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ABSTRACT Genomic selection (GS) has become viable for selection of quantitative traits for which marker-
assisted selection has often proven less effective. The potential of GS for soybean was characterized
using 483 elite breeding lines, genotyped with BARCSoySNP6K iSelect BeadChips. Cross validation was
performed using RR-BLUP and predictive abilities (rMP) of 0.81, 0.71, and 0.26 for protein, oil, and yield,
were achieved at the largest tested training set size. Minimal differences were observed when compar-
ing different marker densities and there appeared to be inflation in rMP due to population structure. For
comparison purposes, two additional methods to predict breeding values for lines of four bi-parental
populations within the GS dataset were tested. The first method predicted within each bi-parental
population (WP method) and utilized a training set of full-sibs of the validation set. The second method
utilized a training set of all remaining breeding lines except for full-sibs of the validation set to predict
across populations (AP method). The AP method is more practical as the WP method would likely delay
the breeding cycle and leverage smaller training sets. Averaging across populations for protein and oil
content, rMP for the AP method (0.55, 0.30) approached rMP for the WP method (0.60, 0.52). Though
comparable, rMP for yield was low for both AP and WP methods (0.12, 0.13). Based on increases in rMP

as training sets increased and the effectiveness of WP vs. AP method, the AP method could potentially
improve with larger training sets and increased relatedness between training and validation sets.
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Quantitative traits have proven difficult to select for using marker-
assisted selection (MAS) based on the fact that they are polygenic and
loci responsible for variation in these traits often have small effects.
Meuwissen et al. (2001) introduced the concept of genomic selection
(GS) to take advantage of genotypic data to predict the performance
of genotypes for complex traits. The main difference between MAS

and GS, is that GS utilizes all markers across the genome to predict
the performance of traits of interest, while MAS relies on a few
markers to select specific QTL often associated with qualitative
traits. Heffner et al. (2010) reported that GS provided threefold and
twofold genetic gain per year compared to MAS for maize and winter
wheat when costs were equivalent. With the advent of new genotyping
platforms, such as single nucleotide polymorphism (SNP) beadchip
arrays, Diversity array Technology (DArT), and genotyping-by-
sequencing (GBS), high-throughput genotyping has made GS more
affordable and efficient (Jain et al. 2017). The basic concept behind
GS is that a set of breeding materials is used as a training set (TS). The
TS is both genotyped and phenotyped for traits of interest in order to
calculate marker effects which then predict performance of a test set
that has been genotyped but not phenotyped. These phenotypic pre-
dictions are often referred to as genomic estimated breeding values
(GEBVs). To evaluate the effectiveness of GS, a process referred to
as cross-validation is often implemented. Cross-validation involves
bisecting a set of lines which has been both genotyped and phenotyped
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into a TS and a validation set (VS). The TS is used to estimate marker
effects to calculate GEBVs for the VS. The GEBVs are correlated with
the observed phenotypic values of the VS and this determines pre-
dictive ability (rMP) (Combs and Bernardo 2013; Jacobson et al. 2014).
The higher the correlation coefficient, the higher the predictive abil-
ity, and the more successful prediction is deemed to be. Prediction
accuracy (rMG) is sometimes estimated as rMP divided by the square
root of heritability (

ffiffiffiffiffi

h2
p

) as a way to estimate success relative to
phenotypic selection (Dekkers 2007). Studies have extensively ex-
plored GS across many crops but most extensively in maize (Zea
mays L.) (Bernardo and Yu 2007; Lorenzana and Bernardo 2009;
Albrecht et al. 2011; Guo et al. 2012; Riedelsheimer et al. 2013;
Crossa et al. 2014; Jacobson et al. 2014, Lian et al. 2014) and wheat
(Triticum aestivum L.) (de Los Campos et al. 2009; Heffner et al.
2011a; Heffner et al. 2011b; Poland et al. 2012; Crossa et al. 2014;
Heslot et al. 2014; Rutkoski et al. 2015; Isidro et al. 2015). There are
several factors that often influence the accuracy of GS. These factors
include but are not limited to trait architecture and heritability, train-
ing set size and composition, marker density, and statistical model
for estimation of marker effects (Jannink et al. 2010).

Soybean (Glycine max L. merr) accounted for 61% of the world’s
oilseed production in 2016 (American Soybean Association 2018) and
is a vital source of both protein meal for animal feed and vegetable oil
for human consumption (Huth 1995). There have been several studies
examining the potential for GS in soybean but relatively few compared
to maize and wheat. Jarquín et al. (2014) was one of the first studies
examining the potential for GS in soybean for seed yield prediction.
They reported a prediction accuracy of 0.64 for seed yield across
301 experimental lines from the University of Nebraska-Lincoln
soybean breeding program and found little improvement in accuracy
when training set size (NP) exceeded 100 breeding lines. Predicted
success when performing GS tends to be higher in studies reporting
results with prediction accuracy vs. predictive ability, especially for
lower heritability traits. The BARCSoySNP6K iSelect BeadChip was
used to genotype a mixed population of 235 soybean cultivars by
Ma et al. (2016) and potential for GS was examined for plant height
and seed yield. They reported an increase in prediction accuracy of
4% for yield when using haplotype block-based markers (rMG = 0.49)
vs. random (rMG = 0.48) or equidistant marker sampling (rMG = 0.47).
The potential to utilize GS has also been investigated within larger
populations such as the SoyNAM population which is composed of
over 5500 lines across 40 bi-parental populations (Xavier et al. 2016).
Traits investigated were seed yield, days to maturity, plant height, pod
number, node number, and pods per node. They detected minimal
difference in accuracy across 14 statistical models (rMG = 0.60 - 0.61)
as well as minimal difference between genotyping densities of
4077 (rMG = 0.60) vs. 1020 SNPs (rMG = 0.61). They determined
the most important factor for improving accuracy was to increase
training set size as they examined NP’s from 250 (rMG = 0.38) up to
4000 lines (rMG = 0.75). They reported significant improvements
in accuracy up to 2000 individuals. Thus far, there is no GS study
in soybean with materials from later maturity groups. Soybean was
second behind corn in terms of total acreage planted in 2017 (USDA-
NASS 2017) and considering the importance of soybean on a national
and global level, more studies are needed to characterize the potential
for GS in soybean for complex traits.

The objective of this study was to characterize the ability to
perform GS in later maturity groups within an applied soybean
breeding program at the University of Georgia (UGA) and explore
the effects of trait architecture and heritability, training set size and
composition, and genotyping marker density on prediction of seed

yield (yield). Protein and oil content (protein and oil) were also predicted
as these traits are important from a breeder’s perspective because of
the dependence on soybean as a protein source in animal feed and as
a source of vegetable oil. Predictive ability of these two traits has yet
to be investigated in a soybean GS study.

