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Abstract

Genome-wide association studies (GWAS) may be biased by population stratification (PS). We conducted empirical
quantification of the magnitude of PS among human populations and its impact on GWAS. Liver tissues were collected from
979, 59 and 49 Caucasian Americans (CA), African Americans (AA) and Hispanic Americans (HA), respectively, and genotyped
using Illumina650Y (Ilmn650Y) arrays. RNA was also isolated and hybridized to Agilent whole-genome gene expression
arrays. We propose a new method (i.e., hgdp-eigen) for detecting PS by projecting genotype vectors for each sample to the
eigenvector space defined by the Human Genetic Diversity Panel (HGDP). Further, we conducted GWAS to map expression
quantitative trait loci (eQTL) for the ,40,000 liver gene expression traits monitored by the Agilent arrays. HGDP-eigen
performed similarly to the conventional self-eigen methods in capturing PS. However, leveraging the HGDP offered a
significant advantage in revealing the origins, directions and magnitude of PS. Adjusting for eigenvectors had minor
impacts on eQTL detection rates in CA. In contrast, for AA and HA, adjustment dramatically reduced association findings. At
an FDR = 10%, we identified 65 eQTLs in AA with the unadjusted analysis, but only 18 eQTLs after the eigenvector
adjustment. Strikingly, 55 out of the 65 unadjusted AA eQTLs were validated in CA, indicating that the adjustment
procedure significantly reduced GWAS power. A number of the 55 AA eQTLs validated in CA overlapped with published
disease associated SNPs. For example, rs646776 and rs10903129 have previously been associated with lipid levels and
coronary heart disease risk, however, the rs10903129 eQTL was missed in the eigenvector adjusted analysis.
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Introduction

Genome-wide association studies (GWAS) have emerged as an

important approach to identify common polymorphisms underlying

complex traits. Allele frequency disparity due to systematic ancestry

differences, otherwise known as population stratification (PS), can

bias testing results and lead to artifactual associations, although

there is not yet consensus on how significant such a bias could be.

Two general strategies were developed to address the PS risk. First,

family-based design is robust against PS [1,2]. These methods are

effective but require first-degree relatives and a higher genotyping

cost to achieve similar power as population-based methods [3,4].

The successful recruitment of families is often difficult, especially for

late onset disease. As a result, the majority of GWAS are conducted

using a population-based design. The second strategy leverages the

fact that in the context of GWAS, the vast majority of the SNPs are

not associated with the trait under study and therefore can be used

to infer ancestry and evaluate/adjust for PS. One popular type of

methods, e.g. EIGENSTRAT, construct principle components

(PCs) on the data and infer a continuous axis of genetic disparity [5].

Since this method employees the study data ifself to construct the

eigenvector space, we term it as ‘‘self-eigen’’ method. Afterwards,

the GWAS tests are corrected by adjusting simultaneously for top-

ranked PCs, where the number of PCs can be determined either

analytically [5,6] or by permutation [7]. Based on high density SNP

array data, the self-eigen approaches demonstrated excellent

sensitivity. For example, substructure within the European

population was resolved using ,40,000 random markers [8].

High-density SNP genotyping has also elucidated the substructure

in the Finnish population and even individual ancestry at a very

high resolution [9].

Results

As a drawback, self-eigen does not directly infer origin and

magnitude of the PS, where such information is important,

especially for populations of recent admixture. Therefore, we

developed a new eigenvector based method (termed ‘‘hgdp-eigen’’)

to overcome this challenge. It constructs the eigenvector space

using the Human Genetics Diversity Panel (HGDP) [10], and then

projects the study cohort onto this space (Methods). The hgdp-

eigen consists two steps. The first step is actually running self-eigen

on the HGDP dataset, where our results were identical to previous

reports on this set [10] (Figure S1). Briefly, the first four PC

dimensions clearly separated populations with respect to the major

continents, and beginning with the the 5th dimension we were able

to see the finer separation among populations in Africa. In the

second step, we projected genotype of study subjects to the PC

space built in step 1 and derive the subjects’ coordinates on each

PC dimension.
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To assess the hgdp-eigen, we assembled a human liver-specific

