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Abstract: Blood coagulation is a complex biological mechanism aimed to avoid bleeding in which a highly regulated and 

coordinated interplay of specific proteins and cellular components respond quickly to a vascular injury. However, when 

this mechanisms occurs in the coronary circulation, it has not a “protective” effect, but rather, it plays a pivotal role in de-

termining acute coronary syndromes. Coagulation recognizes Tissue Factor (TF), the main physiological initiator of the 

extrinsic coagulation pathway, as its starter.  

Since TF:VIIa complex is the critical point of the blood coagulation cascade, it is a pharmacological attractive issue for 

the development of agents with anti thrombotic properties that can exert their activity by inhibiting complex formation 

and/or its catalytic activity. In fact, it is intuitive that an antithrombotic agent able to inhibit this initial step of the coagula-

tion pathway has several theoretical, extremely important, advantages if compared with drugs active downstream the co-

agulation pathway, such as FXa or thrombin. The present report gives a brief overview of TF pathophysiology, highlight-

ing the most recent advances in the field of inhibitors of the complex TF/VIIa potentially useful in cardiovascular disease. 
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INTRODUCTION 

 Blood coagulation is a complex biological mechanism 
aimed to avoid bleeding in which a highly regulated and 
coordinated interplay of specific proteins and cellular 
components respond quickly to a vascular injury. How-
ever, when this mechanism occurs in the coronary circula-
tion, it has not a “protective” effect, but rather, it plays a 
pivotal role in determining acute coronary syndromes [1].  

 Coagulation recognizes Tissue Factor (TF), the main 
physiological initiator of the extrinsic coagulation path-
way, as its starter. Indeed, several experimental and clini-
cal studies indicate that TF plays a pivotal role in the 
pathophysiology of acute

 
coronary syndromes: it triggers 

the formation of intracoronary
 
thrombi following endothe-

lial injury [2-5]. TF is an integral transmembrane protein 
expressed on the surface of several cell types located in 
subendothelial structures throughout the vasculature, and it 
is normally not in contact with circulating blood, where 
other coagulation factors are present in their inactivated 
forms. In this respect,

 
cells normally not exposed to the 

flowing blood, such as smooth
 
muscle cells, constitutively 

express TF on their surface [6, 7], while cells exposed to 
the blood stream, such as endothelial

 
cells, express TF on 

their membrane only when activated after
 
exposure to spe-

cific stimuli, such as LPS, certain cytokines
 
[8], and oxy-

gen free radicals [9].  
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 Since TF/VIIa complex formation represents the critical 
point of the blood coagulation cascade, it is an attractive tool 
for the development of agents with anti thrombotic properties, 
which could inhibit complex formation and/or its catalytic ac-
tivity. Indeed, it is intuitive that an antithrombotic agent able 
to inhibit this initial phase of the coagulation pathway has sev-
eral theoretical, extremely important, advantages if compared 
with drugs active downstream the coagulation pathway, such 
as FXa or thrombin, since this pathway is specifically blocked 
right from the beginning. 

 The present report gives a brief overview of TF patho-
physiology, highlighting the recent advances in the field of in-
hibitors of the TF/VIIa complex useful in cardiovascular dis-
ease treatment.  

Tissue Factor Physiology and Extrinsic Coagulation  
Pathway 

 Tissue Factor (TF), also known as thromboplastin or 
CD142, is a glycosylated transmembrane protein consisting of 
a single polypeptide chain (MW: 45,000) [10]. This glycopro-
tein is a type I integral membrane protein, and is a member of 
the class 2 cytokine receptor superfamily [11]. The extracellu-
lar part of TF is made up of two fibronectin type III domains, 
and membrane anchoring of TF has been demonstrated to be 
essential to support full proteolytic activity by FVIIa [12] (Fig. 
1). It is intuitive that TF is normally not exposed to circulating 
blood to avoid its improper interaction with other circulating 
coagulation factors. Vice versa, vascular injury, through 
physical damage of the endothelial layer of the blood vessel, 
causes the exposure of TF to circulating blood, making it ac-
cessible to circulating factor VII (FVII)

 
[13-16]. This coagula- 
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Fig. (1). Schematic representation of Tissue Factor. This glyco-

protein is a type I integral membrane protein. The extracellular 

part of TF binds FVII with very high affinity and specificity. 

