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Abstract: Bufalin (buf) has poor solubility in aqueous solution, poor tumor targeting, and many
non-specific toxic and side effects. The advantages of high-molecular-weight polymer conjugates are
that they can improve the water solubility of buf, prolong plasma half-life, and reduce non-specific
toxicity. A novel water-soluble polymer–drug conjugate with buf and fluorescein pendants was
prepared by the combination of reversible addition-fragmentation transfer (RAFT) polymerization
and click chemistry. Its anticancer performance and cellular uptake behavior against liver cancer were
investigated in vitro. The polymer–buf conjugates exhibit controlled release and tumor-targeting
capabilities, showing promise for clinical applications.
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1. Introduction

Liver cancer ranks in the top three in mortality rate among all tumors and is the sixth
most common cancer worldwide in 2020 [1,2]. The disease is one of the worst cancers with a
poor prognosis and a 5 year survival rate of less than 10% [3,4]. Treatment strategies for liver
cancer include surgery, transplantation, transcatheter arterial chemoembolization (TACE),
local ablation, chemotherapy, targeted therapy, immunotherapy, and traditional Chinese
medicine (TCM) [5]. TCM plays an indispensable role as a complementary and alternative
therapy for end-stage liver disease, such as cirrhosis or liver cancer [6,7]. Compared with
synthetic drugs, TCM therapy, which is natural product, has the advantages of being less
costly and having fewer adverse reactions for the treatment of liver cancer, improving
survival and clinical benefit in patients [8,9]. Bufalin (buf), a toxic ligand and active
compound, is extracted from toad venom [10]. Micromolar doses of buf can effectively kill
human liver cancer cells [11,12]. However, buf has poor solubility in aqueous solution, poor
tumor targeting, many non-specific toxic and side effects, easy decomposition after oral
administration, a short half-life and low overall anticancer efficiency [13,14]. Suspending
agents or auxiliary solvent can help disperse buf into aqueous solutions, but can also cause
associated toxicity [15].

Water-soluble polymer–drug conjugates with targeting moieties have good biocom-
patibility, can prolong the residence time in blood circulation, actively deliver in cells,
effectively accumulate in tumor sites, and improve pharmaceutical efficiency [16–19]. The
polymer–drug conjugates with active organ-targeting properties can minimize the drug
interaction with non-target organs to attenuate the side effects and toxicity. There are
specific receptors on the surface of hepatoma cells that have an affinity for specific lig-
ands [20]. Wu et al. synthesized galactosylated and fluorescein isothiocyanate-labeled
polycaprolactone-g-dextran (Gal-PCL-g-Dex-FITC) polymers which could be selectively
recognized by HepG2 cells and subsequently accumulate in HepG2 cells [21]. Ma et al.
reported that because SMMC7221 human liver cancer cells overexpress lactose or galactose
receptors, lactose-containing copolymers could be specifically and effectively internalized
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by SMMC7221 cells [22]. Xu et al. developed galactosamine-decorated PEGylated hyaluro-
nan copolymers which could be efficiently internalized by HepG2 cells [23]. The receptors
on the surface of hepatoma cells could be recognized by sugar ligands so that the above
mentioned polymer–drug conjugates may be used as drug-vehicles for hepatoma-cell tar-
geting drug delivery. Covalently linking drugs to polymer backbone is possible to control
the cleavage and release of cytotoxic agents to avoid premature/burst drug release [24–26].
It was reported that polymer–drug conjugates can improve the aqueous solubility of buf,
extend plasma half-life, and reduce non-specific toxicity [27].

The purpose of this study was to develop a mannose-modified polymer-drug conju-
gate for targeted intracellular delivery of buf in hepatoma cells in vitro. We combined the
advantages of polymer–drug conjugates and ligand–receptor targeting strategies to achieve
multiple functions of polymers, including sustained drug release, biodegradation, targeting
of liver cancer cells, rapid cellular uptake, and fluorescence detection. The polymer–drug
conjugates were synthesized by reversible addition-fragmentation transfer (RAFT) poly-
merization followed by click (alkyne-azide) reactions. In particular, we used aryl mannose
residues as both water-soluble agents and targeting moieties. As we reported previously,
the introduction of mannose groups can enhance cellular uptake in human hepatoma
(HepG2) cells [28]. NMR was performed to characterize the polymer–buf conjugates. The
anticancer performance of polymer–buf conjugates against HepG2 was evaluated. Flow
cytometry and confocal laser scanning microscopy (CLSM) were conducted to examine the
cellular uptake behavior of polymer–buf conjugates.