cohort (HLC) comprised of over 1,000 individuals, broadly

representing three ethnic groups: Caucasian American (CA),

Hispanic American (HA), and African American (AA). DNA and

RNA were isolated from each of the liver samples, and genotype

data for each DNA sample was generated using the Illumina 650Y

genotyping array and expression data for each RNA sample was

generated using a whole-genome custom Agilent gene expression

array. To minimize the effects of assay artifacts, we applied very

stringent data quality filters [11]. We then applied both the hgdp-

eigen and self-eigen methods to the HLC genotype data

(Methods).

The hgdp-eigen took advantage of the HGDP PC space by

providing us with a global context of geographically defined world

populations (Figure 1). In this space the AA group in the HLC was

spread continuously between HGDP African and European

samples, although the center was closer to HGDP-African.

Leveraging HGDP reference populations also allowed us to

quantify the magnitude of PS. Three AA subjects were roughly

equal distance from the HGDP-European and HGDP-African

clusters, suggesting their ancestry component is half-European and

half-African. One AA subject was located in the HGDP-European

cluster, suggesting a possible classification error at or after the time

the sample was collected. From the 2nd and 3rd HGDP-PC

dimensions, we concluded there were no Asian or Native

American ancestries represented in AA (Figures 1A&B). The PS

in HA subjects were also well-detected (Figures 1C&D). The HA

subjects were located closest to the European cluster, however, also

showed substantial Native America and African Ancestries.

Although these subjects were mainly on the European-African

and European-Native American axes, several were located

between these two axes (Figure 1C), suggesting a three-way

population admixture (European, Africa and Native American).

Moreover, HA did not carry East Asia ancestry (shown in the 3rd

HGDP-PC dimension, Figure 1D). In contrast, AA samples

formed a fine line along the European-Africa axis (Figures 1A&B).

CA were more genetically homogenous compared to AA and HA

(Figures 1E&F). Nearly all samples were very close to the HGDP-

European cluster, although a number exhibited admixture with

the African, Native American and/or East Asian populations.

Again, the hgdp-eigen quantified the magnitude of admixture.

Interestingly, several self-reported CA subjects show ,50%

African ancestry, indicating considerable genetic admixture in

American Caucasian populations. We explored higher HGDP-PC

dimensions to further refine the origin of AA subjects from the

African continent (Figure S1G). Previous reports indicate that the

5th and 6th dimensions reveal the seven populations collected in

Africa (Figure S1E and Figure S1F) [10]; these seven populations

each formed tight clusters and were well-separated. The Bantu

groups from Kenya and South Africa were closely located in this

space [10]. Interestingly, the AA subjects in the HLC fell close the

Bantu cluster.

For comparison, we also applied the self-eigen to the HLC

(Figure 2). In the first three PC dimensions, the AA subjects largely

Figure 1. We conducted PCA on the HGDP dataset and observed consistent results as Li et al [10]. The HGDP-PC space can separate
world populations with excellent resolution (Figure S1)[10]. Further, we projected the liver study subjects to the HGDP-PC space. A and B, African
American subjects; C and D, Hispanic Americans; E and F, European Americans.
doi:10.1371/journal.pone.0008695.g001
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formed a continuous line, representing the admixture of African

and European ancestries. We identified a few outliers where the

origin of ancestry could not be determined (Figures 2A&B, red

color). The HA exhibited a V-shaped formation that, aided by the

conclusions drawn from Figure 1, we interpret as the admixture

of European, African and Native American ancestries

(Figures 2C&D). In Figure 2E&F, the CA formed a tight cluster

(similar as in Figures 1E&F), although there were a few outliers

with unknown origin of ancestry.

Given the acknowledged PS in even relatively homogeneous

populations (e.g. European or Finnish), it would be natural to ask

about the extent and impact of PS on GWAS in practical settings.

More importantly, despite the routine adjustment for PS in GWAS

(e.g. using self-eigen), no empirical studies have been carried out to

date to assess the impact of these adjustments on statistical power.