MATERIALS AND METHODS

Plant Materials
The original GS dataset consisted of 14 distinct experimental sets which
included 540 RILs from 26 pedigrees (Table 1). Set1-8 formed four
bi-parental populations (Pop1-4) composed of 84 F5:7 RILs each. Two
sets were stratified based on the maturity within each population. Pop1
was developed from a cross of AU02-3104 ·G00-3213. AU02-3104 is a
MG VII soybean line developed at Auburn University which was
derived from a cross of ‘NC-Raleigh’ (PI 641156) ·G92-1110 (Burton
et al. 2006). G00-3213 is also a MG VII soybean line but was de-
veloped at UGA and was derived from a cross of ‘Boggs’ · ‘N7001’
(Boerma et al. 2000; Carter et al. 2003). Pop2, 3, and 4 were developed
from crosses of G10PR-10 · G10PR-56389R2, G10PR-56248R2 ·
G10PR-56389R2, and G93-2225 · G09PR-54329R2, respectively.
These parents are MG VII soybean lines developed at UGA. These
four populations were advanced using a modified single-seed descent
method (Brim 1966) and were within their initial year of replicated
yield testing. Set9-14 consisted of 34 advanced F5:8 RILs each, from
multiple pedigrees, which had undergone an additional round of
breeding selection based on the first year of replicated yield testing.
Set9-11 consisted of RILs from 12 separate pedigrees (Ped 1-12) as
well as breeding selections from Pop1 and 4 and these RILs were
stratified into equal sets based on early, middle, and late maturity.
Set12-14 was divided similarly but consisted of RILs from 10 separate
pedigrees and breeding selections from Pop2 and 3. These 540 breed-
ing lines represented a large portion of the diversity in the UGA
Soybean Breeding pipeline. Fifty-five breeding lines were present in
two separate sets (Set1-8 and Set9-14) and phenotypic data for these
lines remained for best linear unbiased predictor (BLUP) calculation,
but these breeding lines were removed from Set9-14 in the GS
dataset to avoid biasing results by cause of having the same geno-
types in both the TS and VS during prediction. Two lines from
Pop2 were removed from the dataset based on improper clustering
according to a principle component analysis (PCA) using geno-
typic data and a total of 483 lines remained within the GS dataset
for analysis (Table 1).

Genotyping and Population Structure Analysis
Four hundred and eighty-five RILs were genotyped for the original
prediction dataset. For each RIL, 20 seeds were planted in Styrofoam
cups in a University of Georgia greenhouse facility. Once seedling
were 3 weeks old, leaf tissue was harvested in 50-ml Falcon tubes,
lyophilized, and ground into fine powder for DNA extraction. DNA
was extracted using a modified CTAB (cetyl trim ethyl ammonium
bromide) method (Keim et al. 1988). Genotyping was performed at
Soybean Genomics and Improvement Lab at USDA-ARS, Beltsville,
MD using BARCSoySNP6K iSelect BeadChips, returning 5403 SNPs
(Song et al. 2013). Physical distances of SNPs were initially from
the genome assembly version Glyma.Wm82.a1 (Gmax1.01) (Schmutz
et al. 2010) and were then converted to version Glyma.Wm82.a2
(Gmax2.0). SNPs mapped in Gmax1.01 but not Gmax2.0, were
excluded from the analysis (Song et al. 2016).

In addition tomonomorphic SNPs, SNPswith. 10% heterozygous
genotypes,. 80%missing data, or minor allele frequency (MAF), 0.05
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were removed. There were 2647 polymorphic SNPs remaining for GS.
Variousmarker densities (NM) were investigated for their effect on rMP.
The NM categories tested were 1) all SNPs (2647 SNPs); 2) tag SNPs
(yield: 1459 SNPs, protein and oil: 1435 SNPs); 3) half tag (yield:
748 SNPs, protein and oil content: 718 SNPs); 4) 4th tag (yield: 374 SNPs,
protein and oil: 359 SNPs); 5) 8th tag (yield: 187 SNPs, protein and oil:
180 SNPs). Each tag SNP represents a genomic region with high
linkage disequilibrium (LD). Depending on the trait, the number
of tag SNPs varied as a result of variation in the composition of the
GS dataset. Tag SNPs were determined using tagger in Haploview
using pairwise tagging only and an r2 threshold set at 0.8 (de Bakker
et al. 2005; Barrett et al. 2005). From the set of tag SNPs, every other
marker was selected as half tag, every fourth marker as 4th tag, and
every eighth as 8th tag. Population structure was examined using
BARCSoySNP6K iSelect BeadChip data and the GAPIT R package
(Lipka et al. 2012). PCA’s were plotted for visualization using TIBCO
Spotfire 6.5.1 (2014).

Phenotyping
For Pop1-4, 84 RILs from each population were divided into two equal
sets of 42 based on maturity for yield trials, and two elite checks were
included in each set. Yield trials were conducted in two locations in
Georgia (Athens and Plains) for Set1-8 over 2 years. For Set1-2, yield
evaluations were conducted in 2014 and 2016, while Set3-6 were
evaluated in 2015 and 2016. Set7-8 were evaluated in 2014 but only
Athens in 2016 due to lack of seed. Sets evaluated in 2014 or 2015 were
replicated in two blocks per environment in a randomized complete
block design (RCBD) and sets evaluated in 2016 were replicated three
blocks per environment. In addition to select lines from the Pop1-4,
breeding lines from Ped1-12 and Ped13-22 were allocated to Set9-11
and Set12-14 by maturity. Yield evaluations were performed in 2015
for Set9-11 and in 2016 for Set12-14. Each set consisted of 34 RILs and
two elite checks which were replicated in three blocks per envi-
ronment in an RCBD and were evaluated at three of four locations
(Athens, Plains, and Tifton, GA or Florence, SC).

Set1-8 were planted in two-row plots, 4.9 m long and 76 cm apart.
Plots were end trimmed to 3.7 m at R5 or R6 stage. Both rows were
harvested for yield determination and adjusted to 13% moisture. For
Georgia locations, Set9-14 were planted in the same way except
in four-row plots and the plots at the Tifton location were not end-
trimmed. For the Florence location, RILs were planted in four-row
plots which were 6.1 m long and 76 cm apart. Plots were end-trimmed
to 5.5 m at R5 or R6 stage. The middle two rows were harvested for
yield determination and adjusted to 13% moisture.