2. Materials and Methods
2.1. Materials

2,2′-Azobis(2-methylpropionitrile) (AIBN; Aladdin) was recrystallized from 95% ethanol.
Buf (99%) was purchased from Chengdu Aifa Biotech Co., Ltd. (Chengdu, China) and
used as received. Et3N, 2-Bromoethanol, 4-dimethylaminopyridine (DMAP), CuSO4·5H2O,
Vitamine C sodium salt and Pent-4-ynoic acid were purchased from Energy Chemical
Co., Ltd. (Shanghai, China) and used as received. D-(+)-Mannose was purchased from
Aladdin Co., Ltd. (Shanghai, China) and used as received. KN3 and acryloyl chlo-
ride were purchased from Macklin Biochemical Co., Ltd. (Shanghai, China) and used
as received. N,N′-dicyclohexylcarbodiimide (DCC) and 2,2′-azobis [2-(2-imidazolin-2-
yl)propane]dihydrochloride (VA-044) were purchased from Bidepharm Co., Ltd. (Shanghai,
China) and used as received. Propargylamine was purchased from Tokyo Chemical In-
dustry Co., Ltd. (Shanghai, China) and used as received. LysoTracker®Red DND-99, Fetal
bovine serum (FBS), penicillin, streptomycin, and Dulbecco’s Modified Eagle’s Medium
(DMEM) were purchased from Thermo Fisher Scientific (Waltham, MA, USA) and used as
received. Hoechst 33342 was purchased from Maokang Biotechnology Co., Ltd. (Shanghai,
China) and used as received. The human liver cancer cell line HepG2 was purchased from
the Cell Bank of Type Culture Collection of Chinese Academy of Sciences (Shanghai, China).

2.2. Compounds Synthesis

The flowchart of the complete synthesis process is shown in Scheme 1. The synthetic
route for the preparation of mannose acrylamide M1 is shown in Scheme 2. The synthetic
route for the preparation of bufalin ester is shown in Scheme 3. The synthetic route for
the preparation of the copolymer P1 is shown in Scheme 4. The synthetic route for the
preparation of the polymer–buf conjugate P2 is shown in Scheme 5.
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Scheme 2. Synthesis of mannose acrylamide M1. 

2.2.1. Synthesis of a 
Propargylamine (2.20 g, 0.04 mol) and Et3N (6.07 g, 0.06mol) were dissolved in 20 mL 

of CH2Cl2. The reaction mixture was cooled to 0 °C in an ice bath. Then, acryloyl chloride 
(3.62 g, 0.04 mol) was added dropwise. After the reaction, 100 mL of CH2Cl2 and 30 mL of 
water were used for extraction, and the aqueous phase was added, which was 30 mL of 
CH2Cl2. The obtained organic phases were dried with anhydrous Na2SO4 under reduced 
pressure at room temperature. The crude product was purified by column chromatog-
raphy using petroleum ether/ethyl acetate (2:1 v/v) as the eluent to obtain a (2.36 g, yield 
54.06%). 1H NMR characterization result of a is shown in Figure S1. 

2.2.2. Synthesis of b 
D-(+)-Mannose (5.04 g, 28 mmol) and 2-bromoethanol (17.51 g, 0.14 mol) were 

charged into a 250 mL flask equipped with a magnetic stirring bar. Silica gel powder (3 g) 
and concentrated sulfuric acid (1 mL) were added to the flask. The reaction mixture was 
thermostatted at 90 °C in an oil bath and stirred for 3 h after connecting the condenser 
tube. The mixture was purified by column chromatography using CH2Cl2/MeOH (10:1 
v/v) as the eluent to obtain b (5.42 g, yield 67.42%). The 1H NMR characterization result of 
b is shown in Figure S2. 
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2.2.6. Synthesis of Copolymer P1. 
RAFT polymerization was used to synthesize the azide-terminated copolymers. In 

summary, 1-(azidomethyl)-4-vinylbenzene (7.96 mg, 0.05 mmol), CA-CTA (1.19 mg, 5.00 
μmol), mannose acrylamide M1 (35.84 mg, 0.10 mmol), and 2,2′-azobis [2-(2-imidazolin-
2-yl)propane]dihydrochloride (VA-044) (0.52 mg, 1.61 μmol) were dissolved in H2O/1,4-
dioxane (1/2, 100 μL). The polymerization solution was bubbled with N2 for 30 min, then 
flame-sealed and polymerized at 80 °C for 24 h. After polymerization, the mixture was 
purified by dialysis (cellulose membrane; molecular weight cutoff (MWCO) 1000 Da) in 
deionized water for 48 h and lyophilized for a yield of 22.17 mg. The conversions of 1-
(azidomethyl)-4-vinylbenzene and mannose acrylamide M1 were determined by 1H NMR 
to be ~40% and ~75%, respectively. The degree of copolymer was determined to be ~63.3 
by 1H NMR analysis in DMSO. The 1H NMR characterization result of copolymer P1 is 
shown in Figure S6. The sample pictures of copolymer P1 are shown in Figure S7. 
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2.2.1. Synthesis of a