The large number of phenotypes scored in the HLC provides a path

to estimate the impact of PS on GWAS empirically [12,13], free of

assumptions underlying the theoretical arguments and simulation

studies. In the HLC, expression quantitative trait locus (eQTL)

mapping is a type of GWAS in which the association between gene

expression traits and SNP genotypes are tested. Because the structural

gene corresponding to the expression trait is always known, we are

able to partition the eQTLs identified for any given trait as cis-acting

(the structural gene corresponding to the expression trait and the

associated SNP are within 1 million base pairs) or trans-acting (the

structural gene and the associated SNP are more than 1 million base

pairs away or are located on different chromosomes)[11,14].

Given the considerable population differences observed for gene

expression traits [12], the extent of population stratification

exhibited in the HLC would likely introduce severe confounding

in eQTL mapping. Therefore, we attempted to adjust the eQTL

mapping for the subjects’ coordinates derived from either the

hgdp-eigen or self-eigen method. In total, three different analyses

were carried out: (1) unadjusted, (2) self-eigen adjusted, and (3)

hgdp-eigen adjusted (Tables 1, 2 and 3). Based on the TW statistics

[5,6], we adjusted the top three eigenvectors in AA and HA, and

the top ten eigenvectors in CA. Single-marker Kruskal-Wallis tests

were then conducted to identify associations for each trait-SNP

pair, and we empirically estimate the false discovery rate (FDR,

Methods)[13,15].

With a sample size of N = 979, we had excellent statistical power

to detect cis-eQTLs in the CA (Table 1). At a 10% FDR, we

detected 7,101 cis-eQTLs (unadjusted). In other words, expression

levels of 7,101 transcripts were significantly affected by DNA

variations near the corresponding structural genes. In contrast, the

self-eigen or hgdp-eigen adjusted analysis led to a slightly fewer cis-

eQTLs, suggesting that the adjustments either resulted in a

reduction in statistical power or reduced the number of artifactual

eQTL induced by PS. Nevertheless, the results of the three

analyses were highly consistent, indicating that PS is not a major

confounder in the CA group. Given the significant multiple-testing

penalty, we detected far fewer trans-eQTL, suggesting that even

larger sample sizes will be necessary to fully characterize the trans-

eQTL architecture in the liver tissue. The unadjusted and

Figure 2. We also applied self-eigen on the HLC, where the PC space was defined by the study sample itself. The African Americans (A
and B), Hispanic Americans (C and D) and European Americans (E and F) showed stratification similar but not identical to those in Figure 1.
doi:10.1371/journal.pone.0008695.g002
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eigenvector-adjusted analyses led to consistent trans-eQTL

detection results.

Due to the modest sample sizes in the AA and HA, we only had

statistical power to detect cis eQTLs (Tables 2 and 3). In contrast

to findings for the CA, both self-eigen and hgdp-eigen adjustments

greatly reduced the number of cis-eQTL in AA and HA. At a 10%

FDR, the unadjusted analysis revealed 65 cis-eQTLs in AA.

However, we only found 18 and 21 cis-eQTLs in the self-eigen

and hgdp-eigen adjusted analyses, respectively. Again, the reduced

number of eQTLs could result from (1) the adjustment

diminishing the statistical power, therefore, missing true positives,

or (2) the adjustment methods removing the false findings caused

by PS. We assessed these two possibilities via a number of paths.

First, we examined the consistency of the cis-eQTLs detected in

the three ethnic groups (Table S1 and Table S2). Strikingly, the

majority of the AA and HA cis-eQTLs (unadjusted analysis) also

existed in CA. Herein, we only looked at the self-eigen adjusted

CA results in order to rule out possible PS confounding in the CA

set. Of the 65 AA cis-eQTLs detected at a 10% FDR, 55 were also

detected in the CA. This represents a highly significant overlap

(Fisher Exact Test p-value = 1.45E-33). These confirmed eQTLs

were actually all very strong (p-value,1E-20, Table S1 and Table

S2) in the CA. Similarly, 29 of the 33 HA cis-eQTLs were also

detected in the CA. At a 10% FDR, we would expect about 6 and

3 false cis-eQTLs by random chance in the AA and HA,

respectively. Therefore, nearly all of the cis-eQTLs identified in

the AA and HA groups were confirmed in CA, suggesting they are

not PS artifacts.