Daystomaturitywasdefinedas thenumberofdaysfrom1September
to maturity and was recorded on all blocks at the Athens location. Seed
composition (protein and oil content) were measured from the same
seed sources harvested for yield evaluation. Seed composition was not
measured for Set 9-11 because of seed quality issues in 2015, resulting in

no seed composition measurements obtained for any genotypes that
year. For Set1-6 and 12-14, seed composition was measured from both
Athens and Plains in 2016. Set1-2 also had seed composition measured
fromboth locations in 2014. Seed compositionwasmeasured for Set 7-8
in 2014 and 2016 but only from Athens. Crude protein and oil were
analyzed on a sample of�250 seeds from each plot using a DA 7250NIR
analyzer (Perten, Springfield, IL).

BLUP and Heritability
BLUP values were calculated using the lme4 package (Bates et al. 2015)
in R for each genotype and trait to account for variation resulting
from environmental factors and maturity. Factors in the random
model for yield included genotype, environment (a combination of
year and location), genotype x environment interaction, set within
environment, and days to maturity. Factors in the random models for
protein and oil content included genotype, environment, genotype ·
environment interaction, and set within environment. To investigate
the normality of BLUP values for each phenotypic trait, kernel density
plots were created in R.

Heritability was estimated for each trait utilizing the rrBLUP
package (Endelman 2011) implemented in R. An additive relationship
matrix was created using the A.mat function. Utilizing the additive
relationship matrix and phenotypic BLUP values for each genotype,
genetic and error variances were estimated using the kin.blup func-
tion. Narrow-sense heritability was then estimated using the additive
genetic (s2

aÞ and error variance (s2
eÞ outputs from kin.blup using the

following equation: h2 ¼ s2
a=ðs2

a þ s2
eÞ (Endelman and Jannink

2012). Utilizing the efficient mixed model association algorithm
(Kang et al. 2008), restricted maximum log-likelihood was used to
calculate variance components from a mixed model. The mixed model
implemented is defined here as y � Nð1mþ ZGZ9s2

a þ Is2
e), where

y is a vector of phenotypic values, 1 is a column vector of ones, m is a
fixed effect for the overall mean, Z is the genotypic incidence matrix,
and G is the genomic relationship matrix. This notation for calcu-
lation of genomic heritability (de Los Campos et al. 2015) is also
represented in Xavier et al. (2016).

Genomic Prediction
The ridge regression best linear unbiased prediction (RR-BLUP)
modeling methodology was utilized for GS using the rrBLUP package
(Endelman 2011) implemented in R. Three different genomic pre-
diction methods were investigated for three traits: yield, protein, and
oil. In the first two methods, both TS and VS were established, and
cross-validation was conducted by taking a random sample at var-
ious TS sizes and predicting GEBVs of genotypes in the VS. The
third method was performed in the same manner, but with the TS
and VS from separate pools. The correlation between GEBVs and
the observed BLUP values was recorded. The procedure was rep-
licated 100 times and rMP was the average of these 100 replications.

n Table 1 Summary of genomic selection (GS) dataset

Set Generation
# of pedigrees

per set
# of breeding
lines per set

# of pedigrees
for GS

# of breeding
lines for GS Oil (Y/N) Protein (Y/N) Yield (Y/N)

Descriptor
for GS

Set1-2 F5:7 1 84 1 84 Y Y Y Pop1
Set3-4 F5:7 1 84 1 84 Y Y Y Pop2
Set5-6 F5:7 1 84 1 82 Y Y Y Pop3
Set7-8 F5:7 1 84 1 84 Y Y Y Pop4
Set9-11 F5:8 14 102 12 82 N N Y Ped1-12
Set12-14 F5:8 12 102 10 67 Y Y Y Ped13-22

540 483
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Genomic prediction across entire genomic selection dataset (EGSD
method): The first prediction method examined the ability to predict
when the TS and VS were pulled from the entire dataset at random.
Predicting across mixed populations is a common approach for eval-
uating rMP and provides a general idea of how well GS can function
across all breeding materials (Jarquín et al. 2014; Xavier et al. 2016).
For the EGSD method, rMP for each trait was calculated across the
entire dataset of 483 RILs for yield and 401 RILs for protein and oil
(Figure 1A). The VS was composed of 50 randomly selected breed-
ing lines from the entire dataset. The TS was composed of randomly
selected breeding lines from the remaining genotypes at various TS
sizes. Predictive ability was measured with marker density fixed at all
SNPs at the following TS sizes: 50, 100, 150, 200, 250, 300, 350, and
400. For protein and oil, TS size was maximum at 350 as a result of a
smaller subset of genotypes. Utilizing the maximum TS size for each
trait, the effect of marker density on rMP was investigated for various
numbers of SNPs including all, tag, half tag, 4th tag, and 8th tag SNPs.

Genomic prediction within bi-parental RIL population (WP method):
Another goal of this studywas to examine howwell GSwould function
for predicting GEBVs within specifically each of the four bi-parental
populations (Pop1-4), named asWPmethod. Both theTS andVSwere
the samebi-parental population and thus, full-sibswereused topredict
full-sibs (Figure 1B). The GS dataset contained four bi-parental pop-
ulations with 84 RILs each (Pop1-4). Cross-validation was performed
similar to the EGSD method, except within Pop1-4 and a VS size of
20 RILs was used. Predictive ability was measured with marker den-
sity fixed at all SNPs at a TS size of 50 RILs. A limiting factor for the
WP method is that TS size becomes restricted by the size of the
bi-parental population. Another reason that this method may not be
ideal is that the breeder would need replicated yield trials on a subset of
a bi-parental population to generate phenotypic data and to train a
model with which they can return to remnant seed of additional RILs
to decide which plant rows to select for advancement (Jannink et al.
2010). For the purpose of this study, this strategy served mainly as a
contrast to the third andmost ideal GSmethod in which one of the four
populations (Pop1-4) was the VS and all remaining breeding lines were
compiled as the TS (AP method).

Genomic prediction across bi-parental RIL populations (AP method):
The AP method examined predictive ability when the VS was created

from one of Pop1-4, but the TS was developed from the remaining
breeding lines (Figure 1C). This method simulated a situation similar to
howGSwould actually be implemented in a breeding program in order
to select better breeding lines within a newly developed population
when no phenotypic data are available. Predictive ability was measured
with marker density fixed at all SNPs and examined the following TS
sizes: 50, 100, 150, 200, 250, 300, 350. For protein and oil, the largest TS
size tested was 300, due to a smaller subset of genotypes having been
phenotyped for these traits. Comparing WP and AP methods allows
for an investigation of the ability to compensate for a decrease in
genetic relatedness with an increase in TS size that can be achieved
when using the AP method.

