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Background: Early and accurate diagnoses of sepsis patients are essential to reduce the mortality. However, the
sepsis is still diagnosed in a traditional way in China despite the increasing number of related studies, which may
to some extent lead to delays in the treatment.

Methods: The study included 2,385 patients, including 364 with sepsis, collected from the First Affiliated Hospital
of Anhui Medical University and partner hospitals from April to July 2022. External validation was conducted
using the MIMIC-III database (over 60,000 patients from 2001 to 2012) and the eICU Collaborative Research
Database (139,000 patients from 2014 to 2015). Multiple algorithm models, along with the SHapley Additive
exPlanations (SHAP) analysis, are applied to explore the main risk factors for the accurate prediction of the
sepsis. Multiple Imputations for filling missing data and the Synthetic Minority Oversampling (SMOTE)
balancing method for balancing data are used for the data processing.

Result: Eighteen diagnostic features are used in the predictive model for early sepsis. The Random Forest model
has the best performance among all the models, with an Area Under the Curve (AUC) of 87% and an F1-score
(F1) of 77%. Moreover, the interpretation from the SHAP analysis is generally consistent with the current
clinical situation.

Conclusion: The study revealed the relationship between these 18 clinical features and diagnostic outcomes. The
results indicate that patients with laboratory values of Systolic Blood Pressure, Albumin, and Heart Rate

exceeding certain thresholds are at a high likelihood of developing sepsis.

1. Introduction

Sepsis is a systemic inflammatory response syndrome caused by the
invasion of pathogenic microorganisms such as bacteria. And the
response of host to the infection is dysregulated, leading to life-
threatening organ dysfunction. The sepsis is one of the leading causes
of death in the Intensive Care Unit (ICU) (Verdonk et al., 2017; Shankar-
Hari et al., 2016). Proper employments of supportive medications can
reduce sepsis mortality and improve patient conditions (Hu et al., 2023),
but they heavily rely on an accurate diagnosis as earlier as possible. Most
hospitals utilize the traditional method like biomarkers for sepsis di-
agnoses (Faix, 2013). This approach takes longer and the diverse
symptoms of sepsis make it challenging to diagnose clinically (Singer
et al., 2016). Therefore, research on the early and accurate prediction of
the sepsis is necessary and has been emphasized (Ocampo-Quintero
et al., 2022; Schinkel et al., 2019). However, previous researches have

some limitations. Some studies that focus on a single criterion, such as
Calcitonin, Albumin, Platelets, interleukins, etc., are insufficient to
accurately represent the condition of a patient and may yield biased
results (Hernandez et al., 2018; Lesnik et al., 2023). Many other studies
focus on the analysis of risks associated with the sepsis mortality rather
than on the development of early predication models (Jiang et al., 2021;
Bao et al., 2023; Ziyang et al., 2022; He et al., 2023), while those focused
on the predication models are implemented based on public datasets
(Johnson et al., 2016). For instance, J.S. Calvert developed a predictive
model for the diagnosis of the sepsis by employing the InSight algorithm
based on the MIMIC-II database in 2016 (Calvert et al., 2016). S. Nemati
developed a model for predicting the episode of the sepsis 4 to 12 h prior
to the clinical recognition in 2019, which is based on the MIMIC-III
database (Nemati et al., 2018). In the same year, M. Scherpf et al.
constructed an early prediction model for the sepsis using a neural
network based on the MIMIC-III database with the AUC=0.81 (Scherpf
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Table 1
Descriptive statistics of sepsis versus non-sepsis in clinical samples of adults
collected for the study (April to July 2022) in Anhui Province, China (N=1968).

