2.1  LSTM

New trends towards proposing LSTM-based approaches 
become increasingly prominent (Yuan et al. (2018); Moham-
med and Kora (2019); Zhang and Zhang (2020); Bhoi et al. 
(2020); Ombabi et al. (2020); Cui et al. (2020)). An LSTM 
network is a specific kind of RNN that is proposed to resolve 
the vanishing gradient problem (Hochreiter and Schmidhu-
ber 1997). It is able to learn relationships between elements 
(words) in an input sequence by keeping both long- and short-
term memories. Its internal mechanism is based on three doors 
(gates) that control and decide the flow of information to throw 
away from the cell state. The latter can be represented as a 
long-term memory that stores information to be maintained 
for many time steps. The implementation of a single LSTM 
cell is done by the following composite functions:

where it is the input gate that decides what new information 
is added to the long-term memory; ft is the forget gate that 
decides what information should be kept or thrown away 

(6)

it = �(WiVw + Uiht−1 + bi)

ft = �(WfVw + Uf ht−1 + bf )

ot = �(WoVw + Uoht−1 + bo)
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from memory; ot represents the output gate that decides 
which part from the state cell makes it to the output; � is 
the sigmoid function that is adopted by the three gates as 
an activation function (it outputs a value between 0 and 1 to 
decide which information will be omitted from the memory); 
W ∈ RY∗D and U ∈ RY∗D correspond to the weight matrices 
where Y is the number of hidden units; b ∈ RY are the bias 
weights; Vw is the input (a D dimensional vector Vw ∈ RD ) at 
the current timestamp t and ht−1 is the output of the LSTM 
block at t-1. Given Vw , the hidden state ht−1 ∈ RY and the 
previous memory cell state ct−1 , LSTM calculates the current 
ht and ct as follows:

where Wz and Uz are the weight matrices and bc is the bias 
term.

4.2.2  Bi‑LSTM

The bidirectional LSTM (Bi-LSTM) is an extension of 
standard LSTMs that prove to be more efficient for sequence 
classification problems. By training two independent 
LSTMs, information from both past (backwards) and future 
(forwards) states is preserved. This allows a better under-
standing of the context and then more efficient learning on 
the problem in question. By studying recent works, we note 
a progressive tendency towards adopting Bi-LSTM architec-
tures on the top of an embedding layer in several approaches. 
In our case, given a word wi in a tweet such that i ∈ [1, k], 

(7)

c∼
t
= tanh(WzVw + Uzht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ c∼
t

ht = ot ⊙ tanh(ct)

we fed its vector representation Vwi into the Bi-LSTM hidden 
layer to capture its right ��⃗ht and left �⃖�ht context. Finally, we 
get an annotation for wi by concatenating this information:

where the size of each LSTM is denoted by L.

5  Our proposal

We present the architecture of our DeepGeoloc framework. 
The key idea is to train neural networks in order to identify 
latent linguistic features, which may serve to resolve the 
Coronavirus tracking task, from short and often noisy texts. 
After proceeding to a pre-processing phase, our efforts are 
allocated to: (i) select the most adequate word embedding 
model for our geolocation task and (ii) learn text represen-
tations by applying two stacked Bi-LSTM-based models 
(Fig. 1).

5.1  Text preprocessing

Given a corpus of geotagged tweets that are related to the 
Coronavirus pandemic, we start by retrieving tweets’ con-
tents in addition to geotags from their JSON files. Before 
proceeding to a series of preprocessing (tokenization, 
remove: @mentions, URLs and hashtags, etc.) by apply-
ing dedicated Gensim2 methods, these data will be exported 

(8)ht = [��⃗ht;
�⃖�ht], ht ∈ R2L

Fig. 1  Flowchart of DeepGeoloc: Yellow, orange, and green cir-
cles represent obtained word embeddings by applying, respectively: 
Word2vec/FastText /char2vec on Covid-large, the selected model 
with Mimick on Covid-large and the selected model on the Google 

Word Sense Disambiguation Corpora. As for blue circles, they repre-
sent final concatenated word embeddings. Red and mauve boxes cor-
respond to the sequences of hidden states h1

t
 and h2

t
 , respectively

2 https://radimrehurek.com/gensim/.
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in CSV format. Note that we don’t consider some pre-pro-
cessing methods that impact the shape of words such as 
stemming and lemmatization. In fact, we aim to study the 
contribution of misspelled variants in the resolution of the 
geolocation task. We refer also to the GeoPy3 geocoding 
service to convert numerical values of geotags (latitude/lon-
gitude) into the corresponding labels (regions’ names). This 
is essential to better differentiate geographical appurtenance 
of tweets.

5.2  Selection of the word embedding model

5.2.1  Embedding Layer

A dictionary that contains a map between unique words and 
their integer positions in the corpus is built in Gensim. Ini-
tialized with random weights, the embedding layer learns 
representations for all unique words wk in tweets Ti where Ti
=(w1,..,wk ). According to linguistic similarities, textual data 
are transformed into nearby numerical representations in the 
embedding space. Otherwise, a dense vector Vi is generated 
for each Ti:

where Embed denotes either Word2Vec, FastText and Char-
2vec in our case and vk is the vector representation of wk 
with vk ∈ RD.