Statistical Analysis
All significance tests of correlation were calculated using the
Pearson’s product-moment correlation method via the ggpubr pack-
age (Kassambara 2017) in R. ANOVA was performed for each trait
using the agricolae package (de Mendiburu 2017) to examine if there
were statistical differences in rMP resulting from changes in TS sizes
and marker sets. For the ANOVA model, the dependent variable was
predictive ability from each replication cycle and the independent
variable was the factor of interest. A Fisher’s LSD multiple compar-
ison test was performed to test differences of the means between
different levels of each factor (a = 0.05).

Data Availability
All data and code required to replicate the analyses are available in Files
S1-5. File S1 contains the raw phenotypic data for calculation of BLUP
values. File S2 contains the phenotypic BLUP values used for each
method of GS. Worksheet 1 provides additional information for each
genotype while Worksheets 2 and 3 contain information used for GS.
Supplemental Data File S3 and S4 contains the genotypic data files used
for prediction of seed yield and protein/oil content for each method of
GS. Worksheet 1 of each file provides additional information for each
genotype whileWorksheets 1-10 contain genotypic data for the follow-
ing marker densities: all SNPs, tag SNPs, half tag SNPs, 4th tag SNPs,
and 8th tag SNPs. Odd sheets contain extra information while even
sheets contain data used for GS. File S5 provides the r code used for
calculation of predictive abilities which can be adapted to test all meth-
ods. Supplemental data files along with supplemental figures and
tables are available at FigShare. R code used for calculation of

Figure 1 Diagram displaying the three
methods performed for estimating pre-
dictive ability within the genomic selec-
tion dataset. (A) Perform cross-validation
using the entire mixed population as
both the validation set and training
set (EGSD method), (B) Perform cross-
validation within bi-parental popula-
tions using Pop1-4 individually as the
validation set and training set (WP
method); and (C) Predict across pop-
ulations using one of Pop1-4 as the
validation set and the remaining breed-
ing lines as the training set (AP method).
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predictive abilities is also available at FigShare. Supplemental material
available at FigShare: https://doi.org/10.25387/g3.8121251.

RESULTS

Population structure and genomic heritability
The GS dataset showed significant population structure due to the
presence of four bi-parental RIL populations (Pop1-4) composing
more than half of the entire dataset. The first, second, and third
principal components explained 12.9, 9.5, and 7.0% of variation
within the dataset, respectively (Figure 2). There was clear clustering
within each of the four bi-parental populations and population struc-
ture among some of the advanced breeding lines from Ped5-22 was
observed as several lines shared the same parentage. High genetic
relatedness among many breeding lines was observed that led to
clustering among several advanced breeding lines with Pop1-4.

BLUP values for each trait followed a normal distribution (Fig. S1).
When RILs were separated by pedigree, it became evident that
pedigrees varied in terms of their mean BLUP values for each trait
(Fig. S2). When focusing on Pop1-4 which contributed to a majority
of the GS dataset, there was evidence of populations which were
numerically different in terms of protein and oil. Pop1 had higher
oil and lower protein content compared to Pop2-4 in terms of mean
BLUP values (Fig. S2B; Fig. S2C). Overall, protein and oil were sig-
nificantly negatively correlated (r = 20.62; P , 1 · 10215). This
supports prior reports of the inverse relationship between protein
and oil content in soybean (Brummer et al. 1997; Brim and Burton
1979). Yield varied across pedigrees but the relative differences in
yield between the four bi-parental populations compared to across
all pedigrees was minimal (Fig. S2A). Though the correlations were
not as strong, yield had a significant negative correlation with
protein content (r = 20.10; P = 4.6 · 1022) and had a significant
positive correlation with oil content (r = 0.11; P = 3.4 · 1022),
which is consistent with previous reports (Chung et al. 2003).

BLUP values and an additive matrix of breeding material were
used to compute genomic heritability for each trait via the kin.blup

function in rrBLUP (Endelman 2011). Protein had the highest her-
itability with a genomic heritability of 0.82. Oil had a genomic
heritability of 0.78 and yield had the lowest heritability trait at
0.17. Hwang et al. (2014) reported similarly high heritability esti-
mates for protein and oil content and it is widely reported that yield is
a low heritability trait for many crops, including soybean.

Predictive ability across entire GS dataset (EGSD)
Predictive ability for yield increased by 364% from 0.06 (NP = 50) to
0.26 (NP = 400) (Figure 3, percentages/significance tests were based
on rmp values in Table S1). As TS size increased by 50, predictive
ability increased on average by 0.03. There were no significant dif-
ferences in rMP from a TS size of 300 (rMP = 0.24) to 400 (rMP = 0.26).
Marker density appeared to have less impact on predictive ability
compared to TS size. When comparing different marker densities,
rMP ranged from 0.30 (NM = 8th tag SNPs) to 0.24 (NM = half tag
SNPs) (Figure 4, percentages/significance tests were based on rmp

values in Table S2). Utilizing 8th tag SNPs was only 0.04 greater in
terms of rMP compared to utilizing all SNPs so minor differences
were present among marker densities.

For protein, TS size had a significant impact as well, evidenced by an
increase in rMP of 29% from 0.63 (NP = 50) to 0.81 (NP = 350) (Figure 3
and Table S1). The average increase in rMP for each increase in TS size
of 50 was 0.03, but gains were higher during the initial increase from
50 (rMP = 0.63) to 100 (rMP = 0.70). Predictive ability for protein began
to diminish at larger TS sizes as rMP only increased from 0.80 to 0.81
when TS size increased from 250 to 350. Marker density also had less
impact on rMP compared to TS size as predictive ability for protein
decreased by only 8% from 0.81 (NM = all SNPs) to 0.74 (NM = 8th tag
SNPs) (Figure 4 and Table S2).

Oil was no exception to the trend of larger TS sizes resulting in
higher predictive ability. Predictive ability increased by 31% from
0.54 (NP = 50) to 0.71 (NP = 350) (Figure 3 and Table S1). Similar to
protein, the average gain in rMP for each increase in TS size of 50 was
0.03, but the largest increase was observed from 50 (rMP = 0.54) to

Figure 2 Principle component analysis of genomic
selection dataset.
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100 (rMP = 0.61). Increases in rMP were minimal as TS size increased
from 250 (rMP = 0.68) to 350 (rMP = 0.71). Asmarker density decreased
so did rMP but the decrease was only 9% from 0.71 (NM = all SNPs)
to 0.64 (NM = 8th tag SNPs) (Figure 4 and Table S2).

