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Enhanced anti-cancer effects of
oestrogen and progesterone
co-therapy against colorectal
cancer in males
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Jawwad Ahmad1, Shakir Idris1, Riyad Almaimani2,
Aiman Alsaegh1, Mahmoud Zaki El-Readi2,6,
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Makkah, Saudi Arabia, 2Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University,
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Although ovarian sex steroids could have protective roles against

colorectal cancer (CRC) in women, little is currently known about their

potential anti-tumorigenic effects in men. Hence, this study measured the

therapeutic effects of 17b-oestradiol (E2) and/or progesterone (P4) against

azoxymethane-induced CRC in male mice that were divided into (n = 10 mice/

group): negative (NC) and positive (PC) controls, E2 (580 µg/Kg/day; five times/

week) and P4 (2.9 mg/Kg/day; five times/week) monotherapies, and

concurrent (EP) and sequential (E/P) co-therapy groups. Both hormones

were injected intraperitoneally to the designated groups for four consecutive

weeks. Similar treatment protocols with E2 (10 nM) and/or P4 (20 nM) were also

used in the SW480 and SW620 human male CRC cell lines. The PC group

showed abundant colonic tumours alongside increased colonic

tissue testosterone levels and androgen (AR) and oestrogen (ERa) receptors,
whereas E2 and P4 levels with ERb and progesterone receptor (PGR) decreased

significantly compared with the NC group. E2 and P4 monotherapies equally

increased ERb/PGRwith p21/Cytochrome-C/Caspase-3, reduced testosterone

levels, inhibited ERa/AR and CCND1/survivin and promoted apoptosis relative

to the PC group. Both co-therapy protocols also revealed better anti-cancer

effects with enhanced modulation of colonic sex steroid hormones and their

receptors, with E/P the most prominent protocol. In vitro, E/P regimen showed

the highest increases in the numbers of SW480 (2.1-fold) and SW620 (3.5-fold)

cells in Sub-G1 phase of cell cycle. The E/P co-therapy also disclosed the

lowest percentages of viable SW480 cells (2.8-fold), whilst both co-therapy

protocols equally showed the greatest SW620 apoptotic cell numbers (5.2-

fold) relative to untreated cells. Moreover, both co-therapy regimens revealed

maximal inhibitions of cell cycle inducers, cell survival markers, and AR/ERa
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alongside the highest expression of cell cycle suppressors, pro-apoptotic

molecules, and ERb/PGR in both cell lines. In conclusion, CRC was

associated with abnormal levels of colonic sex steroid hormones alongside

aberrant protein expression of their receptors. While the anti-cancer effects of

E2 and P4 monotherapies were equal, their combination protocols showed

boosted tumoricidal actions against CRC in males, possibly by promoting ERb
and PGR-mediated androgen deprivation together with inhibition of ERa-
regulated oncogenic pathways.
KEYWORDS

testosterone, androgen receptor, oestrogen receptor, progesterone receptor, cell
cycle, apoptosis
1 Introduction

Colorectal cancer (CRC) is the third most prevalent

malignancy and ranked fourth amongst all cancer-related

deaths globally (1, 2). Colon carcinogenesis is associated with

aberrant increases in cyclin D1 (CCND1), CCND3, B-cell

lymphoma 2 (BCL2), and survivin proteins, which induce cell

cycle progression and inhibit cell death (3, 4). In the same vein,

colon tumorigenesis also involves downregulations in the cell

cycle inhibitors, cyclin-dependent kinase (CDK)-inhibitors (p21

and p27), alongside the pro-apoptotic molecules, cytochrome C

(Cyto-C) and caspase-3 (Casp-3) (5–7). Although 5-Fluororacil

is the chief chemotherapeutic drug used for the treatment of

CRC, it has limited efficacy during the advanced stages of

malignancy (8, 9).