Feature Nonsepsis (N=1658) Sepsis (N=310) P-value'
Age 68(18,90) 73 (18, 90) < 0.001
Sex 0.05
Male 1042(62.84 %) 200(64.51 %)
Female 616(37.15 %) 110(35.48 %)

BMI 22.8 (12.4, 48.4) 22.5(13.1, 38.2) 0.19
SOFA 5.1(0.1, 20) 8 (1, 20) < 0.001
Heart Rate 95(30,200) 119 (43, 220) < 0.001
SBP 120(30,260) 98.5 (50, 235) < 0.001
SPO2 97(50, 100) 95 (35, 100) < 0.001
Breath 19 (5,78) 23 (5, 58) < 0.001
Temp 36.8 (34, 41.9) 37.3 (35, 41) < 0.001
PaCO2 37.3 (12, 420) 37 (10.1, 220) 0.008
LympCount 1 (0.2, 80) 0.67 (0.1, 13.2) <0.001
Albumin 33.1 (9.3, 300) 29.3 (9.6, 48.1) 0.001
Chlorine 105 (1.8, 190.6) 103.6 (64.1, 147) 0.02
Lactate 2.1(0.5,19.4) 3.1(0.3, 34.3) < 0.001
Pao2fio2 265 (38.6, 840) 224.5 (31, 840) < 0.001
Platelets 167.9 (8, 527) 151 (6, 614) 0.01
BUN 9.05 (0.4, 457) 11,7 (2.86, 368) 0.001
Creatinine 84 (1.7, 792) 113.8 (9.34, 776) 0.004

Abbreviations: BMI,Body Mass Index; SBP, Systolic Blood Pressure; SPO2,Blood
Oxygen Saturation; Temp,temperature; PaCO2,Partial Pressure of Carbon Di-
oxide in Arterial Blood; Pao2fio2,0xygenation index; BUN,Blood Urea Nitrogen.

! The chi-square test was used for sex in the p-value, and the t-test was used for
other features.

Table 2

Results of model performance (unbalanced/balanced) after applying multiple
imputation and mean imputation for adult participants in Anhui Province, China
(April-July 2022).