Propargylamine (2.20 g, 0.04 mol) and Et3N (6.07 g, 0.06 mol) were dissolved in 20 mL
of CH2Cl2. The reaction mixture was cooled to 0 ◦C in an ice bath. Then, acryloyl chloride
(3.62 g, 0.04 mol) was added dropwise. After the reaction, 100 mL of CH2Cl2 and 30 mL of
water were used for extraction, and the aqueous phase was added, which was 30 mL of
CH2Cl2. The obtained organic phases were dried with anhydrous Na2SO4 under reduced
pressure at room temperature. The crude product was purified by column chromatography
using petroleum ether/ethyl acetate (2:1 v/v) as the eluent to obtain a (2.36 g, yield 54.06%).
1H NMR characterization result of a is shown in Figure S1.

2.2.2. Synthesis of b

D-(+)-Mannose (5.04 g, 28 mmol) and 2-bromoethanol (17.51 g, 0.14 mol) were charged
into a 250 mL flask equipped with a magnetic stirring bar. Silica gel powder (3 g) and
concentrated sulfuric acid (1 mL) were added to the flask. The reaction mixture was
thermostatted at 90 ◦C in an oil bath and stirred for 3 h after connecting the condenser tube.
The mixture was purified by column chromatography using CH2Cl2/MeOH (10:1 v/v) as
the eluent to obtain b (5.42 g, yield 67.42%). The 1H NMR characterization result of b is
shown in Figure S2.

2.2.3. Synthesis of c

The compounds b (5.42 g, 18.88 mmol) and KN3 (1.85 g, 22.81 mmol) were dissolved
in H2O/Acetone (1/1, 8 mL). The reaction mixture was thermostatted at 70 ◦C in an oil
bath and stirred for 4 h after connecting the condenser tube. The mixture was purified by
silica gel column chromatography using CH2Cl2/MeOH (10:1 v/v) as the eluent to obtain c
(2.11 g, yield 44.84%). 1H NMR characterization result of c is shown in Figure S3.

2.2.4. Synthesis of Mannose Acrylamide M1

The compounds a (1.11 g, 10.16 mmol) and c (2.11 g, 8.47 mmol) were dissolved in
8 mL of methyl alcohol. Then, CuSO4·5H2O (104.87 mg, 0.42 mmol), and Vitamine C
sodium salt (166.41 mg, 0.84 mmol) were added. The reaction mixture was stirred at room
temperature for 12 h. The mixture was purified by silica gel column chromatography using
CH2Cl2/MeOH (5:1 v/v) as the eluent to obtain mannose acrylamide M1 (2.21 g, yield
72.81%). 1H NMR characterization result of mannose acrylamide M1 is shown in Figure S4.

2.2.5. Synthesis of Buf Ester

Buf (77.3 mg, 0.20 mmol), pent-4-ynoic acid (23.52 mg, 0.24 mmol), DCC (51.58 mg,
0.25 mmol), and DMAP (2.44 mg, 0.02 mmol) were dissolved in 2 mL of CH2Cl2 and
stirred at room temperature for 24 h. The mixture was purified by silica gel column
chromatography using CH2Cl2/petroleum ether (3:1 v/v) as the eluent to obtain buf ester
as a white solid (60.10 mg, yield 64.40%). 1H NMR characterization result of buf ester is
shown in Figure S5.
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2.2.6. Synthesis of Copolymer P1