Numerous epidemiological studies have shown that women

of reproductive age have lower incidence of CRC compared to

their counterpart age-matched men (10, 11). Furthermore,

menopausal women using oestrogen-alone or combined with

progesterone (P4) hormone replacement therapy (HRT) had

significantly lower rates of CRC relative to age-matched nonuser

women (10, 11). Additionally, normal colonic epithelium can

generate and respond to sex steroid hormones, since enterocytes

express the synthesising enzymes of 17b-oestradiol (E2), P4, and
testosterone alongside their nuclear receptors (ERa, ERb, PGR
and AR) (12–15). Serum concentrations of E2 and/or P4 also

correlated with significantly better prognosis in CRC patients,

independent of their sex (14, 16–19). In vitro and in vivo

experimental studies have likewise demonstrated suppression

of cell proliferation and survival following treatment with E2 and

P4 by ERb and/or PGR-mediated anti-cancer activities (18–25).

In contrast, circulatory testosterone levels and the expression of

AR in neoplastic colonic tissues showed positive associations

with tumour size, advanced clinical stage, and lower survival

rates in both genders (15, 26–28). Therefore, it has been
02
proposed that E2 and P could promote tumour suppressive

effects, whilst testosterone may enhance CRC progression

(29, 30).

To the best of our knowledge, only a single study measured

the effects of E2 and/or P4 single and dual treatments against

CRC in ovariectomised female rats, with the dual protocol

showing better anti-cancer actions (31). However, the

hormones in the dual therapy protocol were administrated

concomitantly (31), which does not simulate the physiological

hormonal chronological sequence in women of childbearing age

(32). Additionally, no reports explored the anti-tumorigenic

effects of E2 and P4 combined treatment in males. Hence, this

study was design to measure the chemopreventive effects of

exogenous female sex steroid hormones alone, as well as their

concomitant and sequential dual therapy protocols against CRC

in male mice. Moreover, the SW480 and SW620 human male

colon cancer cell lines were treated with similar protocols to

validate the findings of the animal studies.
2 Materials and methods

2.1 Chemicals and reagents

Azoxymethane (AOM; #A5486-100MG), 17b-oestradiol
(E2; #E8875-5G) and progesterone (P4; #P0130-25G) were

from Sigma-Aldrich Co. (St. Louis, MO, USA). Pan-species

ELISA kits against E2 (#CEA461Ge), P4 (#CEA459Ge), and

testosterone (#CEA458Ge), along with mouse-specific kits

against survivin (#SEC045Mu), and cytochrome C

(#SEA594Mu), were from Cloud-Clone Corp. (Houston, TX,

USA). Furthermore, DMEM media (#10566032), foetal bovine

serum (FBS; #A3160802), antibiotic-antimycotic solution

(#15240062) and all the cell culture materials were from

Thermo Fisher scientific (Waltham, MA, USA).
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2.2 Experimental animal studies and
treatment protocols

Sixty male BALB/c mice of 10 weeks of age and body weight

ranging between 25-30 gm each were distributed into six equal

groups (10 mice/group), as follows: the negative (NC) and positive

(PC) controls, E2 and P4 monotherapy groups, the dual therapy

groups that received E2 with P4 either concurrently (EP) or

sequentially (E/P). All groups, except the NC animals, were

injected with AOM for two successive weeks (10 mg/kg/week) to

induce CRC, as reported earlier (33, 34). The mice were then

housed in controlled environment (24°C ± 1 temperature and 12h

light/dark cycle) and received standard laboratory diet with water

ad libitum for 20 weeks. AOM is a carcinogen that is commonly

used for the induction of CRC in murine mammals. This model

emulates the clinical stages of CRC in humans by initially

stimulating numerous pro-oncogenic pathways that subsequently

promote the development of pre-neoplastic lesions, including

mucin depleted foci (MDF), which later progress to invasive

carcinoma after 15 weeks from the last injection of AOM (34, 35).