Model  Process Accuracy Precision Recall F1 AUC

LR Multiple 0.69/ 0.86/ 0.46/ 0.60/ 0.84/
0.74 0.77 0.69 0.73 0.84

Mean 0.67/ 0.88/ 0.38/ 0.54/ 0.77/
0.72 0.71 0.73 0.72 0.78

RF Multiple  0.71/ 0.91/ 0.45/ 0.60/ 0.84/
0.75 0.88 0.66 0.77 0.87

Mean 0.71/ 0.90/ 0.47/ 0.62/ 0.81/
0.75 0.83 0.61 0.70 0.83

KNN Multiple  0.51/ 0.79/ 0.21/ 0.16/ 0.66/
0.61 0.59 0.74 0.65 0.72

Mean 0.54/ 0.77/ 0.11/ 0.19/ 0.74/
0.63 0.63 0.66 0.64 0.73

DT Multiple  0.68/ 0.75/ 0.54/ 0.63/ 0.70/
0.70 0.70 0.72 0.71 0.76

Mean 0.65/ 0.88/ 0.38/ 0.53/ 0.66/
0.65 0.67 0.60 0.63 0.73

XGB Multiple  0.73/ 0.86/ 0.54/ 0.66/ 0.85/
0.74 0.85 0.57 0.68 0.86

Mean 0.70/ 0.88/ 0.47/ 0.62/ 0.81/
0.74 0.83 0.61 0.70 0.79

NN Multiple  0.67/ 0.86/ 0.41/ 0.55/ 0.75/
0.72 0.86 0.53 0.65 0.76

Mean 0.63/ 0.76/ 0.37/ 0.50/ 0.76/
0.65 0.70 0.51 0.59 0.72

et al., 2019), which outperformed the InSight algorithm model by J.b.
Calvert et al. In 2021, R. Margherita developed an early sepsis prediction
model using the MIMIC-III database, which was superior to other early
prediction models available at the time (Margherita and Vincent, 2021).
Across various retrospective studies, clinicians in different regions
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possess distinct insights into sepsis, and the developed models also
consider varying clinical features. Moreover, most of studies are based
on the data from a single center, thus lack the ability of generalizations
for ensuring the clinical practice. Therefore, they may have difficulty
interpreting final results when faced with different complex clinical
situations. This study addressed the limitations by aggregating clinical
data from multiple centers to construct a comprehensive database. Local
clinical experts and relevant literature guided the selection of key fea-
tures for the model (Elfeky et al., 2017; Madushani et al., 2022). Various
established methods were employed for data processing, including
machine learning techniques such as SHAP analysis (Jiang et al., 2021;
Nordin et al., 2023); machine learning has been widely used in medical
diagnostics such as breast cancer and brain infarction (Wang et al.,
2023; Ouyang et al., 2023; Sharma et al., 2022; Singh et al., 2023; Yagin
et al., 2023). Missing values were handled using multiple imputation
techniques, ensuring data balance and model performance, as verified in
this study.

2. Materials and methods

The entire experimental process has roughly the following steps.
Firstly, the apriori analysis algorithm is used for the feature extraction
from the collected dataset. The apriori algorithm identifies those most
closely related features, and then, taking into account the recommen-
dations of clinical experts as well as those used in the previous studies,
eighteen features among them are identified for the construction of the
model classifiers and assignment of weights. Finally, six algorithm
models are introduced in order to perform predictive analyses.

2.1. Data source and study population

In this study, information was collected from 2,385 patients in the
First Affiliated Hospital of Anhui Medical University and partner
hospitals:

a) the basic information;

b) the life support employed;

¢) the result of blood test;

d) the infection and the use of antibiotics;

e) the immunomodulatory nutritional support;
f) the use of the analgesia/sedation.

Detailed parameters including demographics values, laboratory test
values, disease scores, and basic physical signs are covered. The system
was divided into sepsis information collection and non-sepsis informa-
tion collection columns based on whether the selection was sepsis or not.
The Third International Consensus Definition of Sepsis-3 (Sepsis) pro-
vided two main criteria for the formal diagnosis of sepsis: 1) an infection
must be suspected (identified by the administration of a prescription for
antibiotics and sampling of body fluids for microbiological cultures);
and 2) confirmation of infection, organ dysfunction manifested by a
mandatory increase of 2 points or more in the Sequential Organ Failure
Assessment (SOFA) score (Singer et al., 2016). The data from a total of
1968 patients, with 310 sepsis patients, are finally included in the model
analysis. For external validation, the MIMIC-III and eICU databases were
utilized (Johnson et al., 2016; Pollard et al., 2018). Both internal vali-
dation and external validation captured information about the features
of the ICU in the 24 h prior to hospitalization. MIMIC-III served as a
single-center external validation source, containing more than 60,000
hospital admissions between 2001 and 2012 (inclusive), with a total of
7,230 cases of data included in the test set. while eICU provided multi-
center external validation, containing more than 139,000 hospital ad-
missions between 2014 and 2015 (inclusive), with a total of 11,900
cases of data included in the test set. The inclusion criteria were as
follows:
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Fig. 1. The ROC curves for adult participants in Anhui Province, China (April-July 2022). (a/b) present multiple imputation (with SMOTE/without SMOTE); while

(c/d) present mean imputation (with SMOTE/without SMOTE).

1) adult patients aged 18 years or older; and

2) hospitalization in the ICU for more than 24 h, with sufficient data;
and

3) Patients with SOFA>=2 and suspected infection diagnosis of sepsis
in the internally validated and externally validated datasets (MIMIC-
III and eICU) were included according to the Third International
Consensus Definition of Sepsis (Sepsis-3). One author (ZLY, ID:
11706576) accessed the databases and handled data extraction.