There appeared to be a direct relationship between heritability
and rMP as the highest heritability traits (oil and protein) were more
predictive than yield which had a lower heritability. By cause of the
larger number of breeding lines which had been phenotyped for yield,

a slightly larger TS size was tested compared to the other traits but
when comparing traits at equal TS sizes, protein and oil were consis-
tently higher than yield. For protein and oil, the highest predictive
ability was achieved with all SNPs, while the highest predictive ability
for yield was achieved with the lowest marker density of 8th tag SNPs
(Figure 4 and Table S2). Considering the SNP distribution decreased
from �130 SNPs per chromosome (all SNPs) to �10 SNPs per chro-
mosome (8th tag SNPs), a more dramatic decrease in rMP across all traits

Figure 3 Boxplots of the effect of training set size (NP) on predictive ability (rMP) for each trait when utilizing the entire genomic selection dataset
(EGSD) method. Solid line represents median and dotted line represents mean.

Figure 4 Boxplots of the effect of marker density (NM) on predictive ability (rMP) for each trait when utilizing the entire genomic selection dataset
(EGSD) method. Number of markers indicated in parentheses. Solid line represents median and dotted line represents average.
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may have been anticipated. Overall, though statistical differences were
present, it did not appear that decreasing marker density had a drastic
effect on rMP for any trait. On average, the difference in rMP between the
highest and lowest marker density across all traits was only 0.03.

Predictive ability of individual bi-parental populations
(WP vs. AP method)

Predictive ability averaged across populations (Pop1-4): The ability
topredict lineswithin abi-parental populationusing full-sibmembers of
that population (WP method) vs. using the remaining breeding lines
(AP method) was examined. For the initial analysis, rMP was averaged
across Pop1-4 for each trait at each TS size. Yield was the lowest
heritability trait and achieved the lowest rMP for WP (rMP = 0.13)
and AP (rMP = 0.12) (Figure 5, percentages/significance tests were
based on rmp values in Table S3). Predictive ability for the AP method
ranged from 0.04 (NP = 50) to 0.12 (NP =350). There were no statistical
differences in predictive ability between a TS size of 300 or 350 for the
APmethod and a TS size of 50 for theWPmethod, as each achieved an
rmp of 0.13. When comparing both methods at an equal TS size (NP =
50), predictive ability for the WP method was 205% higher than the
AP method (0.13 vs. 0.04). Though this difference was significant, the
WP method was still quite low in terms of predictive ability.

Protein was the highest heritability trait and achieved the highest
rMP for both WP (rMP = 0.60) and AP methods (rMP = 0.55). Pre-
dictive ability for the AP method ranged from 0.34 (NP = 50) to
0.55 (NP = 300) (Figure 5 and Table S3). For the AP method, the
largest TS sizes of 250 and 300 were statistically equivalent in terms
of rMP (0.53 and 0.55). There was a 9% increase in rMP when imple-
menting the WP (rMP = 0.60) vs. the AP method (rMP = 0.55) at the
maximum TS size (NP = 300). When comparing both methods at an
equal TS size (NP = 50), predictive ability for the WP method was
80% higher than the AP method (0.60 vs. 0.34).

Oil was the second highest heritability trait and achieved the
second highest rMP forWP (rMP = 0.52) and AP (rMP = 0.30) (Figure 5

and Table S3). Predictive ability for the WP method was comparable
to protein but when comparing values for the AP method was almost
half. Predictive ability for the AP method ranged from 0.21 (NP = 50)
to 0.30 (NP = 300) and TS sizes from 200 to 300 were statistically
equivalent in terms of rMP (0.27 to 0.30). There was an increase in rMP

of 76% when implementing the WP (rMP = 0.52) vs. the AP method
(rMP = 0.30) at the maximum TS size (NP = 300). When comparing
both methods at an equal TS size (NP = 50), predictive ability for the
WP method was 149% higher than the AP method (0.52 vs. 0.21),
comparable to protein. Both protein and oil had smaller increases in
percentage compared to yield, but this was largely influenced by how
low the predictive ability was for yield when utilizing the AP method.

For each trait, a higher or at least equivalent predictive ability
was achievable when implementing WP vs. AP even though the
maximum TS size achievable for AP was significantly larger (oil
and protein: 50 vs. 300, yield: 50 vs. 350). When comparing both
methods at an equal TS size of 50 (max NP for WP), predictive ability
was higher when implementing WP vs. AP for all traits, further high-
lighting the advantage of the WP vs. AP method.

Predictive ability of each individual bi-parental population (Pop1-4):
After investigating how the WP and AP methods compared on
average across Pop1-4, individual populations were investigating to
see if there were trends unique to any individual population. For
yield, Pop1-4 achieved an rMP of 0.04, 0.21, 0.25, and 0.01, re-
spectively, when utilizing the WP method. (Fig. S3A, percentages/
significance tests were based on rmp values in Table S4). For the
APmethod, Pop1-4 achieved a maximum rMP of 0.12 (NP = 250 or 350),
0.10 (NP = 350), 0.11 (NP = 300), and 0.18 (NP = 350), respectively
(Fig. S3A and Table S4). Predictive ability for yield was overall
significantly lower than those for protein and oil in each population
(Fig. S3A). As TS size increased for AP, rMP tended to increase but
fluctuated drastically throughout this trend. The WP method was
significantly more effective in Pop2 and Pop3 compared to the AP

Figure 5 Graph displaying the effect of training set size (NP) on predictive ability (rMP) for each trait when contrasting the within population (WP) method
vs. the across population (AP) method. rMP was averaged across the four validation sets (Pop1-4). The WP method was indicated with a horizontal dashed
line while the APmethod was indicated with a solid trend line across TS sizes. For theWPmethod, a single training set size of 50 breeding lines was used.
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method. For Pop1 and Pop4, the WP method performed poorly,
and the highest prediction was achieved when implementing the
AP method. Yield was far more population dependent compared
to protein and oil in terms of prediction.

For protein, Pop1-4 achieved an rMP of 0.64, 0.73, 0.61, and 0.43,
respectively, when utilizing the WP method (Fig. S3B and Table S4).
For the AP method, Pop1-4 achieved a maximum rMP of 0.57 (NP =
300), 0.55 (NP = 300), 0.64 (NP = 300), and 0.45 (NP = 300), respectively
(Fig. S3B and Table S4). As TS size increased, rMP tended to increase
when utilizing the AP method (Fig. S3B). For Pop1 and Pop2, rMP for
WP was significantly higher compared to AP when comparing the
highest measured rMP for each population. When comparing rMP for
Pop4, there was no significant difference between WP and AP at the
largest tested TS size. Utilizing AP for Pop3, predictive ability of WP
was surpassed starting at a TS size of 200. Though predictive ability for
AP was higher, there were no significant differences when compared to
WP at a TS size of 50.