5.2.2  Classification layer

We proceed to the determination of the most pertinent com-
bination of linguistic features that may serve to delimit the 
Coronavirus propagation from tweets. To do this, we com-
pare the above-studied word embedding models. We use 
vector representations that are produced by these models 
to train naive Bayes, decision tree, random forest and SVM, 
respectively. Generally, the results of word embedding mod-
els can be impacted by the training dataset and the nature of 
the task to be performed. It is therefore necessary to prove 
the choice of the one that performs better in our tracking 
task. In addition, we take into consideration the loss of infor-
mation when creating the embedding matrix from texts. All 
these constraints motivate us to evaluate the performance of 
each word embedding model using the four aforementioned 
ML algorithms. Thus, the adoption of Word2vec, FastText 
or Char2vec in the rest of the work is not arbitrary. Note that 
since these models are intended for processing words, a vec-
tor representation for each tweet has to be built. For this aim, 
we average the embedding vectors of its words to generate 

(9)Vi = Embed(Ti) = (v1, .., vk)

a single vector. The latter is used as input to the ML algo-
rithms. At the prediction level, we apply the argmax function 
to select for each tweet the class (region) that contains tweets 
with maximum linguistic similarities.

5.3  Learning text representations based 
on Bi‑LSTMs

We use weights of the selected word embedding model as 
inputs to the first layer of our Bi-LSTM network. We shall 
note that we don’t average embedding vectors of words at 
this level, as we aim to treat words instead of summarized 
information about the whole tweet. Thus, the first Bi-LSTM 
layer receives a sequence of dimensional vectors vk for each 
tweet Ti . We enrich these representations by other sense-
tagged vectors in order to disambiguate words with multiple 
meanings. To do this, we train the selected word embedding 
model on the Google Word Sense Disambiguation Corpora 
(Yuan et al. (2016)). For each word wk , we concatenate its 
two embeddings and feed them into a Bi-LSTM network:

5.3.1  Bi‑LSTM‑based WSD

We investigate at this level, the contribution of nonlocal 
words such as those having multiples meanings across the 
space. We introduce a WSD model to capture the geoseman-
tic distribution of words from a corpus of already geotagged 
tweets. As cited above, static word embedding models 
are context-independent that they assign the same vector 
representation to a given word. Thus, taking into account 
word meaning turns out to be essential to solve this prob-
lem jointly with an implicit refinement of the sensitivity of 
our framework towards common word structures between 
regions. The WSD task can be treated as a classification 
problem: given a tweet Ti that contains k words, a class label 
(word sense) may be associated to a word wt according to 
its right and left contexts c. For more details, considering 
sense-labeled contexts ( w′

1
,.., w�

t−1
,-, w�

t+1
,.., w′

k
 ) and all pos-

sible senses s of wt : w′
t1
 , w′

t2
,..,w′

ts
 , we try to determine the 

correct sense w∗
t
 as detailed in Equation 11:

Implicitly, w∗
t
 that may differ from one region to another, 

is inferred based on the comparison between encoded lin-
guistic features in its current contexts and those of which 
wt appears in the training data. As a result, the Bi-LSTM 
layer produces a sequence of word annotations: H1=h11,h

1
2

,..,h1
k
 where h1

t
 corresponds to the hidden state at the time t 

summarizing the information of the whole tweet Ti up to w∗
t
.

(10)v�k = v(Embed)
⨁

v(sense−Embed)

(11)w∗

t
= argmaxw�

ts
P(w�

ts
|w�

1
,w�

t−1
,w�

t+1
,w�

k
)

3 https://geopy.readthedocs.io/en/stable/.
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5.3.2   Attention layer

The sequence of hidden states H1 is fed into the second Bi-
LSTM layer. The latter corresponds to an attention layer that 
captures the most important information in a given tweet. 
In our case, this model can also be useful to delimit the 
importance of words that may interfere with our geoloca-
tion results. We aim to identify words that are supposed 
to be local but with unlimited geographical distribution. 
For example, the importance of a local word in a region A 
decreases in tweets shared from region B. As in the WSD 
model, we think that this can be discovered by analyzing 
encoded linguistic features from the contexts surrounding 
this word that we suppose in turn as indicators of locations. 
Through this strategy, we believe that we can distinguish 
between local and reported topics in tweets. After applying 
the attention mechanism as detailed in Equation 12, each 
annotation h2

t
 produced by the Bi-LSTM neural networks 

will be fed into one layer MLP to generate ut as a hidden 
representation. The importance of the word in question is 
measured as the similarity of its ut with the vector repre-
sentation of each context uw . The weight of the normalized 
importance �t is finally obtained via a softmax function with ∑

�t = 1. Thus, the resulting vectors of each word wt are 
calculated by  f (w):

5.3.3   Average Pooling

In order to obtain a tweet embedding T∗
i
 , we aggregate hid-

den states of its words h2
t
 by applying the average pooling 

as follows:

5.3.4   Softmax layer

This is the output layer with a softmax activation. It takes 
T* to predict the probability distribution over all class labels 
(regions).