2.2. Feature selection and outlier handling

One of the most critical procedures before the development of the
Machine Learning (ML) model is the feature selection (Kanyongo and
Ezugwu, 2023), which is of beneficial to the enhance model accuracy,
improve the model performance, and increase the speed of machine
learning. The irrelevant features like patient ID, admission time,
educational level and others which are not clearly distinguishable and
cannot be coded, as well as those anomalistic features like mean arterial
pressure and procalcitonin, are excluded. The handling of the remaining
features is based on previous studies and ICU clinician recommendations
(Ullrich et al., 2020; Li et al., 2018). For the risk factors, the probability
value (p-value) is calculated by the spa chi-square test. P-value smaller
than 0.05 rejects the null hypothesis and the confidence interval is
satisfied.

2.3. The process of the imbalanced data

The number of non-sepsis patients is almost 6 times that of sepsis
patients, and such an imbalance in the dataset will lead to a decrease in

the accuracy of the model. Therefore, the resampling method is intro-
duced for the correction. The SMOTE algorithm proposed by V. Chawla
is one of the most widely used method for the resampling and has the
advantage of effectively reducing overfitting compared to the simple
random sampling (Acena et al., 2022; Mutasa et al., 2020). In our study,
the dataset of the sepsis patient is the minority. For a patient sample (PS-
A) in this dataset, another random closest patient sample (PS-B) is
selected, a new patient sample (PS-C) is generated by randomly selecting
a point on the line connecting the PS-A and the PS-B, thus the PS-C is an
outright new patient sample.

2.4. The choice of machine learning models

According to the previous research on the early prediction model of
the sepsis (Le et al., 2019; Kijpaisalratana et al., 2022; Wang et al.,
2021), a set of algorithms are identified for the application, which are
Neural Network Algorithm (NN), Random Forest Algorithm (RF), K
Nearest Neighbor Algorithm (KNN), Logistic Regression Algorithm (LR),
Extreme Gradient Boosting Tree Algorithm (XGB), and DecisionTree
(DT) Algorithm. Then models generated by above algorithms are trained
using the processed dataset as described in section 2.3. Randomly
selected data, which accounted for 70 % of the total data, is used as the
training set, and the rest data is used as the testing set for checking the
accuracy of the model. The nested resampling method is employed with
using 5-fold cross validation for avoiding overfittings in the machine
learning (Ounpraseuth et al., 2012; Kucheryavskiy et al., 2023). In
addition, we also utilize a number of publicly available datasets as
control trials to validate that models trained on our own dataset are
more realistic in the clinical practice.
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Table 3
Results of model performance (unbalanced/balanced) for MIMIC-III (2001-2012) and eICU (2014-2015) adult participants using multiple imputation and mean
imputation..
Model Source Process Accuracy Precision Recall F1 AUC
LR MIMIC-IIT Multiple 0.70/0.76 0.78/0.77 0.54/0.73 0.64/0.75 0.83/0.85
Mean 0.72/0.75 0.85/0.75 0.52/0.74 0.65/0.75 0.84/0.84
elCU Multiple 0.69/0.72 0.82/0.71 0.48/0.74 0.60/0.73 0.79/0.79
Mean 0.69/0.73 0.80/0.72 0.50/0.72 0.61/0.72 0.78/0.77
RF MIMIC-IIT Multiple 0.67/0.74 0.85/0.74 0.41/0.74 0.55/0.74 0.83/0.86
Mean 0.70/0.73 0.82/0.78 0.51/0.63 0.63/0.70 0.83/0.83
elCU Multiple 0.65/0.74 0.82/0.73 0.38/0.76 0.52/0.74 0.80/0.82
Mean 0.73/0.76 0.83/0.77 0.58/0.74 0.69/0.75 0.79/0.80
KNN MIMIC-III Multiple 0.56/0.62 0.79/0.61 0.15/0.66 0.16/0.63 0.73/0.75
Mean 0.54/0.66 0.88/0.68 0.08/0.59 0.15/0.62 0.75/0.75
elCU Multiple 0.56/0.64 0.77/0.64 0.16/0.65 0.27/0.64 0.71/0.72
Mean 0.57/0.66 0.77/0.65 0.21/0.69 0.33/0.67 0.72/0.71
DT MIMIC-III Multiple 0.68/0.71 0.73/072 0.58/0.69 0.64/0.70 0.76/0.82
Mean 0.70/0.76 0.76/0.76 0.59/0.76 0.67/0.75 0.70/0.75
elCU Multiple 0.64/0.69 0.72/0.69 0.46/0.73 0.56/0.70 0.74/0.75
Mean 0.72/0.76 0.80/0.77 0.58/0.74 0.67/0.75 0.75/0.76
XGB MIMIC-IIT Multiple 0.72/0.71 0.79/0.78 0.60/0.59 0.68/0.67 0.83/0.84
Mean 0.76/0.76 0.83/0.80 0.65/0.69 0.73/0.74 0.83/0.85
elCU Multiple 0.69/0.70 0.77/0.74 0.54/0.62 0.64/0.68 0.80/0.81
Mean 0.75/0.76 0.80/0.79 0.66/0.70 0.73/0.75 0.84/0.85
NN MIMIC-IIT Multiple 0.69/0.70 0.79/0.75 0.50/0.61 0.62/0.67 0.81/0.83
Mean 0.67/0.70 0.81/0.80 0.43/0.52 0.57/0.63 0.82/0.82
elCU Multiple 0.65/0.68 0.79/0.63 0.41/0.84 0.53/0.72 0.75/0.75
Mean 0.71/0.69 0.72/0.65 0.69/0.83 0.71/0.73 0.74/0.76