Once bound to TF, FVII is rapidly converted to its activated form 

(FVIIa) via limited proteolysis. Membrane anchoring of TF has 

been demonstrated to be essential to support full proteolytic activ-

ity by FVIIa. 

 

tion factor binds to TF with very high affinity and specific-
ity [17]. Once bound to TF, FVII is rapidly converted to its 
activated form (FVIIa) via limited proteolysis [18-19] (Fig. 
2). Activated FVII binds Factor X (FX), that, in turn, is 
converted in its activated form (FXa). Then, the extrinsic 
pathway continues, leading to thrombin activation and clot 
formation [19]. Many coagulation proteases such as factors 
IXa, Xa, XIIa, thrombin and plasmin [18-24]

 
are able to 

amplify this activation process since they cause the direct 
activation of FVII to FVIIa. More important, the TF:VIIa 
complex can itself catalyze the activation of FVII bound to 
TF, via an auto activation reaction [25-26], in which is in-
volved FXa too. Although the FVII in plasma circulates as 
a zymogen, it has been demonstrated that normal indivi-
duals might have low levels of activated factor VII (FVIIa) 
in their plasma (about 1% or less of the total factor VII) 
with an unknown role

 
[27]. 

 FVIIa is an extremely weak serine protease on its own, 
but its enzymatic activity is enhanced dramatically when it 
binds to TF [17]. Specifically, TF/FVIIa binding signifi-
cantly increases FVIIa ability to catalyze the hydrolysis of 
small peptidyl amide and ester substrates from 20- to 100-
fold, and this phenomenon is closely dependent upon the 
substrate [28, 29]. Substrate hydrolysis by serine proteases 
is known to be a multi-step process, and any of the steps 
along the reaction pathway might be affected in the allos-
teric activation of FVIIa by TF. Because TF is an integral 

membrane protein, the TF/VIIa complex is always tethered to 
the membrane surface. This has two important consequences: 
first, the coagulation cascade is activated only where it is 
needed, i.e. at sites of vascular injury; second, binding of 
FVIIa to TF activates a number of intracellular signals that 
culminate in cell proliferation and new gene expression, in-
cluding inflammatory genes [30-32]. 

 It has been described that procoagulant activity of intact 
cells that express TF on their surface is significantly lower if 
compared with the activity measurable in the same cells when 
damaged, lysed, or treated with calcium ionophore [33]. In-
deed, although TF is present on the surface of such cells, it be-
comes fully active only when the membrane properties of the 
cell are altered [34, 35]. In particular, it has been described a 
phenomenon called “TF encryption”. It is known that the dis-
tribution of aminophospholipids (such as the negatively 
charged phosphatidylserine) is restricted to the inner leaflet of 
the plasma membrane of the cells. Negatively charged phos-
pholipids are required for substrate molecules such as factors 
IX or X to bind to the membrane, so their sequestration limits 
the activity of TF on cell surface. When cells are lysed, dam-
aged or treated with calcium ionophore, this phospholipid 
asymmetry is lost. Moreover, in some cell types, TF may asso-
ciate with caveolae, which are areas of the cell surface with 
altered lipid composition. Again, it has been proposed that di-
merization or oligomerization of TF in the membrane may re-
duce its activity, and that damage or lysis of cells may promote 
the formation of active TF monomers. 