At week-21 post-AOM, E2 (580 μg/Kg/day; five times/week)

and P4 (2.9 mg/Kg/day; five times/week) were freshly prepared

in olive oil and injected intraperitoneally to the designated

groups for four consecutive weeks. Moreover, the NC and PC

groups received olive oil (200 μl) intraperitoneal injections as

vehicle for four weeks. As per the dose conversion formula

between human and mice (36), the injected amounts of

hormones were equal to the highest daily doses of E2 (2 mg/

day; 33.3 μg/kg/day) and P4 (10 mg/day; 166.7 μg/kg/day)

recommended for postmenopausal women of 60 kg body

weight (32). While the EP group were treated with both

hormones concurrently for four weeks, the E/P group received

E2 alone for two weeks followed by E2 and P combined therapy

for another two weeks to mimic normal female reproductive

endocrinology at childbearing age. The study was approved by

the Committee for the Care and Use of Laboratory Animals at

Umm Al-Qura University (AMSEC 22/05-10-20) and the

experiments were concordant with the European guidelines for

the care and use of laboratory animals.

2.2.1 Collection of colonic specimens and
enumeration of tumours

The mice were euthanised on the first day of week-25 post-

AOM by cervical dislocation under anaesthesia as previously

described (33). The colon from each mouse was harvested,

infused with cold phosphate buffer saline (PBS), cut

longitudinally, and preserved overnight between layers of filter

papers saturated with 10% formalin (37). On the proceeding day,

two researchers counted the numbers of tumours/colon by

naked eye followed by cutting each colon into three equal

segments corresponding to proximal, middle, and distal parts

to caecum (37). Each segment was stained with 1% Alcian blue
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solution (#sc-214517; Santa-Cruz Biotechnology Inc.; CA, USA)

in 3% acetic acid (pH 2.5) for 10 minutes. The numbers of MDF

and small tumours that were not identified by gross examination

were counted with a dissecting microscope (Human Diagnostics;

Wiesbaden, Germany), as described earlier (37).

Each colonic segment was then cut longitudinally, and a piece

was fixed in 10% formalin for 24h and processed by an automate

Leica APS300 processor (Leica Microsystems; Wetzlar, Germany)

prior to paraffin embedding. The residual fresh colonic tissues

were homogenised in RIPA lysis buffer (#89900) with protease

inhibitors (#78429; Thermo Fisher Scientific) for total protein

extraction. The concentrations of extracted total protein were

measured by a Pierce™ Rapid Gold BCA Protein Kit (#A53225;

Thermo Fisher Scientific) and each sample was then diluted with

deionized water (2000 μg/ml) to be used for ELISA.

2.2.2 Colonic tumours histopathological
features

Two skilled researchers examined all colonic tissue sections

by a Leica DMi8 microscope (Leica Microsystems) following

H&E staining. The histological features of adenocarcinomas in

five random fields/section were reported by both researchers

using a set of well-established criteria (37). An independent

expert histopathologist re-evaluated the sections when both

examiners widely disagreed about the histopathological

characteristics of tumours.

2.2.3 Immunohistochemistry
CCND1 (#55506) and CDK inhibitor-1A (p21; #37543) were

detected by rabbit monoclonal antibodies (Cell Signaling

Technology Inc.; Danvers, MA, USA). Moreover, rabbit

polyclonal antibodies were used to detect AR (#PA5-85072)

and ERb (#PA1-310B), whereas PGR (#MA1-411) and ERa
(#MA1-80216) were mouse monoclonal IgG antibodies

(Thermo Fisher scientific). Five-mm sections were treated with

a BLOXALL® Solution (#SP-6000-100; Vector Laboratories Inc.,

CA, USA) for 15 min to block endogenous peroxidases. The

sections were incubated overnight with the primary antibodies

(1:200 concentration for all) at 4°C. After washing, the sections

were treated with ImmPRESS® HRP Horse Anti-mouse (#MP-

7402) or anti-rabbit (#MP-7401) IgG Plus Polymer Peroxidase

Kits, as per the manufacturer’s protocol (Vector Laboratories

Inc.). Archived rat ovarian tissues were used as positive controls.