RAFT polymerization was used to synthesize the azide-terminated copolymers. In
summary, 1-(azidomethyl)-4-vinylbenzene (7.96 mg, 0.05 mmol), CA-CTA (1.19 mg, 5.00µmol),
mannose acrylamide M1 (35.84 mg, 0.10 mmol), and 2,2′-azobis [2-(2-imidazolin-2-yl)
propane]dihydrochloride (VA-044) (0.52 mg, 1.61 µmol) were dissolved in H2O/1,4-dioxane
(1/2, 100 µL). The polymerization solution was bubbled with N2 for 30 min, then flame-
sealed and polymerized at 80 ◦C for 24 h. After polymerization, the mixture was purified
by dialysis (cellulose membrane; molecular weight cutoff (MWCO) 1000 Da) in deionized
water for 48 h and lyophilized for a yield of 22.17 mg. The conversions of 1-(azidomethyl)-
4-vinylbenzene and mannose acrylamide M1 were determined by 1H NMR to be ~40%
and ~75%, respectively. The degree of copolymer was determined to be ~63.3 by 1H NMR
analysis in DMSO. The 1H NMR characterization result of copolymer P1 is shown in Figure
S6. The sample pictures of copolymer P1 are shown in Figure S7.

2.2.7. Binding of Fluorescein Molecule and Buf

The copolymer P1 (80.68 mg), buf ester (18.17 mg, 0.04 mmol), and propargylic
florescein (4.82 mg, 0.01 mmol) were dissolved in H2O/MeOH (1/1, 150 µL); 100 µL of
DMSO was added. Then, CuSO4·5H2O (0.32 mg, 1.30 µmol) and Vitamine C sodium salt
(0.52 mg, 2.62 µmol) were added. The reaction mixture was stirred at room temperature
overnight. After the reaction, a small amount of CH2Cl2 and a large amount of water were
used for extraction, and the aqueous phase was lyophilized to obtain the polymer–buf
conjugate P2 (yield 49.96 mg). The sample pictures of polymer-buf conjugate P2 are shown
in Figure S8.

2.3. Cell Culture

The human liver cancer cell line HepG2 cells were cultured in DMEM supplemented with
10% FBS, penicillin, and streptomycin under a humidified atmosphere of 5% CO2 at 37 ◦C.

2.4. Cell Viability Assays

HepG2 cells were seeded into a 96-well plate (0.8 × 104 cells/well) and cultured
overnight. The polymer–buf conjugate P2 (0.98 mg/mL) in DMEM was added and cultured
for 48 h. The media was removed and incubated with 10 µL CCK-8 solution in 100 µL
DMEM at 37 ◦C for 0.5 h. The absorbance at 450 nm was measured on a multimode plate
reader and cell viability was calculated compared to untreated cells. The cytotoxicity of
free buf and the copolymer was examined by the same method.

2.5. Cellular Uptake Behavior of Polymer-Buf Conjugate P2 by Flow Cytometry

HepG2 cells (3 × 105 per well) were seeded into six-well cell culture plates and
cultured for 24 h. Next, the original medium was replaced with a fresh medium containing
polymer–buf conjugate P2 (98 µg/mL) for 2, 4, 5 h. Afterwards, the culture medium was
removed, and cells were washed with PBS for 3 times and harvested with trypsin. The cells
were resuspended in 300 µL of PBS. The targeting efficiency of the polymer–buf conjugate P2
in vitro was assessed using flow cytometry (Calibur; BD Biosciences, Franklin Lakes, NJ, USA).

2.6. Fluorescence Imaging

HepG2 cells were seeded into CLSM-specific dishes at a density of 3× 105 cells per dish
and cultured overnight. Subsequently, the cells were cultured with fresh medium contain-
ing polymer–buf conjugate P2 at a buf concentration of 1.4 µg/mL for 2, 4, 5 h. Afterward,
the culture medium was removed. The cells were washed with PBS 3 times, and stained
with LysoTracker®Red DND-99 and Hoechst 33342 for 30 min and 15 min, respectively.
Next, the cells were washed with PBS 3 times and cultured with PBS. The samples were visu-
alized using CLSM (Leica Microsystems, Mannheim, Germany). λex/em (LysoTracker®Red
DND-99) = 577/590 nm, λex/em (copolymer–buf conjugate) = 498/517 nm, λex/em (Hoechst
33342) = 346/460 nm.
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2.7. Statistical Analysis

All statistical analyses and graphs were generated with GraphPad Prism 8.0 (GraphPad
Software, Inc., La Jolla, CA, USA). Each experiment was performed in triplets and the
quantitative data are presented as mean ± standard deviation.