 Pathophysiology of coagulation is tightly regulated by an-
other important protein known as Tissue Factor Pathway In-
hibitor (TFPI), that is the endogenous inhibitor of the extrinsic 
coagulation pathway; specifically, TFPI is a potent inhibitor of 
the TF/FVIIa complex, and its action is related to the presence 
of FXa [36] (Fig. 2). TFPI is composed of three Kunitz-type 
protease inhibitor domains: the first Kunitz domain reacts with 
the active site of FVIIa in the TF:VIIa complex [37], while the 
second Kunitz domain reacts with the active site of FXa. Once 
the TFPI:Xa complex forms, it binds with higher affinity to 
TF:VIIa than does the TFPI molecule alone; this results in the 
formation of a fully inhibited tetramolecular complex 
TF:VlIa:TFPI:Xa [37, 38]. Much of the circulating TFPI is 
bound to lipoproteins [39-40]; this form represents about 50% 
to 60% of the total circulating TFPI, whereas carrier-free TFPI 
represents about 20% of the total. A third pool of TFPI is con-
fined to platelets, which carry approximately 10% of the total 
TFPI [41]. The in vivo infusion of heparin increases the circu-
lating levels of TFPI in plasma 2- to 4-fold [42, 43]. The 
source of this additional TFPI is thought to be the endothe-
lium, at the surface of which TFPI is bound. The TFPI released 
by heparin in vivo represents the carrier-free molecule, which 
might be biologically most active [38]. TFPI also promotes the 
internalization and degradation of TF:VIIa complexes on the 
surface of monocytes [44], thus subtracting these complexes to 
coagulation cascade. 

TF/FVIIa in Cardiovascular Disease 

 Several experimental and clinical studies have clearly 
demonstrated that the complex TF/FVIIa is the key initiator of 
the coagulation cascade in cardiovascular disease [1].  
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 TF expression represents the link explaining the 
relationship existing among several chemical mediators 
and the pathophysiology of coronary artery disease as well 
as of its main complication represented by acute coronary 
syndromes. In fact, it has been demonstrated that these 
mediators might exert their effects by inducing TF expres-
sion. Specifically, inflammatory markers such as C-
Reactive Protein or neopterin as well as smoke-derivative 
substances might play an important role in acute coronary 
syndromes since it has been demonstrated that they are ac-
tive partaker in triggering coronary TF-mediated coagula-
tion [15, 45, 46]. In addition, molecules involved in patho-
physiology of other cardiovascular co-morbidity such as 
urotensin II or angiotensin have been associated with TF 
expression to explain their mechanism of action [13, 47]. 

 Moreover, oxygen free radicals, endogenously gener-
ated upon post-ischemic reperfusion, induce TF-mRNA 
transcription and expression of TF procoagulant activity. 
As seen in in ex vivo and in vivo hearts subjected to ische-
mia and reperfusion, a condition associated with a produc-
tion of oxygen free radicals in large amounts, a marked in-
crease in TF activity occurred. This increase was accom-
panied by a significant impairment of coronary flow during 
reperfusion and possibly contribute to the occurrence of 
reperfusion injury [9]. 

 Immunohistochemistry studies have demonstrated that 
TF can be detected in several cell types, such as mono-
cytes, foam cells, and fibroblasts isolated from human 

atherosclerotic coronary and carotid plaques [3, 48]. Interest-
ingly, TF of human atherosclerotic plaques retains its full pro-
coagulant properties [1]. Moreover, in patients with clinical 
evidence of acute coronary syndromes, TF antigen levels and 
TF procoagulant activity measured in human atherectomy 
specimens were significantly higher that those measurable in 
specimens obtained from patients with stable angina [49]. 
Conversely, TF was rarely detected in patients with restenosis 
lesions even if the resulting clinical presentation was an unsta-
ble coronary syndrome. Tissue Factor was readily detected in 
de novo lesions in patients with unstable coronary syndromes, 
suggesting a role for TF in the pathogenesis of this disease 
process [4]. Again, Randi et al, analyzing gene expression in 
coronary plaques from patients with stable or unstable angina 
using gene arrays, demonstrated higher TF expression in un-
stable angina samples [50]. Furthermore, plasma TF activity 
seems to have impact on prognosis in patients with ACS. 
Steppich et al demonstrated that systemic TF activity in acute 
myocardial infarction has an unfavorable prognostic value and, 
as a marker for altered coagulation, it might predict the athero-
thrombotic risk [51]. 

 Plasma levels of FVIIa seem to be an another key point of 
the coagulation cascade. Bozzini et al. showed that polymor-
phisms in the factor VII gene promoter on activated factor VII 
levels may modulate the risk of myocardial infarction in males 
with advanced coronary artery disease [52]. In addition, a re-
cent study has demonstrated that C-reactive protein plasma 
levels were related with FVII concentration in patients with 
coronary artery disease [53]. Moreover, activity of FVII may 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Schematic representation of Extrinsic coagulation pathway: FVII bound to TF is rapidly converted to its activated form (FVIIa). 