In addition, we looked at the effect size of the eQTLs (10%

FDR). Because the test statistic for the Kruskal-Wallis test does not

reflect the effect size, we used the r2 estimate from the robust linear

model, Traitadj , genotype, to estimate effect sizes. (Here Traitadj

denotes the gene expression value already adjusted for age and

gender.) Among AA eQTLs, the mean, median and standard

deviation of r2 were 0.43, 0.46 and 0.14, respectively. Among HA

eQTLs, the mean, median and standard deviation of r2 were 0.54,

0.56 and 0.16, respectively. And for CA eQTLs that are confirmed

in AA or HA, the mean, median and standard deviation of r2 are

0.52, 0.54 and 0.19, respectively.

Further, we investigated whether the adjustment reduced

statistical power, leading to a failure to detect many true cis

eQTL that would have been found without the adjustment. The

large number of phenotypes (,40,000 expression traits) provided a

path to empirically estimate power (Methods) [13]. Following this

rationale, we conducted eQTL mappings with adjustment for the

top 1 or 2 eigenvectors, and compared statistical power (i.e.,

number of cis-eQTLs) in Table S3 and Table S4. Interestingly,

the statistical power generally followed the pattern: unadjusted

count . adjusted for the top 1 eigenvector count . adjusted for

the top 2 eigenvectors count . adjusted for the top 3 eigenvectors

count.

Finally, if we assume that many of the cis eQTLs in the AA and

HA were caused by PS and consequently excluded by eigenvector

adjustment, the false trait-SNP associations should bear the

following properties: (1) the gene expression trait should be

differentially expressed between subpopulations, and (2) the SNP

allele frequency should be different between the subpopulations. In

fact, for any gene whose expression varied significantly between

subpopulations and any SNP whose frequency also varied

significantly between subpopulations, we would detect associations

for such trait-SNP pair. Because SNPs with different allele

frequencies among subpopulations should uniformly distribute

throughout the genome, we would expect to see the same number

Table 2. eQTL Mapping in African American (N = 59).

Adjustment 10% FDR 30% FDR

unadj cis-eQTL p-valuecutoff 9.5e-6 2.9e-5

trans-eQTL p-valuecutoff - -

number of cis-eQTLs 65 132

number of trans-eQTLs 0 0

Self - eigen cis-eQTL p-valuecutoff 2.8e-6 4.7e-6

trans-eQTL p-valuecutoff - -

number of cis-eQTLs 18 22

number of trans-eQTLs 0 0

Hgdp -eigen cis-eQTL p-valuecutoff 6.2e-6 8.9e-6

trans-eQTL p-valuecutoff - -

number of cis-eQTLs 21 30

number of trans-eQTLs 0 0

doi:10.1371/journal.pone.0008695.t002

Table 1. eQTL Mapping in Caucasian American (N = 979).

Adjustment 10% FDR 30% FDR

unadj cis-eQTL p-valuecutoff 7.9e-5 3.6e-4

trans-eQTL p-valuecutoff 6.0e-9 3.2e-8

number of cis-eQTLs 7101 10044

number of trans-eQTLs 607 982

Self - eigen cis-eQTL p-valuecutoff 7.4e-5 3.3e-4

trans-eQTL p-valuecutoff 5.9e-9 2.6e-8

number of cis-eQTLs 6958 9647

number of trans-eQTLs 582 861

Hgdp -eigen cis-eQTL p-valuecutoff 8.3e-5 3.6e-4

trans-eQTL p-valuecutoff 8.0e-9 2.6e-8

number of cis-eQTLs 7063 9847

number of trans-eQTLs 613 836

doi:10.1371/journal.pone.0008695.t001

Table 3. eQTL Mapping in Hispanic American (N = 49).