For oil, Pop1-4 achieved an rMP of 0.64, 0.36, 0.63, and 0.46, re-
spectively, when utilizing the WP method (Fig. S3C and Table S4).
When utilizing the AP method, Pop1-4 achieved a maximum rMP

of 0.12 (NP = 50 or 200), 0.25 (NP = 250 or 300), 0.48 (NP = 250)
and 0.36 (NP = 300) (Fig. S3C and Table S4). Similar to protein, as TS
size increased, rMP tended to increase for AP (Fig. S3C). Even though
the highest TS size did not always possess the highest rMP in each
individual population, it was statistically equivalent for each. WP was
significantly more effective for prediction of Pop1-4 compared to AP.
When comparing the highest rMP for each population, Pop1 showed
the largest discrepancy in ability to predict as AP was 18% of WP in
terms of rMP. Predictive ability utilizing AP for Pop2-4 was on av-
erage 76% of rMP utilizing WP. Also, Pop1 seemed to be the only
population where predictive ability stagnated completely as there
were no significant differences from 50 to 300 lines.

DISCUSSION
In previous literature, GS has shown potential to improve the rate of
genetic gain over MAS for quantitative traits. Studies have been per-
formed extensively in crops such as maize and wheat, but soybean has
had comparably fewstudies investigating thepotential forGS.Predictive
ability for yieldwas targeted in this study as increasing yield is a primary
focus of soybean breeders. The potential to performGS for protein and
oil was also investigated as it is important to increase protein and oil
considering soybean is the main source of protein for animal feed and a
major source of vegetable oil.

Three distinct methods of evaluating potential for GS were tested.
The EGSD method was the most traditional approach in which the
entire dataset was sampled for both the TS and VS. Two additional
methods were then compared to examine how GS performed within
bi-parental populations when genetic relationships were strongest,
compared to a realistic scenario in which GEBVs were predicted
for RILs within each bi-parental population using all other breeding
lines as a training population. This last method demonstrates the
most efficient way that GS could be implemented within a breeding
program for plant row selection in order to make more informative
decisions on which genotypes should be placed into advanced yield
trials in cooperation with breeder notes.

Predictive ability across entire GS dataset
(EGSD method)
When performing cross-validation across the entire dataset, increasing
TS size showed continuous increases in rMP for all three traits of interest.
Predictive abilities of 0.81, 0.71, and 0.26 for protein, oil, and yield,

respectively, were achieved at the largest tested training set size.
Jarquín et al. (2014) and Xavier et al. (2016) reported prediction
accuracies of 0.64 and 0.75 for yield, which were calculated using
rMP divided by

ffiffiffiffiffi

h2
p

. Prediction accuracy, especially for lower her-
itability traits such as yield, is often much higher than predictive
ability as a result of dividing by

ffiffiffiffiffi

h2
p

. This was observed in this study
as prediction accuracies of 0.89, 0.80, and 0.63 were calculated for
protein, oil, and yield, respectively, which is comparable with pre-
vious reports (Jarquín et al. 2014; Xavier et al. 2016). Though in-
creases in rMP continued as TS size increased, it appeared that gains
for each trait diminished around 250 to 300 RILs. Jarquín et al. (2014)
performed a cross-validation analysis in a mixed soybean population
for yield and reported a similar result in that prediction accuracy
increased as TS size increased, yet they witnessed a plateau in yield
prediction around 100 breeding lines. Xavier et al. (2016) performed
cross-validation across the entire SoyNAM population for yield and
reported significant increases in prediction accuracy up to 2000 RILs.
Different populations contain different levels of LD and substruc-
ture, so the ideal TS size for GS may be population dependent.
Many studies have corroborated though that an increase in TS size
will often result in an increase of rMP with eventual diminishing
returns (Lorenzana and Bernardo 2009; Guo et al. 2012; Heffner
et al. 2011a; Heffner et al. 2011b; Jarquín et al. 2014; Xavier et al.
2016; Zhang et al. 2017). The improved ability to predict GEBVs as
TS size increased is a reflection of the fact that there is an increased
replication of alleles within a TS, allowing for a well-trained GS
model. At smaller sizes, breeding lines with poor phenotypic data
can negatively influence accurate estimations of allele effects. These
outlier breeding lines are offset by increased replication as the TS
size increases (Muir 2007). Also, as TS size increases, rare allele
frequencies increase, which will help improve estimations of these
marker effects (Jarquín et al. 2014).

Genomic heritability was calculated for each trait utilizing BLUP
phenotypic values for each genotype and an additive kinship matrix
via the kin.blup function (Endelman 2011). The narrow sense heri-
tability estimates for protein, oil, and yield were 0.82, 0.78, and 0.17.
It is not surprising that protein and oil content have higher herita-
bility relative to yield based on the complex trait architecture and
interactions both epistatically and environmentally that are often
associated with yield. Heritability estimates for yield were low com-
pared to previous GS studies investigating prediction potential for
yield in soybean. Xavier et al. (2016) calculated heritability in a
similar manner, estimating a heritability of 0.49 in 2013 and 0.41
in 2014 for yield. Since their heritability estimates were broken up
by year, this eliminated the variance associated with genotype · year
interactions.

Traits with higher heritability having higher rMP values is a com-
mon occurrence in GS studies. Combs and Bernardo (2013) observed
this trend with few exceptions when analyzing rMP in maize, barley
(Hordeum vulgare L.) and wheat populations. Heffner et al. (2011b)
and Albrecht et al. (2011) also reported similar results. As there is
often a strong relationship reported between heritability and rMP,
increasing the heritability of the trait by improving phenotyping
accuracy utilized in a GS model can be useful for better prediction.
As a breeding program increases the size of the TS used for GS, one
should investigate environments (location · year combinations) in
which phenotypic traits have shown to have unusually low herita-
bility as this may have been caused by odd environmental factors
specific to that location within that year.