(12)

f (wt) =
�

�th
2
t

ut = tanh(Wwh
2
t
+ bw)

�t =
exp(uT

t
uw)

∑
t exp(u

T
t uw)

(13)T∗

i
= AVG(�th

2
t
)

5.4   The distributed architecture of DeepGeoloc

Taking into account the massive volume of tweets and 
the velocity with which they are accumulated, we think 
that developing a distributed version of DeepGeoloc is 
interesting (Fig. 2). As depicted in Fig. 3, we refer to a set 
of Apache platforms where our distributed architecture is 
made up of three layers:

• The data collection layer: We start by collecting the 
JSON files of tweets. By adopting the Apache Kafka as 
a distributed platform, we can collect the flow of tweets 
in a near real-time.

• The data storage layer: We refer to HDFS (Hadoop Dis-
tributed File System) as data storage systems. In our 
case, such systems are advantageous since we deal with 
large corpora of geotagged tweets.

• The data processing layer: We use the Spark platform 
for a distributed data processing in two modes. For the 
batch mode (learning), tweets are retrieved from HDFS 
systems. For the stream mode (prediction), we refer to 
Spark Streaming as a system for processing data flows 
and it receives tweets that are collected by Kafka. Spark 
MLlib is also employed in our distributed architecture. 
This machine learning library is useful for evaluating 
the performance of word embedding models through a 
set of algorithms and functions (TF-IDF, naive Bayes, 
Softmax, etc.). In addition to Spark MLlib, we refer 
to Tensorflow as an advanced open-source library for 
creating deep learning models. We install this library 
on Spark clusters. Thus, it becomes possible to imple-
ment multi-layer LSTM networks with this platform.

Fig. 2  Distributed architecture of DeepGeoloc
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6  Experimental settings

6.1  Hyper‑parameters.

In Table 1, we describe the parameter settings that we use 
to build the three-word embedding models. We also detail 
used parameters to build the Bi-LSTM in Table 2.

6.2  Data

To the best of our knowledge, this is the first work that 
approaches the geolocation problem on a set of geotagged 
tweets that reports on Covid-19. In order to study English 
variations, we collect shared tweets from the UK and the 
USA via the twitter4j-stream API over the last two weeks 
of March 2021. We make the resulting corpus available to 
the research community through the following link4. Only 
English tweets that are tagged with longitude/latitude coor-
dinates and with mentioned users’ location are retained and 
merged into a single corpus. Each tweet must contain at 

least one of our predefined list of keywords (covid; covid-
19; corona; coronavirus; quarantine; Wuhan; epidemic; pan-
demic; mask; distancing; respiratory; isolation; infection; 
sars; asymptomatic; vaccination; UK; variant). Similarly to 
(Eisenstein et al., 2010), a gold location is assigned for a set 
of tweets published by the same user. We exclude users who 
follow more than 1000 other users and have more than 1000 
followers such as celebrities whose may have a large social 
graph connectivity. In addition, we keep only users with 
a minimum of four shared tweets. Our collection process 
ends up with Covid-large, a corpus that contains 5.126.078 
geotagged tweets sent by 393.257 unique users from the 
UK and the USA. In order to properly evaluate DeepGeoloc 
performance on smaller corpora, we refer to Covid-medium 
and Covid-small that are derived corpora from Covid-large. 
Covid-medium contains 2.414.236 geotagged tweets that 
are randomly selected and shared by 141.812 unique users. 
As for Covid-small, it is composed of 1.122.089 geotagged 
tweets sent by 94.622 unique users.

For these two corpora, we adopt the same re-partition 
of data. For more details, randomly chosen 80% of twitter-
ers are used for the training and the remaining 20% for the 
evaluation. Note that our framework is the first to resolve 
both tweet and twitterer geolocation problems. This is real-
ized by associating an index to each tweet in addition to its 
corresponding twitterer identifier.

6.3  Evaluation metrics

We use the accuracy metric to measure the geolocation per-
formance of our sub-models:

Accuracy = (true positive + true negative)/number of 
performed tests

where:

• True positive: The model correctly predicts the region of 
the tweet in question;

• True negative: The model correctly predicts the region 
to which the tweet does not belong.