2.5. The assessment of model parameters

The following metrics are used for evaluating the model by which the
best model is found: classification accuracy, precision, recall, F1, and
AUC (Cabot John and Gyang, 2023; Perez-Melo and Kibria, 2020). The
partial dependency plots (PDPs) of the SHAP analysis are plotted to
describe how the individual prediction changed as the values of the
patient feature parameters changed. In the predicted output, it is true
negative (TN) if sepsis patients are categorized as “Sepsis”, and false
negative (FN) if non-sepsis patients are categorized as sepsis patients, or
if sepsis patients are categorized as non-sepsis patients. Formulas for the
performance evaluation are as follow:

Accuracy = (TN +TP) /(TP + TN + FP + FN) x 100%
Precision = TP/(TP + FP) x 100%
Recall = TP/(TP + FN) x 100%

F1 = 2 x Precision x Recall/(Precision + Recall) x 100% (2-5-1)

2.6. Statement

The project has been reviewed and approved by the Medical Ethics
Committee of the First Affiliated Hospital of Anhui Medical University
(Approval No. PJ2022-01-09).
3. Result
3.1. Features selection

As mentioned in section 2, a total of eighteen features are identified

and included in the baseline training dataset with the results determined
by the apriori algorithm (Hassan et al, 2023; Ni et al., 2022).

Interpretations of the identified features are list in Table 1.

3.2. Imbalance tests and the model training

The study assessed the identified features using Pearson’s correlation
coefficient and found that the features exhibited low correlation with
each other. Six algorithms as mentioned in section 2.4 are used to
develop predictive models with the clinical parameters obtained from
non-sepsis and sepsis datasets. We use both Multiple Imputation and
Mean Imputation for filling the missing value in the unbalanced data. As
shown in Table 2 and Fig. 1(a-d) for tests on the unbalanced data, both
the low F1 and recall indicated the essential of data balancing. To ensure
experimental objectivity, both the preprocessed MIMIC-III and eICU
datasets, which initially had differing sepsis to non-sepsis ratios, were
included in the training set at a 1:3 ratio with the local datasets.