FVIIa binds FX, that is converted in its activated form (FXa). Many coagulation proteases such as factors VIIa, IXa, amplify this activation 

process. TFPI modulates the TF/FVIIa complex activity. In presence of FXa, it forms a complex which, in turn, binds with high affinity to 

TF/VIIa thus causing the formation of a fully inhibited tetra-molecular complex TF/VlIa/TFPI/Xa. 
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be considered as an independent cardiovascular risk factor. 
Specifically, Karatela et al. have recently demonstrated 
that raised FVII and leptin levels in coronary artery disease 
(CHD) patients were independently associated with insulin 
resistance; this was not observed among the non-CHD sub-
jects [54]. 

 Taken together, these data clearly underline the impor-
tance of TF:FVIIa as one of the main determinant of hu-
man atherosclerotic plaque thrombogenicity .  

TF/VIIa Complex Inhibitors in Cardiovascular Disease 

Tissue Factor Pathway Inhibitor 

 Since TFPI has an important role in modulating the ac-
tivity of the TF:FVIIa complex (Fig. 2), recombinant hu-
man TFPI might be useful in patients with acute coronary 
syndromes. Thus, this protein has been successfully ex-
pressed in a variety of hosts, including bacteria, and has 
been shown to be effective in preventing thrombus forma-
tion in a variety of experimental models. Haskel et al. [55] 
for the first time demonstrated that administration of phar-
macological doses of human recombinant TFPI was asso-
ciated with lack of reocclusion after discontinuation of t-
PA in a canine model of coronary thrombolysis. Other ex-
perimental studies have also shown that recombinant TFPI 
was effective in inhibiting intravascular thrombosis, but 
this effect was achieved at doses far higher than those 
physiologically measurable in plasma [56]. Not surpris-
ingly, therefore, considering also the FXa inhibitory effects 
of TFPI, Oltrona et al. [57] found that systemic administra-
tion of recombinant TFPI led to a marked prolongation in 
PT, suggesting that recombinant TFPI at doses effective in 
preventing arterial thrombosis might be associated with a 
substantial risk of bleeding. St. Pierre et al. [58] demon-
strated that recombinant TFPI administration after balloon 
overstretch insult to the carotid arteries in pigs reduced TF 
expression, FXa activity, and attenuated accumulation of 
thrombus at the site of insult. Finally, in a clinical trial in 
patients with sepsis, recombinant TFPI showed promise in 
reducing mortality in critically ill sepsis patients [59]. 
However, several clinical trials aimed to evaluate TFPI 
systemic administration in patients with acute coronary 
syndromes have been interrupted for ethical reasons since 
the risk of bleeding increased significantly. Fortunately, 
the rapid progress of in vivo gene transfer technologies has 
created powerful new tools to transfer foreign genes into 
the cells of a variety of organs, including the vascular wall. 
Different vectors have been developed to efficiently trans-
fect target cells, including retroviral, adenoviral, and direct 
DNA transfer. Therefore, giving the feasibility of transfect-
ing the arterial wall with foreign genes, it is of no surprise 
that TFPI has been the focus of several studies in this field. 
The main theoretical advantage of increasing local TFPI 
concentrations by gene transfer to the arterial wall is that 
therapeutic TFPI levels can be achieved only where they 
are needed, i.e., at the damaged arterial site where TF is 
exposed, without concomitant, potentially dangerous sys-
temic effects. Thus, starting from these considerations, 
several studies have clearly demonstrated the antithrom-
botic efficacy of arterial TFPI gene transfer in different 
models of intravascular thrombosis [60, 61]. However, to 

date, considering ethical concerns regarding “gene therapy” in 
humans, this kind of pharmacological approach to inhibit 
TF/FVIIa complex seems to be far.  

rFVIIai 

 Recently, human recombinant FVIIa in which the active 
site of FVIIa is blocked with a covalent inhibitor, such as 
chloromethylketone (known as rFVIIai), has been produced 
and successfully used to block TF:VIIa procoagulant activity. 
rFVIIai retains its TF binding capacity but is enzymatically 
inactive. This molecule exerts its antithrombotic effect by 
competing with native factor VIIa (FVIIa) for TF binding. 
Since it has a significantly higher affinity to TF than native 
FVIIa, it avoids that coagulation cascade could proceed down-
stream [62-64] (Fig. 3).  