Table 1  Word embedding 
parameters

Parameter Word2vec FastText Char2vec

Vector dimension 50,200,300,500 50,200,300,500 50,200,300,500
Learning rate 0.025 0.025 0.025
Window size 3, 5, 7 3, 5, 7 3 ,5, 7
Minimum count of words 5 5 5
Epoch 5 5 5
Negative sample 5 5 5
Number of threads 12 12 12
Length of n-grams – 3 –
LSTM dimension – – 256
Number of buckets – 2.000.000 –

Table 2  Bi-LSTM network parameters

Parameter Value

Vector dimension 100
Bi-LSTM layers 2
Bi-LSTM hidden units 2*200
Learning rate 0.2
Dropout 20%
Dropword 0%
Optimizer Stochastic gradient descent
Initialization of LSTMs Random uniform [−1; 1]
Training epochs 100.000 iterations
Training batch Size 100

4 https://drive.google.com/drive/folders/1KFr4cTahLVFrlk6PY8hYX
QVKHhohu3r1?usp=sharing
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We also use a second measure that is denoted by Accu-
racy @161 (Cheng et al. (2010)). This latter is proposed to 
improve the results of geolocation by increasing the possible 
predictions within a radius of 161km.

7  Experimental results and analysis

7.1  Evaluation of the word embedding models

Similarly to (Lai et al. 2016), we suppose that a good word 
embedding can be generated by allocating attention to three 
components: the model, the training parameters and the cor-
pus. We study the impact of these latter in the next parts.

7.1.1  Impact of models

As described in (Bojanowski et al. 2017), we train FastText 
with a size of n-grams equal to 3. Through Fig. 3a and b, we 
notice that this model achieves the best geolocation results 
when its generated vector representations are used as inputs 
to train the naive Bayes classifier. Less effective results are 
observed with random forest and decision tree. As for SVM, 
training this classifier on FastText, Word2vec or Char2vec 
vectors does not guarantee good results. This may be due to 
its linear nature which makes it less suitable when multiple 
classes (states) are defined.

From Fig. 3b and d, we find that with all classifiers, 
the Skip-gram variants perform better than CBOW. This 
observation can be explained by the ability of the Skip-
gram model to support rare or infrequent words. Due to the 
absence of writing rules in Twitter, we consider that mis-
spelled words constitute an important portion of infrequent 
words. The performance of Skip-gram is further improved 
when it is adopted by FastText which in turn supports mis-
spelled words and OOVs. As results, linguistic features can 
be better captured even from short and noisy texts like tweets 
and may serve to resolve the Coronavirus tracking task. This 
assumption needs to be validated through the application 
of another model that is devoid of the treatment of such 
words which is the case of Word2vec. For the Word2vec 
model, evaluating its performance by training the nonlinear 
classifier naive Bayes produces the best results similarly to 
FastText. While the latter achieves a maximum accuracy 
rate equal to 52.38%, the former achieves 47.21% when the 
Skip-gram variant is applied. The difference between these 
results can be explained by the fact that Word2vec treats 
words as non-decomposable units. In other terms, it assigns 
different vector representations to misspelled and correct 
variants of the same word. A deeper interpretation of our 
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Fig. 3  Evaluation of the impact of window size and dimensionality 
on FastText and Word2vec variants when applied on Covid-large
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results demonstrates that these representations are distant 
enough that they make the contribution of misspelled words 
in the geolocation task less important. Compared to Word-
2vec, a 2.54 % increase in terms of geolocation accuracy is 
observed when applying the Char2vec model and training 
naive Bayes with its vectors. Since Char2Vec uses Word2vec 
as a lookup table, it should generate better results as it sup-
ports the Skip-gram variant. However, the results obtained 
remain lower than those of FastText which can be explained 
by two facts: (i) the adoption of Word2vec limits the perfor-
mance of Char2vec given the problems identified above (ii) 
the Char2vec strategy, which is based on the fragmentation 
of words, is less efficient when applied on misspelled words.

In conclusion, we think that treating words as bags of 
n-grams and applying the Skip-gram variant enables better 
encoding of linguistic features from tweets. Among these 
features, we need to perform other experiments to determine 
which combination has higher spatial indications to track 
Coronavirus efficiently.

7.1.2  Impact of the training parameters on word 
embedding models

We consider that the window size w and the dimension D 
are the most determinant parameters to adjust the quality 
of word embeddings. Through Fig. 3, we demonstrate the 
impact of potential values of w and D in the geolocation 
task.

Impact of the window size For FastText, the more w 
increases, the better the geolocation results of tweets are. 
This shows that semantic features that are encoded by this 

model are more effective for our activity than syntactic ones. 
As described in Sect. 4.1.1, supporting subword informa-
tion such as characters is not allowed by Word2vec. Conse-
quently, the contribution of misspelled words in the geoloca-
tion of Coronavirus related tweets is less important. Similar 
to FastText, alterations of w have certain effects on Word-
2vec. The most optimal value of this parameter is equal to 5. 
This means that Word2vec cannot capture sufficient seman-
tic aspects with a smaller window. This finding is consistent 
with the limits outlined above. Otherwise, a limited context 
is not sufficient to capture the semantic features in a tweet, 
especially when it contains OOVs or misspelled words.