3. Results and Discussion
3.1. Synthesis and Characterization of Polymer-Buf Conjugate

Polymer–drug conjugates containing mannose as a targeting and water-soluble agent,
buf as a drug candidate and fluorescein as a fluorescence agent was prepared by RAFT
polymerization and click chemistry. A random copolymer P1 was first prepared by RAFT
polymerization of mannose monomer (M1) and 1-(azidomethyl)-4-vinylbenzene. The
fluorescent agents and the drug molecules (buf) were introduced and formed the polymer–
drug conjugate P2 through CuAAC click reaction. 1H NMR analysis further confirmed
the successful linkage of buf and the fluorescein molecule onto the polymer backbone
(Figure 1).
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3.2. In Vitro Cellular Uptake of Polymer-Buf Conjugate P2

Tumor-targeting polymer–drug conjugates can selectively deliver drugs to tumor cells
to achieve better therapeutic effects [29]. The flow cytometry was first used to quantitatively
evaluate the selective cellular uptake mechanism of the polymer–buf conjugate P2 in
HepG2 cells. Compared with the control sample, the polymer–buf conjugate P2 showed
stronger fluorescence emission with the prolongation of incubation time from 2 to 5 h,
indicating that the polymer–buf conjugate P2 can effectively enter into cells and improve
the internalization of drugs (Figure 2). The intracellular distribution of the polymer–buf
conjugate P2 was further investigated using a microscope. The cell nuclei were stained with
Hoechst 33342, appearing blue; the lysosome was stained with LysoTracker®Red DND-99
as red; the green color represents the polymer–buf conjugate P2 in cells. When the cells
were incubated with polymer–buf conjugate P2 in 2 h, the green signals of the polymer
molecules were mostly observed in the lysosome, suggesting the preferential accumulation
of the polymer–buf conjugate P2 in the lysosome. Subsequently, the polymer–buf conjugate
P2 diffused to the cytosol over the time (5 h) as confirmed by green fluorescence change.
(Figure 3). The complementarity of the two methods, quantitative flow cytometry and
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qualitative fluorescence, proved to be a useful tool for the study of the cellular uptake
of polymer–drug conjugates. Fluorescence properties can be used to track therapeutic
molecule delivery, allowing for the evaluation of cell-based therapy. Furthermore, adding
fluorescence properties to these polymer–drug conjugates offers new potential for in vitro
direct imaging and localization in living cells. Our current study with fluorescent polymer–
drug conjugates allows for the visualization of their interactions with HepG2 cells.
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3.3. In Vitro Cytotoxicity

The anticancer performance of the synthesized polymer–buf conjugate P2 was evalu-
ated by human liver cancer cell line HepG2 cells. The copolymer P1 was first examined.
All of the concentrations of the copolymer P1 exhibited low cytotoxicity towards HepG2
cells. The cell viability was over 80% even at a high copolymer concentrations (2 µmol L−1),
indicating that the copolymer P1 is highly biocompatible and nontoxic (Figure 4). Thus,
the copolymer P1 designed in this study can be a promising candidate for polymer–drug
conjugation. Furthermore, we measured the half maximal inhibitory concentration (IC50) of
buf as 9.45 nm/L. When compared with free buf, the cytotoxicity induced by the treatment
of polymer–buf conjugate P2 was significantly attenuated. The IC50 in the polymer–buf
conjugate P2 treatment group was found to be 138.24 nm/L (with respect to buf units,
Figure 5). The polymer–buf conjugate P2 contains ester bonds that can be specifically
hydrolyzed by esterase. Due to the response of the polymer–buf conjugate P2 to esterase,
the polymer–drug conjugate reported in this study reduced the toxicity of buf in tumor
cells, providing further proof that the esterase-responsiveness of the polymers ensured an
efficient degradation of linkers between the buf and polymer backbone with a sustained
release of buf.
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The results of cell uptake and cytotoxicity in vitro suggested that the polymer–buf
conjugate P2 could be effectively taken up and activated by esterase-positive cancer cells,
thus releasing cytotoxic drugs.

4. Conclusions

In summary, we have successfully constructed novel water-soluble polymer–drug
conjugates based on mannose-targeting moieties and hydrolyses of ester bonds. Compared
to the common free drug bufaline, the prepared polymer–buf conjugates exhibited lower
non-specific toxicity and tumor uptake, showing controlled release for potential clinical
applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14214515/s1, Figure S1: 1H NMR characterization result
of a; Figure S2: 1H NMR characterization result of b; Figure S3: 1H NMR characterization result
of c; Figure S4: 1H NMR characterization result of mannose acrylamide M1; Figure S5: 1H NMR
characterization result of buf ester; Figure S6: 1H NMR characterization result of copolymer P1.
Figure S7: The sample picture of copolymer P1. Figure S8: The sample picture of polymer-buf
conjugate P2.
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