The same protocol was also used with the negative control

sections, but primary isotype mouse (#sc-2025) and rabbit

(#sc-2027) IgG antibodies (Santa-Cruz Biotechnology) were

used to control for non-specific staining. The sections

were studied on a Leica DMi8 microscope and images

were acquired from 10 random fields/section with a 20×

objective. The IHC Image Analysis Toolbox in ImageJ

software (https://imagej.nih.gov/ij/) was used to measure the

protein expression, as described elsewhere (38, 39).
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In brief, the IHC tool was used to precisely pinpoint the

stained areas in each red/green/blue (RGB) image and were

named as the region of interest (ROI). Subsequently, the

numbers of stained pixels and their percentages (%ROI) in

relation to the total numbers of pixels in each image were

calculated by the software (40). Moreover, non-stained areas

in RGB images (white colour) always generate the highest scores

(255) by digital image analysis, whereas stained areas always

have scores< 255. Hence, the IHC scores were calculated by the

following equation, as previously described (40):

IHC   stain   intensity  

= White   unstained   area   score   255½ � −  ROI   stain   scoreð Þ
�   %  ROI   ROI   pixels   =total   image   pixels  �   100½ �
2.2.4 Cell death by terminal deoxynucleotidyl
transferase-dUTP nick end labelling assay

Cell apoptosis was detected in colonic tissues with a Click-

iT™ Plus TUNEL Assay (#C10617; Thermo Fisher Scientific)

and by following the manufacturer’s instructions. The co-

detection of apoptotic bodies with cleaved Casp-3 was

achieved by a sequential staining protocol, as described earlier

(41, 42). Briefly, anti-cleaved Casp-3 rabbit IgG monoclonal

antibodies (#9661; Cell Signaling Technology Inc.) were added

(1:400 concentration) for 3h following completion of the

TUNEL protocol. Next, the slides were incubated with donkey

anti-rabbit IgG antibodies tagged with Alexa Fluor™ 555 (#A-

31572; Thermo Fisher Scientific) for 30 min and DAPI (#D3571;

Thermo Fisher Scientific) was used for counterstaining. A

permanent fluorescence anti-fade mounting medium (#S3023;

Dako, CA, USA) was used for cover-slipping and the slides were

examined on a Leica DMi8 microscope with a 40× objective.

Images were captured from 15 non-overlapping fields/section,

and the numbers of apoptotic cells and stain intensity of cleaved

Casp-3 were measured by ImageJ software, as previously

reported (38, 43).

2.2.5 ELISA
Colonic tissue homogenate samples were processed in

duplicate on an automated ELISA machine (Human

Diagnostics) to measure the levels of E2, progesterone and

testosterone hormones alongside the concentrations of

survivin and cytochrome C proteins.
2.3 In vitro experiments

Human SW480 and SW620 male colon cancer cell lines were

obtained from the American Type Culture Collection (ATCC;

MA, USA), cultured in DMEM containing 10% FBS and 1%

antibiotic-antimycotic solution, and grown in a humified
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incubator at 37°C and 5% CO2. The concentrations (IC50) of

E2 (10 nM) and/or P4 (20 nM) were established by the 3-(4,5-

Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide

(MTT) cytotoxicity assay at 72h as previously reported (data

not shown).

Prior to flow cytometry analysis, the SW480 (2x105) and

SW620 (3x105) cells were seeded in 6-well plates for 24h and

then treated with E2 and P4 alone or combined (concomitant)

for 48h. In addition, the sequential treatment involved the

addition of E2 for 24h followed by P4 for another 24h,

resulting in the following groups: untreated control (CT), E2

and P4 single therapies, and concomitant (EP) and sequential

(E/P) co-therapies. The 48h time-point was used to ensure that

any effects of dual treatments could be accurately analysed by cell

cycle, apoptosis, and protein expression techniques.

2.3.1 Cell cycle analysis
Following the different treatment regimens in the SW480

and SW620 cells, cell cycle analysis was performed with a

NovoCyte 3000 flow cytometer (Agilent Technologies, CA,

USA), as reported earlier (33). In summary, cells were

trypsinised, washed with PBS (500× g for 5 min) and fixed in

ice-cold 70% ethanol for 24h at 4°C. After PBS washing (600× g;

5 min/each), the cells were treated for 15 min with RNase A (20

μg/ml; #12091021; Thermo Fisher) and 2 μg/ml propidium

iodide (PI; #P1304MP; Thermo Fisher). The cell numbers in

the cell cycle phases (Sub-G1, G0/G1, S, G2/M) were then

determined by the NovoExpress software cell cycle algorithm

for 20,000 events (n = 3; data represented mean ± SD).