In order to validate the generalizability of the model, external vali-
dation was implemented in this study using the MIMIC-III single-center
dataset and the eICU multi-center dataset. The same method as the one
used in internal validation was followed. The RF model, processed with
SMOTE after Multiple Imputations, showed improved performance
during external validation, achieving AUC scores of 0.86 on the MIMIC-
IIT dataset and 0.82 on the eICU dataset. This demonstrated a certain
degree of generalization and applicability for the model in this study.
Table 3 and Fig. 2(a-h) presents the evaluation results of the six models
based on the externally validated MIMIC-III dataset and the eICU multi-
center dataset.

3.3. Analysis of sepsis risk factors

The RF model has the best performance considering all the criteria.
In order to better emphasize the contribution of each feature to the
model, the importance of different features is analyzed. Three most
important variables of eighteen clinical features are SBP, Heart Rate and



L. Zhou et al.

o

o

True Positive Rate

e

L

o

True Positive Rate

o

True Positive Rate
o

o

True Positive Rate
o

o

o

I

o

L

14

1

0 ROC Curve
/
8 —~ /
/
/ /
6 L
/
/
4 /
/
/
/ KNN - (AUC=0. 75)
2 DT (AUC=0.82)
/ RF (AUC=0. 86)
/ —— LR (AUC=0.85)
XGB (AUC=0.84)
/ = NN (AUC=0.83)
0
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
(a)
o ROC Curve
/
/
8 /7
- V4
’ /
6 L
7 /
/
4 /
/
/
s KN (AUG=0.75)
2 DT (AUC=0. 75)
/ RF (AUC=0.83)
/ = LR (AUC=0.84)
XGB (AUC=0.85)
/ = NN (AUC=0.82)
0
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
(c)
o ROC Curve
/
-
s /7
8 /
/
,/
é d
/ /
/
4 ¥4
/
/
V4 KNN (AUC=0. 72)
2 DT (AUC=0. 75)
, RF (AUC=0. 82)
, —— LR (AUC=0.79)
XGB (AUC=0.81)
, ——— NN (AUC=0. 75)
0
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
(e)
o ROC Curve
4
/
8 /
/
,/
6 rd
/
/
4 /
/
/
V4 KN (AUC=0. 71)
2 DT (AUC=0. 76)
/ RF (AUC=0. 80)
) / —— LR (AUC=0.77)
XGB (AUC=0. 85)
, — NN (AUC=0.76)
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(9)

Preventive Medicine Reports 45 (2024) 102841

‘o ROC Curve
= 7
Z /
0.8 //
o
R
200 4
+ : /
T |/ ’
Co4f | /
© f /
S J
2 i V4
= V4 KN (AUC=0. 73)
.2 DT (AUC=0. 76)
0 # / RF(AUC=0.B3)
/ —— LR (AUC=0.83)
XGB (AUC=0. 83)
/ —— NN (AUC=0.81)
0.0
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
ROC Curve
1.0 =
0.8 //
o
b )i
0 0.6 7
5 /
.g 7,
o 0.4 | //
[
S /
= Ve KN (AUC=0. 75)
2 0T (AUC=0.70)
0 | 7 R (0c-0.89
/ —— LR (AUC=0.84)
V4 XGB (AUC=0.83)
= NN (AUC=0.82)
0.0
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
ROC Curve
1.0
p /
/
0.8 //
o
5 / /
- ’ /
§ 0.6 / /
5 /
Q0.4 ,,
o
S /
= 4 KNN - (AUG=0. 71)
0.2 DT (AUC=0.74)
[ , RF (AUC=0. 80)
b , —— LR (AUC=0.79)
XGB (AUC=0. 80)
, —— NN (AUC=0.75)
0.0
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
ROC Curve
1.0
/
/
0.8 //
o
5 /
- /
g 0.6 /
5 /
E 7,
a 0.4 //
o
S /’
= / KN (AUC=0. 72)
0.2 DT (AUC=0. 75)
/ RF (AUC=0. 79)
, —— LR (AUC=0.78)
XGB (AUC=0. 84)
/ —— NN (AUC=0.74)
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(h)