Adjustment 10% FDR 30% FDR

unadj cis-eQTL p-valuecutoff 6.1e-6 3.5e-5

trans-eQTL p-valuecutoff 1.0e-7 1.0e-7

number of cis-eQTLs 33 105

number of trans-eQTLs 1 1

Self - eigen cis-eQTL p-valuecutoff 7.9e-6 2.4e-5

trans-eQTL p-valuecutoff - 2.4e-7

number of cis-eQTLs 21 50

number of trans-eQTLs 0 3

Hgdp -eigen cis-eQTL p-valuecutoff 9.3e-6 2.0e-5

trans-eQTL p-valuecutoff - -

number of cis-eQTLs 24 55

number of trans-eQTLs 0 0

doi:10.1371/journal.pone.0008695.t003
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of cis-eQTL detected no matter where we decided to place the

2 Mbp window defining the cis region of interest. That is, if we

randomly chose 2 Mbp windows for each gene expression trait

and counted the number of pseudo cis-eQTL detected, we would

expect it to be close to the number of true cis eQTL. We

performed this simulation in the HLC for the AA and HA,

randomly placing the 2 Mbp window for each gene and conduct

cis-eQTL mapping for over 1000 runs. We found an average of

9.92 and 2.03 pseudo cis-eQTLs in AA and HA, respectively,

significantly less than the 65 and 33 true cis-eQTL. Therefore, we

are able to reject our hypothesis that the cis-eQTL detected in the

AA and HA were mostly driven by PS and support of the

hypothesis that the majority of cis-eQTLs in the unadjusted

analysis were real.

To illustrate the impact adjusting for PS can have on

identifying disease susceptibility loci, we intersected the HLC

eQTLs with the set of SNPs in the public GWAS databases

identified and replicated as associated with common human

disease [16]. We and others have demonstrated that eQTLs are a

powerful tool for interpreting pathways underlying GWAS hits

and extend our understanding for SNP-disease associations

[11,17,18]. In the AA unadjusted analysis, we identified the SNP

rs646776 as significantly associated with SORT1 and PSRC1

liver expression. These results were also confirmed in the CA.

This SNP has been shown to associate with lipid levels and

coronary heart disease risk [18–20]. There are many genes in the

region of the rs646776 locus (Figure S3), and CELSR2, PSRC1

and SORT1 genes have been suggested to mediate the function

of this SNP (or functional SNPs in LD)[11,18–20]. However, self-

eigen or hgdp-eigen adjusted analysis only found the rs646776-

SORT1 eQTL, but missed the rs646776-PSRC1 association. In

addition, the SNP rs10903129 has been associated with lipid

levels and coronary heart disease risk and the gene TMEM57 has

been implicated as the main candidate susceptibility gene in this

locus[21]. Again, using the 59 AA subjects, the unadjusted

analysis revealed the rs10903129-TMEM57 eQTL, but not in

the adjusted analysis.

Discussion

In this study, we have analyzed three major ethnic groups in

the United States, Caucasian American, African American and

Hispanic American. Hgdp-eigen methods provided valuable

information on the origin of the admixtures. For example, it

revealed the African and Native American components in the

HA genome. Second, HGDP-PC quantified the magnitude of the

PS. In contrast, the self-eigen method simply detected the PS

without inferring the origin of the genetic flow and the

magnitude. Lastly, the HGDP-PC space was constructed on

the HDGP sample, capturing the primary allele frequent

differences of world populations, robust to the study cohorts.

Comparing Figures 1C and 2C, we found the CA subjects were

better separated out in HGDP-PC space. The HDGP-PC

approach was robust in capturing the African, East Asian, and

Native American components in the CA genomes, however, the

self-eigen method was heavily influenced by a few outliers. For

sample, the CA subjects showed a clear Y-formation in HGDP-

eigen space (Figure 1F), reflecting the European-African, and

European-Asian and European-Native American admixtures.