When holding TS size constant at the highest tested size for each
trait, protein and oil content showed a decrease in rMP as marker
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density decreased fromall SNPs (2647 SNPs) to 8th tag SNPs (180 SNPs),
but the decrease in rMP was only 0.07 for oil and 0.06 for protein. For
yield, there were slight fluctuations in this trend and the highest rMP

was achieved with the lowest NM. Muir (2007) reported that increas-
ing marker density can actually lead to a decrease in prediction ac-
curacy in some situations and this is related to the increase in
collinearity between markers (Whittaker et al. 2000). If TS sizes are
not large enough, it is also possible that marker effects can be over-
estimated and this problem is confounded by the increased number of
markers used for genotyping. Lorenzana and Bernardo (2009) dem-
onstrated fluctuations in prediction accuracy related to marker den-
sity as they evaluated prediction of several agronomic traits within
maize and barley populations. Within the maize population BM-TC1,
they reported a higher accuracy at a marker density of 256 SNPs
(rMG = 0.56) compared to marker densities of 512 (rMG = 0.55) and
768 SNPs (rMG = 0.54). When assessing prediction of glucose con-
centration within the same population, they reported the highest
accuracy achieved at a marker density of 512 SNPs (rMG = 0.69),
which was higher than the accuracy reported at the highest marker
density of 1024 SNPs (rMG = 0.67). Within a barley population de-
rived from ‘Steptoe’ · ‘Morex’, a higher or equivalent accuracy was
reported for grain yield and grain protein at 128 SNPs (rMG = 0.62,
0.82) vs. the highest density at 223 SNPs (rMG = 0.62). In this study,
the difference between using all SNPs (2647) and 8th tag SNPs
(187 SNPs) was only an increase in rMP of 0.04, even less than
the difference for protein and oil. Several studies have reported
that decreasing marker density can have minimal impacts on pre-
diction (Lorenzana and Bernardo 2009; Lorenz et al. 2011; Heffner
et al. 2011b). It is important that marker density is high enough
to have linkage with QTL which may be responsible for variance in
the quantitative trait of interest. Considering soybean has consider-
ably high LD relative to other crops, it is not surprising that marker
density seemed to have little effect on improving rMP.

When examining the effects of different marker densities, there
was a minimal change in rMP even at the lowest marker density. It
was hypothesized this may have partially been related to the strong
population structure present within the GS dataset. The ability to
differentiate bi-parental populations from each other vs. prediction
within populations may be affecting predictive ability. Oil content
was investigated to illustrate this concern. Population structure was
first visualized via PCA at all SNPs compared to the lowest marker
density, 8th tag SNPs (Figure 6A and B). There was still identifiable
population structure at the lowest marker density, indicating that
an ability to differentiate each of the four bi-parental populations
(Pop1-4) from each other at the lowest marker density remained.
When examining the original oil BLUP values for each genotype, it
was evident that Pop1 was higher in oil content compared to Pop2-4
(Fig. S2C). Thus, if there was an ability to genetically differentiate
breeding lines from Pop1 compared to Pop2-4, these lines would be
predicted to be higher in oil content compared to the other three
populations. Pop1-4 influenced a large portion of rMP because they
composed �83% lines of the entire GS dataset for oil.

The average predicted oil GEBVs for each RIL were plotted against
the observed oil BLUP values (Figure 6C and D). For all SNPs, the
correlation coefficient between the average predicted oil GEBVs
and observed oil BLUP values of the entire GS dataset was 0.71. For
8th tag SNPs, the correlation between the observed and predicted
values was 0.63 which was a 11% decrease. Within Pop1-4, decreases
in correlation were 41% (0.69 to 0.41), 27% (0.56 to 0.41), 38% (0.64 to
0.40), and 24% (0.54 to 0.41), respectively (Figure 6E and F). Corre-
lation coefficients decreased more within each individual population

compared to across all populations, indicating that rMPmay be affected
by differences between high and low oil populations as well as high
and low oil breeding lines within these populations.

The EGSD approach is a common method to examine the poten-
tial for GS within a mixed population of breeding materials. It was
observed that population structure can have a strong influence on rMP

and inflate confidence in prediction. Predicting across different pop-
ulations also has the possibility of inflating rMP due to the TS possibly
containing full-sibs to genotypes placed in the VS unless precautions
are taken to avoid this. Since breeders are often applying GS to make
predictions in new unique parental combinations, having full-sibs in
both the TS and VS is rare. Population structure can be accounted for
by including population as an effect in a BLUP model. This would
possibly mitigate an ability to identify that the worst line in one
population may be better than the best line in another population.
Caution should be used when assessing rMP across different pop-
ulations as one may be detecting more population differences than
differences among the best and worst breeding lines within each
population. Not only may this phenomenon be accounting for a
lack of significant decreases in rMP at extremely low marker densities,
but it is most likely inflating rMP at each level of marker density for
the same reasons.

Predictive ability for yield was lower compared to protein and oil
content by cause of the complexity and low heritability of yield but
also partially because Pop1-4, which dominated the GS dataset, had
similar mean yield BLUP values, so mean yield differences among
these populations was not driving prediction as much as it appeared
to be for protein and oil. Predictive ability is most likely inflated for
many studies which combine multiple bi-parental populations in GS
datasets, specifically when phenotypic means vary across populations.
Previous literature has discussed the issues of population structure
within GS but this usually refers to substructure within the VS,
which is not properly represented within the TS and thus marker
effects are not properly estimated (Guo et al. 2013; Crossa et al. 2014).
Though this is an issue in GS, it is not the population structure
related issue referred to here.

Predictive ability of individual bi-parental populations
(WP method vs. AP method)
The most common breeding pipeline for soybean begins with de-
veloping F1’s from unique parental combinations. The single seed
descent method (SSD) advances lines until the F4 or F5 generation
(Brim 1966). At this stage, hundreds of single plants are selected
based on visual assessment of plants in the field. Selected single
plants become plant rows which undergo another round of visual
selection for key agronomic traits (i.e., plant height, lodging, matu-
rity) or plant row yield tests. Many plant rows across populations are
often discarded based on breeder notes that can be heavily influenced
by environmental factors including but not limited to soil conditions,
field slope, mechanical damage, or disease/insect pressure. Single row
measurements for traits such as yield, are time-consuming, labor-in-
tensive, and often not reliable estimates (Sebastian et al. 2012). GS has
the advantage of leveraging years and locations of replicated field
trials to estimate marker effects in order to predict GEBVs for these
plant rows that are ideally more reliable than simple visual assess-
ments or single plot phenotyping. The advantage in utilizing GS at
this stage vs. a visual assessment should warrant the cost, labor, and
time associated with genotyping these plant rows if one is to effec-
tively implement GS at this stage of their breeding program.

Two methods were compared for prediction of each individual
bi-parental population (Pop1-4). For comparison purposes, maker
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density was fixed at all SNPs. Predictive ability was higher for higher
heritability traits for both the WP and AP approaches. Utilizing the
WP approach was often higher than prediction utilizing the AP
approach. For WP, TS size was 50 and when averaging across Pop1-4,
this was superior or at least statistically equivalent to a max TS size of
300 for protein and oil and 350 for yield. When comparing the two
methodologies at the same TS size, the advantage of WP over AP was
even more drastic for all traits. This was most likely resulting from
the genetic relatedness between the TS and VSwhen using full-sibs via
theWP approach. For WP, markers were in LD with QTL controlling
variation for the traits of interest. Once unrelated materials were
brought into the TS in the AP method, the loss in genetic relatedness
between TS and VS resulted in a decrease in rMP (Clark et al. 2012).
This decrease in relatedness was most likely harming prediction as

markers were in LD with QTL specific to populations in the TS and
these QTL might not be represented in the VS (Lorenz et al. 2012).
The strong subpopulation structure due to having large bi-parental
populations in the TS exacerbated the issue as allele effects became
increasingly biased toward the allele effects within these larger
populations which were not represented in the VS (Guo et al. 2013;
Crossa et al. 2014).