Fig. 2. The ROC curves for adult participants in MIMIC-III (2001-2012) and eICU (2014-2015) datasets. (a-d) correspond to the MIMIC-III dataset, while (e-h)
correspond to the eICU dataset. For MIMIC-IIL: (a/b) present mean imputation (with SMOTE/without SMOTE); (c/d) present mean imputation (with SMOTE/without
SMOTE); For eICU: (e/f) present mean imputation (with SMOTE/without SMOTE); (g/h) present mean imputation (with SMOTE/without SMOTE).
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Albumin, while Sex, Temp, and etc., are relatively unimportant for the
model. Although clinical parameters are constantly changing, the risk
associated with the same parameter is not likely to vary significantly.
Therefore, it is important to have “threshold”s for changes in patient
risk. In order to quantify the relationship between changes in risks and
features, the partial dependency graph for the SHAP analysis of the
features is drawn as Fig. 3. For instance, patients with clinical values of
the age in the range of more than 70, the Heart Rate greater than 100,
the Lactate more than 2.5, and the SOFA score greater than 5 are more
likely to develop the sepsis.

4. Discussion and Conclusion

The research aims to reduce the mortality rate of sepsis by improving
the accuracy of early diagnosis. Currently, the diagnosis of sepsis relies
primarily on physiological indicators and imaging methods, supple-
mented by the clinical judgment. However, the diagnostic approach is
prone to be biased and time-consuming. With the advent of the big data
era, machine learning technology can learn potential patterns from a
large amount of data and apply them to the development of new pre-
dictive models. These models will undergo multiple rounds of training
and learning, with the aim of assisting physicians in early diagnosis and
improving the accuracy of sepsis diagnosis.

While previous studies predominantly focused on factors influencing
mortality in sepsis, there was a significant lack of research specifically
addressing early prediction of sepsis. Existing literature often relied on
large open-center datasets like MIMIC-III. However, the generalizability
of models based on single-center data was questioned. Although the
eICU dataset was derived from multiple centers, few studies utilized it.
These studies highlighted limitations, such as the lack of necessary
prospective clinical validation, casting doubts on the model’s applica-
bility (Ocampo-Quintero et al., 2022; Schinkel et al., 2019; O’Reilly
etal., 2023; Komorowski et al., 2022). Considering such limitations, this
study collected patient data from the First Affiliated Hospital of Anhui
Medical University and partner hospitals. The dataset was then pro-
cessed using statistical analysis and machine learning methods, an early
prediction model was constructed, and the results were clinically vali-
dated. This application of polycentric data greatly improves the gener-
alization performance of the model, and ensure that the model is more
suitable for the clinical practice. In terms of model effectiveness, the
model demonstrated a good performance on public datasets indicating
that the model was applicable to local datasets as well as the public
datasets MIMIC-III and eICU, enhancing its generalizability and
reliability.

Typically, the number of sepsis patients is much lower compared
with those non-sepsis, while the study needs to use similar proportions
of data for the analysis. Therefore, the unbalanced data is processed by
the SMOTE resampling method. We also demonstrate the necessary of
this procedure. In the result, our model demonstrates an 87 % AUC value
which proves its reliability. We also verify the feasibility of the model
containing 18 key features in practice.

The study is still on its primary stage and further improvement is
required. The interpolation method is employed to fill in some of the
missing values, which could affect the accuracy of the model to a certain
extent, though we have already considered the approach to minimized
the impact. The data is collected from hospitals in a single province, and
more data from other areas is required to be covered in the future to
further improve the accuracy.

5. Summary

The study develops the model for the early prediction of the sepsis in
ICU patients. Totally eighteen features are identified and six kinds of
algorithms are utilized for the analysis. The RF has the best performance
with the highest F1, recall, and AUC. From the result, special attention is
needed for ICU patients who have 18 feature parameters of the included
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model exceeding the thresholds as they are highly probable to be sepsis.
The development of such a type of model could help ICU physicians to
recognize sepsis patients and intervene earlier to reduce mortality.
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