We can also identify a few subjects midway between the HGDP-

European and HGDP-African clustered, suggesting they have

roughly an equal dosage of European and African ancestry. In

contrast, the CA subjects formed a tight cluster in the self-eigen

space (Figure 2F), with a few outliers spreading out. The 3rd

dimension is primarily defined by two outliers (Figure 2F) with

unknown ancestry. On the other hand, although the HGDP-

eigen approach is very useful in separating and visualizing the

population substructures, it may not be the most appropriate

method for adjusting for PS in association tests. Because HGDP-

eigen includes many eigenvectors that are irrelevant for a

particular study cohort (e.g. East Asian in our present study), use

of these eigenvectors in a cohort such as ours may ‘‘correct’’ for

biases that are not present. The self-eigen approach would be

adequate in adjusting PS in association tests.

Assessing the extent of PS confounding is an important but

challenging task. There were attempts to address this issue using

simulation and small empirical datasets (e.g. the lactase gene) [6].

However, the simulations were based on assumptions that might

not be true in practice, and the empirical data points were too few

to draw meaningful statistical inferences [6]. Here, we relied on

,40,000 expression traits. Many such traits showed different

expression levels in various distributions [12], therefore, the eQTL

mapping were subject to PS confounding. Interestingly, although

PS was clearly detected in our liver study CA subjects, it did not

lead to a severe bias. The eigenvector-adjusted eQTLs were

consistent with the naı̈ve results, implying it is generally safe to

conduct regular GWAS tests in cohorts of European ancestry.

Further, while PS is a bigger issue in AA and HA, most of the

discoveries we identified are likely to be real since they were

confirmed in the Caucasian cohort. In addition, simulation

showed there should be an average of 9.92 and 2.03 false cis-

eQTLs in AA and HA, respectively, many fewer than the total

number of positives we identified. Due to the small sample size of

AA and HA, we are capable of capturing only the strongest signals,

which seem to be real given the supporting evidence from multiple

sources. Such results suggest that even for GWAS on AA and HA

population, the strong findings are not likely to be a PS artifact. In

any case, larger sample sizes are necessary to examine whether

weaker associations found in admixture population are more

vulnerable to PS.

In contrast, the eigenvector-adjustment greatly reduced the

number of cis-eQTL findings in AA and HA, due to a loss of

statistical power. The underlying rationale is easy to understand.

Many SNPs showed considerable allele frequency differences

(e.g. $0.1) among ethnic groups. In our data, 60.1% SNPs

showed $0.1 allele frequency difference between AA and CA

(Figure S2). If the true causal SNPs also had such characteristics,

within AA subjects, they would have different allele frequencies

between (1) subgroups with more African genetic component and

(2) subgroups with more European genetic component. Corre-

spondingly, the expression trait value would also be different

between the two subgroups. In the unadjusted analysis, this

eQTL could be identified passing a stringent FDR (e.g. 10%).

However, the eigenvector adjustment removed part of the trait

value and allele frequency difference between the two subgroups,

and as a result, this eQTL could be missed due to the power

reduction. From the statistics viewpoint, the eigenvector

adjustment controlled the type I error at the cost of the statistical

power (inflated the type II error). Such a trade-off is particularly

prominent in admixed populations. Alternatively, our results

suggest that because the bias introduced by PS may not be as

significant as once feared and that performing genome-wide

association studies in admixed populations may be a reasonably

strategy in increasing samples sizes to maximize power to detect

associations. Although, until the impact of PS on GWAS is fully

understood, it may be prudent to replicate associations identified

from such studies in independent homogenous populations to

protect against PS-induced associations.

PS and Impacts on GWAS
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Methods

Liver tissue samples
Liver tissue samples were collected from ‘‘Liver Study subjects’’,

whose detailed characteristics were reported in a separate article

[11,22]. The sample collection was a joint effort of three

independent institutes, Vanderbilt University, the University of

Pittsburgh, Massachusetts General Hospital and Merck Research

Laboratories. About half the subjects are healthy individuals and

half are obese patients. The ‘‘Liver study’’ is a retrospective study,

and self-reported ethnicity information is gathered in the interview

questionnaire. All samples came from individuals who provided

written informed consent to make their samples available for

scientific research. In addition, all of the samples and patient data

were approved for use in this study by IRBs specific to each of the

participating organizations. DNA specimens were extracted and

genotyped on the Ilmn650Y array. Additionally, we purified RNA

from the tissue samples and measured the approximately 40,000

gene transcription levels using the Agilent platform. In total, we

have successfully mRNA profiled and SNP genotyped 979, 59 and

49 self-reported Caucasian, African and Hispanic Americans,

respectively. Furthermore, we filtered out SNPs with call rate

,90%, and totally 574K autosomal SNPs were used in the

analysis.