For char2vec, the single parameter to evaluate is w. From 
Fig. 4, we see that a contextual window of a size equal to 
5 allows having the best geolocation results. The little 
increase of accuracy rates compared to those of Word2vec 
demonstrates that morphological features are effective for 
the geolocation task. However, this efficiency is still limited 
when inaccurate morphological segmentation is carried out 
due to the presence of misspelled words.

Impact of the dimensionality The determination of 
optimal vector sizes depends on the task to be performed 
(Melamud et al. 2016). So, we have to investigate the impact 
of this parameter when carrying out the geolocation task on 
Coronavirus data. In the case of FastText, vectors of size 
300 provide the best results for tweet geolocation. Beyond 
this value, the performance of this model decreases. We 
can consider that w=300 is the marginal size for the geolo-
cation task. Such value is big enough to encode semantic 
information. For word2vec, we observe a fall in the results 
beyond the same value. Therefore, this model cannot keep its 
performance for larger dimensions. For more details, larger 
vectors are not able to capture semantic aspects as the dis-
tance between every two words becomes wider. This limit 
is further accentuated by considering the nature of tweets.

Based on all of these experiments, we find that the Fast-
Text model is the most suitable word embedding model for 
processing already geolocated tweets. In particular, it pro-
vides the best geolocation results for these short texts.

7.1.3  Impact of the corpus

Like models and training parameters, the corpus may impact 
the quality of word embeddings. We pursue our experiments 
by application of the Skip-gram variant of FastText with 
w=7 and D= 300, respectively, on Covid-large, Covid-
medium and Covid small.

Impact of tweet concatenation By studying (Eisenstein 
et al. 2010; Roller et al. 2012; Wing and Baldridge 2014), 
we find that they proceed all to the concatenation of tweets 
of a given user into a single document before applying their 
geolocation methods. Evaluating the impact of this operation 
turns out to be interesting, in particular that our geolocation 
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strategy is initially designed for the geolocation of individual 
tweets. Two scenarios arise at this level:

• FastText performs better on concatenated tweets. For 
each twitterer, all tweets are treated as a single vector 
representation. A single location is estimated as that of 
the class containing more similar tweets.

• FastText performs better on individual tweets. The loca-
tion of each tweet is estimated separately. The argmax 
function is finally applied to determine the location with 
the higher probability.

Obtained results from the evaluation of these scenarios 
are described in Table 3. Even with the diversity of tweets’ 
contents that describe the wide impact of Coronavirus on 
personal assessment, individual and collective lives, our 
geolocation strategy works better on concatenated tweets 
than on individual ones similarly to the other three refer-
ence works. Therefore, the FastText model remains able 
to support the multiplicity of topical relationships for the 
Coronavirus case. But, this ability has to be tested on a larger 
number of concatenated tweets per user which corresponds 
to one of our future perspectives.

As shown in Fig. 3b, FastText achieves 52.38% accu-
racy@161 by processing a single tweet. This rate is expected 
to increase when geolocating a given user after proceeding 
to the concatenation of his tweets. Surprisingly, it decre-
ments in our case and attends 50.49% only. We think that 
these results can be explained by wrong predictions due to 
similar writing styles in nearby regions. In addition, manual 
evaluation of a subset of tweets allowed us to note the pres-
ence of a considerable number of “retweets.” The decrease 
in the accuracy rate of our results shows that the majority of 

retweets are shared by users close to those who originally 
wrote them. This brings us back to the idea that the spread 
of topics on social networks can limit the performance of 
purely statistical geolocation methods.

Impact of corpus’ particularities From Table 4, we 
notice a large difference between the obtained results by 
application of FastText, respectively, on Covid large, Covid-
medium and COVID-small. For the latter, we find that the 
performance of FastText is the smallest, which implies that 
captured semantic features having spatial indications are less 
effective.

The evaluation of FastText on Covid-medium shows more 
competitive results. Our accuracy rates reach their maximum 
when dealing with contained tweets in Covid-large. There-
fore, we find that the volume of the corpus has more impact 
than the multiple topical relationships themselves. This find-
ing demonstrates the ability of FastText as a model created 
by Facebook to support the multiplicity of such relations 
on social networks. For the Coronavirus tracking task, this 
model better learns to differentiate between writing styles by 
capturing more semantic information from bigger amounts 
of training data. This ability is still conditioned as explained 
above, by the amount of data contained in a single entry. 
Compared to (Eisenstein et al. 2010; Roller et al. 2012; Wing 
and Baldridge 2014; Rahimi et al. 2017), our geolocation 
results are modest. This motivates us to investigate the lim-
its of FastText and to make additional improvements to our 
geolocation strategy. Note that in the rest of our experiments, 
we tried to reproduce the proposed methods in the reference 
works in order to test them on our Coronavirus corpora and 
then to properly evaluate the performance of our model.