 Immunohistochemical studies have evidenced that rFVIIAi 
can be detected at site of arterial injury in vessel sections ob-
tained from animals 24 h following rFVIIai administration, 
despite at this time the compound was completely eliminated 
from the circulation. In different animal models, rFVIIai effi-
ciently prevented TF-induced arterial thrombosis, without any 
concomitant potentially hazardous systemic effects [65-67]. 
Interestingly, and in line with histological observations,  
rFVIIai-dependent inhibition of arterial thrombosis could be 
observed despite plasma concentrations were undetectable, 
thus witnessing that this molecule exerted its effect only at site 
of injury [68].  

  The potential role of rFVIIai in cardiovascular disease has 
been demonstrated in ischemia/reperfusion too [69]. Recently, 
it has been demonstrated that this rFVIIai effect is primarily 
due to rFVIIai ability to reduce inflammation-related lethal I/R 
injury. Inhibition of toll-like receptor-4 (TLR-4) and of nuclear 
factor-kappaB (NF-kB) mediated cell signalling might be in-
volved. Specifically, levels of NF-kB and of NF-kB-dependent 
protein such as TF and IL-6, usually increased after ische-
mia/reperfusion were significantly reduced after rFVIIai ad-
ministration [70].  

 A phase I clinical study has reported that administration of 
single doses of rFVIIa up to 400 mcg/kg to 64 healthy subjects 
did not affect the safety of the subjects nor the hemostatic 
function, except for the expected prolongation of the 
prothrombin time (PT) [71]. On the basis of these findings, a 
multicenter, double-blind, dose-escalation, randomized trial 
evaluating the efficacy and safety of rFVIIa in patients under-
going elective or urgent PCI was performed [72], and in asso-
ciation with this trial, a substudy was designed to evaluate the 
antithrombotic effect of FFR-rFVIIa in an ex vivo perfusion 
flow chamber connected directly to the patients’ blood streams 
[73]. These studies demonstrated that FFR-rFVIIa has a potent 
antithrombotic effect at different shear rates and severe arterial 
injury conditions, suggesting a potential use for this molecule 
in this clinical setting.  

Other TF/FVIIa Inhibitors 

 Another potential option to interfere with TF/FVIIa com-
plex is represented by antibodies directed against TF: binding 
of these antibodies prevents FVII interaction with its natural 
ligand. One of the first antibody able to interfere with TF/ 
FVIIa complex was AP-1, a monoclonal antibody raised 
against rabbit TF. AP-1 has been proven to block TF-procoa-
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gulant activity in vitro and in vivo at very low concentra-
tions [2] (Fig. 3). In particular, administration of AP-1 to 
rabbits with recurrent thrombosis of the carotid artery was 
associated with a complete inhibition of thrombosis with-
out a concomitant prolongation in systemic hemostatic pa-
rameters or an alteration in platelet aggregation [2]. The 
same agent has also been shown to accelerate the throm-
bolytic properties of t-PA and prevent reocclusion after its 
discontinuation in a rabbit model of carotid artery throm-
bosis and thrombolysis [5]. 

 Recently, it has been developed a chimeric mouse-
human monoclonal antibody directed against TF and 
known as ALT836. This antibody binds to TF at its FX 
binding site. In patients with stable coronary artery disease 
enrolled in the PROXIMATE-TIMI 27 trial, this antibody 
had an interesting dose-dependent anticoagulant effect 
without any significant side effect such as bleeding [74].  