Since the liver tissues [11,22] were collected by two separate

efforts and gene expression profiling was carried out at different

times for each group, we normalized the two expression datasets

at the gene level to avoid systematic bias. In brief, for every

reporter, we applied quantile normalization (implemented in the

Affy library of the R statistical package) and forced the trait

distribution to be identical between the two tissue sets. We

compared the expression levels for AA, HA and CA (randomly

selected N = 59 CA samples) using a pair-wise t-test. For AA vs.

CA, HA vs. CA, and HA vs. AA, 1.7%, 1.2%, and 0.4% of the

genes, respectively, were detected as differentially expressed at

the 0.01 level. We note that with such a small sample size (N = 49

HA subjects), the t-test may have modest statistical power to

identify differences.

Human Genetics Diversity Project (HGDP)
938 unrelated individuals from 51 populations (collected in

Europe, Middle East, Central/South Asia, Africa, East Asia,

America and Oceania) of the HGDP were successfully genotyped

using Ilmn650Y [10], and data has been made available to the

public. Principal components (PCs) built on over 600K assayed

SNPs provide high resolution to separate subjects from different

continents. We implemented the EIGENSTRAT algorithm [5],

and derived identical results as Li et al [10]. Further, we projected

the deLiver subjects to PC space defined by HGDP data (termed

as HGDP-PC space) and examined population admixture in our

samples. The Caucasian Americans clustered tightly and collocat-

ed with HGDP Europeans. However, the eight African Americans

show certain degree of admixture, in another word, deviation from

the HGDP African populations towards the HGDP European

cluster. Such results suggest European genetic components in

African American samples.

Principal component analysis. To avoid artifacts due to

linkage disequilibrium we thin the data by excluding highly

correlated SNPs. Then we conducted two versions of PCA. First,

the standard methods as implemented in the Eigensoft package

[23]. The liver dataset was used to create the PC space, and the

subjects’ coordinates in every dimension of this space were

recorded. In the second PCA version, we constructed the PC space

using the HGDP data (termed as HGDP-PC space), and then

projected the liver study subjects to this space and derived the

coordinates for each dimension. We also computed the Tracy

Widom (TW) statistics, which could determine the number of PCs

to be adjusted for [5,6]. In AA and HA, the top three TW statistics

were positive, as results, we adjusted the first three PCs in GWAS.

Because of the large sample size (N = 979) of CA, many TW

statistics were positive, and we adjusted for the first ten PCs in

analysis.

Association testing. Kruskal-Wallis (KW) one-way analysis

of variance was employed in testing association between gene

expression traits and genotypes. The KW test can be considered as

the non-parametric counterpart to ANOVA for testing equality

among groups (e.g., the three genotype groups corresponding to a

given SNP). This test does not assume the traits are normally

distribute and therefore is more robust to outliers and violations of

other assumptions important for successful application of

parametric tests. In brief, the KW test was applied on a given

trait-SNP pair by first ranking all trait values regardless of

genotype, assigning tied values the average of the ranks they would

have received had they not been tied. Then we computed the test

statistic (K) as

K~ N{1ð Þ

Pg

i~1

ni ri.{ rð Þ2

Pg

i~1

Pni

j~1

rij{ r
� �2

where ni is the number of subjects for genotype i; rij is the rank of

subject j who carried genotype i; N is the entire sample size; and g

denotes the number of genotype groups (either 2 or 3 for the

groups tested). Finally, the p value was derived using the

approximation Pr(x2
g-1$K). Before testing the gene expression

traits, we adjusted them for age, gender and PCs. This adjustment

was carried out by fitting a robust linear model (using the rlm

function in the R statistical software package) to each of the gene

expression traits,

Gene Expression Trait * age z gender z PC1z . . . z PCi

where we adjusted up to three of the most informative PCs.