7.2  Contribution of the Mimick model 
in the geolocation task

We try to improve our geolocation strategy by feeding Fast-
Text’s embeddings in the Mimick model. When applying 
FastText, the recognition of misspelled words and OOVs 
is conditioned by the similarity of their n-grams with those 
of words in the training corpus. Being a character-based 
embedding model, Mimick can improve the performance 
of FastText by incorporating more orthographic features.

The results of combining the representations of these two 
models for the geolocation of tweets and users are described 
in Table 5 and Table 6, respectively. We find that accuracy 

Table 3  Impact of the 
concatenation of tweets in 
Covid-large on the performance 
of FastText

Model Acc. Acc.@161

FastText 
(with 
concat-
enation)

39.28 50.49

FastText 
(without 
concat-
enation)

37.41 48.05

Table 4  Impact of corpus’ 
particularities on the 
performance of FastText

Corpora

Model Covid-large Covid-medium Covid-small

Acc. Acc.@161 Acc. Acc.@161 Acc. Acc.@161

FastText 39.28 50.49 36.79 43.06 27.21 35.19
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rates of user geolocation in Table 6 increase compared to 
those in Table 4. We can interpret this improvement by the 
contribution of misspelled words and OOVs that are recog-
nized by Mimick. The difference between the accuracy rates 
in Table 5 and Table 6 shows that the number of retweets 
and of shared tweets from nearby regions remains signifi-
cant. We can also explain this by the ability of FastText + 
Mimick to keep in some measure, its sensitivity to the spatial 
distribution of similar linguistic features.

7.3  Evaluation of the WSD model

By applying the WSD model, we note a considerable 
increase in the accuracy rates of our framework, in par-
ticular for single tweets in the Covid-small and the Covid-
medium corpora (Table 5). A smaller increase is observed 
for Covid-large as well. We think that the volume of train-
ing data is advantageous for: (i) learning more semantic 
relationships and (ii) differentiating the various usages of 
words according to their contexts. In our case, we estimate 
that the WSD model can be more effective on large corpora 

that contain other topics’ descriptions in addition to those 
related to Covid-19. Otherwise, the WSD may reach a state 
of stagnation at a certain level given the similarity of con-
tained contextual information in our corpora. We also notice 
that our model becomes more sensitive to words that have 
less significant spatial indications. Diversely, we show that 
our geolocation accuracy can be enhanced by consider-
ing even nonlocal words and delimiting their geosemantic 
distribution.

7.4  Evaluation of the attention model

Determining the most important words in a tweet by 
learning long-term dependencies is the subject of a final 
improvement in our geolocation strategy. To be compa-
rable with prior works that apply TF-IDF for identifying 
local words, we evaluate the contribution of this method 
on our geolocation results. For more details, we start by 
applying TF-IDF on the whole corpus similarly to (Lee 
et al. 2014). After training FastText, the vector represen-
tation of each word will be redefined by multiplying it by 

Table 5  Detailed results of our sub-models for the tweet geolocation task

Corpora

Model Covid-large Covid-medium Covid-small

Acc. Acc.@161 Acc. Acc.@161 Acc. Acc.@161

FastText+Mimick 45.38 57.11 39.25 48.41 30.21 41.07
FastText+Mimick+Des.Model 48.18 58.63 43.50 53.39 38.12 46.29
FastText+ TF-IDF 41.12 48.51 32.43 44.08 29.47 39.77
FastText+Mimick+Att. Model 53.89 64.16 45.87 54.11 35.69 45.58
DeepGeoloc 58.31 66.09 47.61 56.72 41.06 48.35

Table 6  Results of our model and baselines for the user geolocation task

Corpora

Model Covid-large Covid-medium Covid-small

Acc. Acc.@161 Acc. Acc.@161 Acc. Acc.@161

Eisenstein et al. (2010) 39.82 51.34 34.19 46.61 27.18 38.75
Wing and Baldridge (2011) (Uniform) 37.66 47.59 30.46 38.70 23.33 31.49
Wing and Baldridge (2011) (K-d tree) 36.14 46.12 28.40 37.93 23.96 29.40
Roller et al. (2012) 30.68 43.22 27.75 37.11 18.47 28.16
Rahimi et al. (2017) (MLP+ K-d tree) 48.90 57.19 41.39 48.03 31.71 39.21
Rahimi et al. (2017) (MLP+ K-means) 49.28 59.81 42.25 49.82 31.88 40.35
FastText+Mimick 43.14 54.93 35.60 45.89 24.37 36.21
FastText+Mimick+Des.model 46.20 56.61 38.25 47.19 30.64 39.84
FastText+ TF-IDF 37.39 45.04 29.72 40.35 22.47 34.69
FastText+Mimick+Att. model 51.13 62.89 41.97 48.62 29.08 37.17
DeepGeoloc 56.20 64.59 42.94 51.23 32.76 42.09
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the calculated weight. Note that we omit the evaluation of 
TF-IDF when the Mimick model is applied. In fact, the 
former assigns null values to non-observed words in the 
training data. Consequently, the combination of Mimick 
and TF-IDF will not be effective for the geolocation of 
new tweets that contain OOVs. Taking into account the 
differences in corpora sizes, described results in Table 5 
show that weighting of the words using TF-IDF performs 
slightly better on Covid-small than on Covid-medium and 
Covid-large. For these two latter, this low contribution can 
be explained as follows: The TF-IDF model determines the 
importance of a word according to its frequency in a given 
document. Then, its performance decreases as it is not 
able to establish a correspondence between a local word 
and its misspelled variants. This decrease is more marked 
when dealing with a larger corpus and where the word 
frequency might become wider. Trained on the vector 
representations that are produced by FastText and Mim-
ick, our attention model achieves better results for the two 
geolocation tasks. In this regard, we think that the impli-
cation of words’ orders in addition to their occurrences 
makes the redefinition of their importance in a given tweet 
more accurate. In convergence with our work, sensitivity 
towards local words decreases when linguistic features 
encoded by their contexts refer to other locations. Thus, 
we better distinguish the various uses of local words from 
bigger corpora notably after a WSD process as illustrated 
in Table 5 and Table 6. We also find from these tables that 
differences in the final results between the two geolocation 
activities decrease proportionally to the sizes of corpora. 
This can be interpreted by the role of sequential modeling 
for a better capturing of linguistic features on the one hand 
and differentiating spatial indications of words from their 
surrounding contexts on the other hand.