For higher heritability traits (i.e., protein and oil), the AP method
approached the WP method by taking advantage of larger TS sizes.
This was likely due to the added replication of alleles allowing for
more accurate estimates of allele effects. The high heritability of these
traits implied that a large amount of variation controlled by genetics
made marker effect estimates more accurate for prediction. Though
this appeared to be the trend on average across populations, certain

Figure 6 Effects of population structure on prediction of oil content when utilizing the entire genomic selection dataset (EGSD) method. (A) PCA
of genomic prediction population using all SNPs. (B) PCA of genomic prediction population using 8th tag SNPs. (C) Average predicted GEBV vs.
observed BLUP values when using all SNPs. (D) Average predicted GEBV vs. observed BLUP values when using 8th tag SNPs. (E) Average
predicted GEBV vs. observed BLUP within Pop1-4 when using all SNPs. (F) Average predicted GEBV vs. observed BLUP within Pop1-4 when using
8th tag SNPs. Correlation coefficients presented within scatterplots (C-F).
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specific bi-parental populations could not approach predictive ability
for the WP method, even at large TS sizes for high heritability traits.
The AP approach for predicting oil content for Pop1 showed little
success. This may have been a result of unique alleles specific to oil
content being present in Pop1 yet largely absent from other breeding
lines which composed the TS. This same trend did not occur for the
other high heritability trait, protein, so it appeared to be specific to oil
and not related to overall genetic relatedness between Pop1 and the
other breeding lines.

Yield proved especially difficult to predict as prediction for both
methods for each population was comparatively low. As TS size in-
creased during implementation of the APmethod, trends in rMP varied
far more for individual bi-parental populations for yield compared to
protein and oil. There was some success using the WP approach for
Pop2 and 3, but Pop1 and 4 did not predict well. Lian et al. (2014)
predicted within 969 maize bi-parental populations and reported
rMP ranging from -0.34 to 0.89, providing evidence of the variability
in predictive ability that can occur for yield even when predicting
within populations. The AP methodology was largely unsuccessful
for yield and seemed to only surpass WP in situations where rMP was
extremely low such as Pop1 and Pop4. It is possible the high level of
structure within the training set may have attributed to this overall
lack of success as allele effects were biased toward the bi-parental
populations present within the TS. The complexity and low herita-
bility of yield made variation in rMP of different populations far
greater compared to higher heritability traits such as protein and
oil. Also, genotype · environment interactions were most likely
harming prediction as alleles in one environment may have had
opposing effects on yield in another for certain breeding lines.

There has been success predicting for various traits using ap-
proaches similar to the AP method but they have had the advan-
tage of leveraging larger numbers of more related plant materials.
Riedelsheimer et al. (2013) performed cross-validation within a mixed
population of 635 maize doubled-haploid (DH) lines for several yield
component traits. They reported that across all traits, a TS composed
of DH lines which were full-sibs predicted significantly better than a
TS composed of DH lines which were half-sibs and prediction was
even worse if unrelated breeding lines were placed into the TS. They
also reported having half-sibs present for both VS parents was
significantly better than having half-sibs for one of the VS parents.
Jacobson et al. (2014) developed a general combing ability (GCA)
model in which maize inbreds were placed into a TS which were
half-sibs with the VS and compared to pooling random inbreds
in the TS. The GCA model significantly outperformed the random
inbred model across 30 test populations for yield, moisture, and test
weight. Jacobson et al. (2014) was able to leverage 970 testcross
populations made available by Monsanto and although the ap-
proach was promising, this current study would have needed more
extensive genotyping and phenotyping of material to have imple-
mented a similar study in soybean. For the AP method, there were
half-sibs present within the TS which may have led to some of the
success in prediction, but not close to the numbers observed in these
aforementioned studies.

Constructing GS models using full-sibs (WP method) appears
to be effective for GS. This most likely delays the breeding cycle
compared to leveraging previous phenotypes and genotypes to make
predictions (AP method). Prediction of protein content showed the
most promise for GS via the AP method as on average, the AP
method predicted comparably to the WPmethod. For oil content,
the same could largely be said, but one population decreased aver-
age AP predictive ability significantly, indicating that variability in

prediction can occur depending on the population being predicted
even for high heritably traits. Though successful prediction was
achieved for protein and oil, the primary objective for soybean
breeders is to make selections based on yield. It is assumed that the
level of success achieved for yieldwithin this studymaynot justify the
cost and time needed to impose GS for yield. Though rMP for yield
was low compared to protein and oil, populations on average
showed an upward trend and still made gains in rMP at the highest
TS size. Simply increasing TS size may not be the best solution as the
literature has shown the benefits of increasing genetic relatedness
between TS and VS. Studies in maize have reported success predict-
ing across populations when leveraging half-sibs that represent both
parents in the cross in addition to increasing TS size. Targeting this
approach may be the best strategy for improving GS for yield in
soybean in the future. A study investigating this has not yet been
shown in soybean as many previous studies have evaluated predic-
tion across mixed populations.

The success in prediction of protein and oil content alone may
not warrant the application of GS as NIR spectrometry provides
good estimates of these phenotypes with minimal time, labor, and
cost. If predictive ability for yield could be increased enough to
warrant genotyping of single-plant rows, acquiring predictions of
protein and oil would be a logical additional step with minimal
additional efforts.

CONCLUSION
This study illustrated use of genomic selection for prediction of
yield within a soybean breeding program. This was the first report
indicating the success that can be achieved for higher heritability
traits such as protein and oil content. Predictive ability can be
inflated when there is population structure present in combination
with differences in trait means across populations. Increased success
across all traits can be attributed to increasing training set size more
so than increased marker density, though benefits associated with
training set size had eventual diminishing returns. Predictive ability
can also be increased by building training sets with increased re-
latedness to validation sets. Yield was difficult to predict and this is
most likely related to complex genotype · environment interactions,
its highly quantitative nature, and a biasing of allele effects toward
populations which dominated the training set. For future success, a
larger training set size in combination with increased genetic related-
ness between training and validation set could improve predictive
ability in soybean as it has in maize.
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