 Another potent TF:VIIa complex inhibitor is known as 
XK1. It is a chimeric protein which consists of the light 
chain of FXa linked to the first Kunitz domain of TFPI 
[75]. Other hybrid proteins with increased affinity for 
TF/FVIIa complex have also been genetically engineered 
to inhibit activation of coagulation cascade [76, 77], and a 
version with even greater potency for FVIIa has been  
created by linking a modified Kunitz-type inhibitor with a 
mutated form of soluble TF [78]. In addition, NAPc2, an 
inhibitor of the TF/VIIa complex, has been cloned from 
hookworms [79]. This molecule exerts its effects by bind-
ing to FXa and has an inhibitory mechanism resembling 

that of TFPI. The antithrombotic effect of NAPc2 has recently 
been demonstrated in a dose-finding study on the prevention of 
venous thromboembolism in patients undergoing total knee 
replacement [80].  

Future Directions 

As reported above, TF/FVIIa inhibitors have been successfully 
tested in vivo after parenteral administration, but research of an 
orally bio-available drug still remains an undiscovered field. 
Comforting results observed in preclinical models and clinical 
trials [81, 82] in which small protein and antibody-based in-
hibitors of the TF/FVIIa pathway have been tested, have 
stimulated several future studies aimed to develop orally active 
TF/FVIIa inhibitors and to perform a tailored anti-thrombotic 
therapy. Probably, the main limitation that should be overcome 
is that an effective oral drug will require a careful balance  
between optimal inhibitor characteristics and drug-like or 
pharmacokinetic properties, that is a challenge which often 
does not have an easy solution.  

  Moreover, since TF/FVIIa inhibitors might be useful also 
in preventing other TF-mediated phenomena, such as inflam-
mation and cell proliferation, these molecules should be tai-
lored to exert their effects only where they are needed, without 
affecting the physiological haemostasis. 

 In interventional cardiology area, particularly attractive 
could be the engineering of a balloon coated with an inhibitor 
of TF/FVIIa, such as rFVIIai able to permit local drug release 
at site of injury/thrombosis, during percutaneous transluminal 
coronary angioplasty (PTCA). Alternatively, a TFPI-coated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Examples of TF/VIIa complex inhibitors. Anti-TF monoclonal antibody binds TF and prevent FVII binding. rFVIIai is enzymati-

cally inactive but it has high TF binding affinity. Thus, it exerts its antithrombotic effect by competing with FVIIa for TF binding and conse-

quently impeding TF/FVIIa activity. 
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balloon might be used in the same clinical setting, in order 
to increase local TFPI concentrations and obtain a local 
antithrombotic effect. Finally, a fascinating hypothesis 
might be that of a balloon coated with genes codifying for 
TFPI, to directly obtain gene transfer to the arterial wall, in 
order to facilitate the stabilization of active atherosclerotic 
plaque before stent deployment.  

CONCLUSIONS 

 TF:VIIa complex represents the “critical point” of the 
extrinsic pathway of blood coagulation. Thus, it is intuitive 
why it has become an attractive tool for the development of 
newer antithrombotic agents able to prevent complex for-
mation or to inhibit its catalytic activity. This kind of anti-
thrombotic therapy has several theoretical advantages if 
compared with other interventions directed against other 
“downstream” components of the coagulation cascade, 
such as heparin and its derivatives or direct antithrombin 
agents.  

 Indeed, although potent synthetic inhibitors of 
TF/FVIIa had been discovered and tested in animal  
models, any of these have advanced into clinical trials. The 
systemic effects observed and, specifically, the marked 
elongation of bleeding time observed in experimental stud-
ies have highlighted that safety, effective dose and route of 
administration are the main issues to resolve. On the other 
side, while the local delivery of genes or drugs during in-
terventional procedures seems very intriguing, the feasibil-
ity of this approach needs to be demonstrated.  

 However, in spite of these considerations, TF:FVIIa 
complex still remains a challenging and important target to 
study and develop future generations of antithrombotic 
agents.  

ABBREVIATIONS 

TF = Tissue factor 

LPS = Lypopolysaccharide 

FVIIa = Factor VII activated 

FXa = Factor X activated 

FIXa = Factor IX activated 

FXIIa = Factor XII avtivated 

TFPI = Tissue factor pathway inhibitor 

CHD = Coronary artery disease 

AP-1 = Monoclonal antibody raised against  
rabbit TF 

rFVIIai = Recombinant FVIIa with active site blocked 
with a covalent inhibitor 

PTCA = Percutaneous transluminal coronary 
angioplasty 
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