Our results are competitive compared to Roller et al. 
(2012) and Wing and Baldridge (2011) and close to those 
of Eisenstein et al. (2010) for the Covid-small corpus. In 
fact, Eisentein’s work is basically conceived to identify 
topics and their regional variations. It performs better on 
this corpus which reflects its performance to determine 
regional variations of topics. However, this work loses 
its effectiveness gradually when applied on bigger Cor-
pora like Covid-medium and Covid-large. A reciprocal 
impact of the corpora size on the geolocation approach 
is observed with the work of (Rahimi et al. 2017) which 
realises close results to ours when trained on Covid-small. 
For more details, the geolocation accuracy increases when 
applied on larger corpora. We explain this by the contri-
bution of the corpus size to capture deeper relationships 
between words. Compared to (Rahimi et al. 2017), our 
neural networks-based approach keeps its efficiency which 
reminds us of the role of extracted linguistic features spe-
cially when adopting a sequential treatment of texts to 

geolocate tweets. At last, we think that we have to evaluate 
the applicability of these works on new datasets to justify 
our empirical choices and to finally decide which geoloca-
tion methods are more effective.

7.5  Evaluation of DeepGeoloc’s scalability

As indicated in Table 4, our geolocation strategy performs 
better proportionally to the corpus size. In this context, the 
distributed architecture of DeepGeoloc can be advantageous 
to handle large volume of data and implicitly to enhance our 
geolocation results by treating more linguistic features during 
the training phase. Thus, evaluating its scalability seems to be 
interesting in order to validate our technical choices. To do 
this, we perform some experiments in a cluster of machines 
that operate with Linux Ubuntu 18.04. Each single machine is 
equipped with 500 of local storage, 8GB of main memory and 
4 CPU. We also use Apache Spark version 2.4.7, Apache kafka 
version 2.7.0 and Apache Hadoop version 2.9.2 for our exper-
imental architecture. Being an in-memory processing-based 
framework, input-output concerns are not considered when 
using Spark and consequently no latency problem is posed. 
This enables us to conduct our experiments more accurately 
regarding the impact of the data volume on the processing 
time. Note that we perform our experiments on subsets of con-
tained tweets in Covid-large with varied sizes by keeping the 
same data re-partition as described in Sect. 6.2. From Fig. 5, 
we obviously notice that the average processing time increases 
proportionally with the volume of data. For more details, we 
find that Spark becomes slower when we use larger data.

In addition to the data volume, we rate the horizontal 
scalability of DeepGeoloc’s distributed architecture based 
on the number of machines. Otherwise, we try to measure 
the impact of machines number on the average processing 
time. To do this, we create a Spark cluster and vary the num-
ber of machines from 3 to 8. Performed on Covid-large, the 
results presented in Fig. 5 show that the processing time 
depends on the cluster’s size: when the number of participat-
ing machine increases, data processing becomes faster. In 
our case, 8 machines allow better processing of our data in a 
shorter time. Using 7 machines, similar results are achieved 
so that we can limit our experimental architecture to this 
cluster size for a lower usage of computational resources. 
Finally, our experiments demonstrate that the distributed 
architecture of DeepGeoloc is scalable enough to process 
huge amounts of data in acceptable deadlines. In fact, taking 
into account the training parameters (D=300 and w=7) of 
our embeddings for the Coronavirus tracking and given that 
no Spark crashes occur during the experiments, we think that 
the average processing time could be acceptable especially 
when there is no need to reconstruct our models to handle 
new data as demonstrated later.
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7.6  Evaluation of DeepGeoloc’s applicability on new 
data