Afterwards, the residual of the linear model was used as input into

the Kruskal-Wallis test.

Empirical Estimation of FDR. We repeated the eQTL

mapping analyses on permuted gene expression data sets to

empirically estimate FDR. In each permutation run, we first

randomized the patient IDs in the expression file, breaking any

association between expression traits and genotypes, while leaving

the respective correlation structures among gene expression traits

and SNP genotypes intact. Then we repeated the association tests

for every expression trait and genotype pair in the permuted sets,

leading to a set of null statistics for each permutation. A standard

FDR estimator was then applied to the resulting association

statistics, as previously carried out on observed and permutation

null statistics [15].

Empirically estimation of statistical power using large

number of phenotypes. Although we could not determine

whether a particular discovery was true or false, at a given FDR

(e.g. 10%) we knew the proportion (e.g. 90%) of discoveries that

were true. Therefore, at a fixed FDR, when two methods

resulted in a different number of discoveries (termed as N1 and

N2) there would be (1-FDR)*N1 and (1-FDR)*N2 true findings,

where N1/N2 is then proportional to the relative power of the

two methods.
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Supporting Information

Table S1 Cis eQTL detected in the African American samples

from the human liver-specific cohort.

Found at: doi:10.1371/journal.pone.0008695.s001 (0.03 MB

XLS)

Table S2 Cis eQTL detected in the Hispanic American samples

from the human liver-specific cohort.

Found at: doi:10.1371/journal.pone.0008695.s002 (0.03 MB

XLS)

Table S3 eQTL Mapping in African American, adjusted for the

top 1 or 2 eigenvectors. Fifty-five of the 65 AA cis-eQTLs

(detected using unadjusted traits at 10% FDR) also exist as CA cis-

eQTLs (detected using self-eigen adjusted traits at 10% FDR),

with an enrichment pvalue = 1.45E-33.

Found at: doi:10.1371/journal.pone.0008695.s003 (0.05 MB

DOC)

Table S4 eQTL Mapping in Hispanic American, adjusted for

the top 1 or 2 eigenvectors. Twenty-nine of the 33 HA cis-eQTLs

(detected using unadjusted traits at 10% FDR) also exist as CA cis-

eQTLs (detected using self-eigen adjusted traits at 10% FDR),

with an enrichment pvalue = 4.87E-20.

Found at: doi:10.1371/journal.pone.0008695.s004 (0.04 MB

DOC)

Figure S1 We conducted PCA on the HGDP dataset and

observed consistent results as Li et al. A, the 1st PC separates

Africa vs. Non-Africa populations and the 2nd PC separates East

Asia, Native America and Oceania from other Non-Africa

populations; B, the 3rd PC separates Native America from other

populations; C, the 4th component separates Oceania from others;

D, the 5th component separates different populations in Africa; E,

the 6th component continues to separate different populations in

Africa; F, in the space formed by the 5th and the 6th HGDP-PCs,

African populations of various culture/language/locations were

well separated; G, we projected the AA subjects to the 5th and 6th

HGPD PCs, interestingly, the AA samples were located very close

to Bantu groups.

Found at: doi:10.1371/journal.pone.0008695.s005 (9.23 MB TIF)

Figure S2 We compared the allele frequency among the three

ethnic groups of the liver study (A, African America vs. Caucasian

American; B, African America vs. Hispanic American; and C,

Caucasian American vs. Hispanic American). A considerable

percentage of SNPs showed large allele frequency disparities (e.g.,

, = 0.1). Further, we applied simple Chi-square test and found

many of the differences were significant (D, African America vs.

Caucasian American; E, African America vs. Hispanic American;

and F, Caucasian American vs. Hispanic American).

Found at: doi:10.1371/journal.pone.0008695.s006 (8.82 MB TIF)

Figure S3 There are many genes near the SNP rs646776 locus,

including PSRC1 and SORT1.

Found at: doi:10.1371/journal.pone.0008695.s007 (1.80 MB TIF)
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