We aim to evaluate DeepGeoloc’s applicability when pro-
cessing new datasets. Our assessment is based on four main 
factors: (i) applicability of the model on new topics, (ii) 
applicability of the model on new tweets shared by different 
users from those in the training data, (iii) applicability of 

the model on new tweets from different periods of time and 
(iv) applicability of the model on the same English variant 
which makes the differentiation of regional variations more 
defiant. To conduct this assessment, we are collecting two 
corpora containing 527.542 and 988.135 geotagged tweets, 
respectively. As depicted in Fig. 6, gathered tweets in the 
first corpus are divided equally over 4 weeks time (week 1, 
week 2, week 3 and week 4). Those contained in the second 

Fig. 5  Impact of the machines 
number and data size on the 
average processing time
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one are more recent and spread equally over the last week 
of March and the first week of April 2021 (week 5 and week 
6). For both corpora, tweets are shared from five American 
states: Texas, New York, California, Florida and Kansas. 
We choose non-neighboring states as our goal is to measure 
the applicability of the model on new datasets rather than 
its performance against similar linguistic features. In regard 
to covered ahead topics, the first corpus describes the 2020 
presidential elections in the USA where selected keywords 
to collect tweets are the following: Trump, Biden, elec-
tions, Democrate, Republican, policy, campaign and vote. 
The second corpus deals with the impact of Coronavirus on 
the political orientation and decisions in those states where 
associated keywords are: Biden, senate, fund, legislative, 
Democrate, Republican and policy. Note that each tweet 
must contain at least: (i) one of our preselected keywords 
which are related to Coronavirus and (ii) one word that 
describes the current policy-related topics. Note also that 
the reason behind choosing such topics is to demonstrate the 
impact of political polarization on shared tweets about Coro-
navirus across the USA as discussed in Jiang et al. (2020). In 
order to investigate this impact, we find that filtering tweets 
by checking the presence of at least one word describing 
these topics in addition to Coronavirus keywords is feasible.

We point out that we filter contained tweets in Covid-
large and we keep only those shared from the USA as train-
ing sets. Applied on the two new corpora, the higher accu-
racy@161 rate (38.63%) is reached by DeepGeoloc. This 
result validates our choices of the word embedding models 
and Bi-LSTMs for an applicable geolocation strategy on new 
datasets. Technically, we demonstrate the ability of FastText 
and Mimick to construct vectors for new words from n-gram 
vectors and characters that constitute those words. Then, 
we believe that a sequential extraction of linguistic features 
using such neural networks can reduce possible failures of 
the geolocation models when processing new data even 
written in a single English variant. Less competitive results 
are generated when applying Rahimi et al. (2017) models. 
Taking into consideration the sizes of the new American 
datasets, the results obtained by applying the approach of 
Eisenstein et al. (2010) are unexpectedly insufficient. Hence, 
similarly to the rest of the works, these results prove that a 
statistical approach is less adequate to handle the diversity 
of writing styles despite the limited number of treated top-
ics. Finally, no significant impacts are observed for all works 
regarding the temporal aspect. This finding is validated at 
a month scale and may be different for longer data collec-
tion periods (years) which necessitates to be verified in our 
future works.

8  Conclusion and future work

In this paper, we approach the geolocation of both tweets and 
twitterers from a new perspective. We evaluate our model 
on a noticeable topic which is the propagation of the Coro-
navirus. For this aim, we deal with linguistic features in two 
variants of English language instead of relying on purely 
statistical methods to estimate the geographic distribution 
of words. We demonstrate that contextual information is 
effective to support misspelled variants and OOVs which 
prove in turn to have spatial indications. By testing a set of 
word embedding models, we find that semantic features are 
the most prominent information for the Coronavirus track-
ing task in addition to orthographic ones. We demonstrate 
also that sequential treatment of words by adopting a Bidi-
rectional long short-term memory (Bi-LSTM) architecture 
increases the geolocation accuracy. On the whole, our neural 
network-based approach shows that it is scalable enough to 
handle huge amounts of data using some Apache frame-
works. It also demonstrates its applicability on new and 
noisy textual components describing new topics attached to 
the Coronavirus even at a state level. In the future, we plan 
to evaluate the performance of DeepGeoloc when applied to 
differentiate variants of the same language at a more granular 
geographic scale. From a technical perspective, we plan to 
study the impact of additional parameters like the data col-
lection time, the length of character n-grams and the number 
of tweets per user. We also think that it will be interesting to 
evaluate generated results in near-real time. This is particu-
larly interesting where the processing time is crucial to plan 
emergency interventions and to delimit infected geographic 
areas by Coronavirus. To do this, we think that boosting the 
DeepGeoloc’s distributed architecture with quasi-recurrent 
neural networks may be an effective solution to geolocate 
tweets in shorter time. Finally, we seek to evaluate extended 
versions of RNNs that support spatial and temporal contexts 
to keep tracking of new actualities and personal assessments 
declared in tweets in relation to the Coronavirus pandemic.
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