2.3.2 Apoptosis assay
Cell apoptosis was measured by an Annexin V-FITC/PI

Apoptosis Assay Kit (#V13245; Thermo Fisher Scientific) as per

the kit’s protocol. Following the different treatments, the SW480

and SW620 cells were collected, washed twice with cold-ice PBS,

and re-suspended in 100 μl of 1× Annexin V (AV) binding

buffer. A mixture of AV-FITC (5 μl) and PI (1 μl) was then

added to each of the SW480 and SW620 cell suspensions

followed by incubation in the dark for 15 min at room

temperature for cell staining. Next, 400 μl of the AV binding

buffer were added, and the cells were placed on ice and instantly

analyzed with the NovoCyte 3000 flow cytometry. The

experiments were conducted in triplicate and the data show

the percentage (mean ± SD) of cells in the different apoptosis

stages as follows: live (unstained), early (AV+/PI-) and late

apoptotic (AV+/PI+), and dead (AV-/PI+) cells.

2.3.3 Western blot
Primary rabbit monoclonal antibodies from Cell Signaling

Technology Inc. were used to detect CCND1, p21, CCND3

(#2936), p27 (#3686), BCL2 (#15071), Cyto-C (#4272), and

cleaved Casp-3 by Western blot. The same primary antibodies
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used for the detection of AR, ERa ERb and PGR by IHC were

also utilised for Western blotting. Normalisation was done by

GAPDH loading control mouse monoclonal antibodies (#MA5-

15738-1MG; Thermo Fisher Scientific).

Following extraction of total proteins from each cell pellet, 50

μg/sample were loaded on gradient 4–20% Mini-PROTEAN®

TGX Stain-Free™ SDS-PAGE gels (#4568096; Bio-Rad

Laboratories Inc.; CA, USA). A Trans-Blot® Turbo™ Transfer

System (Bio-Rad Laboratories Inc) was then used to transfer the

protein samples onto 0.2 μm Trans-Blot® Turbo™ PVDF

membranes, followed by blocking with SuperBlock™ T20

buffer (TBS-T; #37543; Thermo Fisher Scientific) for 15 min.

Subsequently, the membranes were incubated overnight at 4°C

with the primary antibodies (1:1000 for all antibodies). In the

next morning, the membranes were washed with TBS-T followed

by incubation for 1h with WestVision™ (Vector Laboratories

Inc.) peroxidase micropolymer-conjugated secondary anti-mouse

(#WB-2000-.8) or anti-rabbit (#WB-1000-.8) IgG antibodies

(1:10,000). Following washing, SignalFire™ Plus ECL Reagent

(#12630; Cell Signaling Technology Inc.) was used for signal

development. The images were captured by a ChemiDocTM

XRS+ (Bio-Rad Laboratories Inc.) and band densitometry for

each targeted protein was quantified and normalised against the

corresponding GAPDH band by ImageJ software as reported

earlier (44). Data are presented as mean ± SD of three blots/cell

line for each protein of interest.
2.4 Statistical analysis

SPSS statistical analysis software version 25 was used for data

analysis the data. Normality and homogeneity of all variables

were assessed by the Kolmogorov and Smirnov’s test and the

Levene test, respectively. One-way analysis of variance (ANOVA)

with Tukey’s HSD or Games-Howell post-hoc tests were used for

comparing between the different groups according to variance

equality. Correlation studies were conducted by Pearson’s

correlation test. P value< 0.05 indicated statistical significance.
3 Results

3.1 Treatment with ovarian sex steroid
hormones in male mice and
characteristics of CRC

None of the animals died during the study period. Following

dissection, the NC colonic specimens showed normal architecture

and histology by dissecting and bright field microscopy,

respectively (Figure 1A). In contrast, the numbers of MDF and

gross tumours, as well as those of tumours detected by dissecting

microscope, were abundant in the PC colonic tissues (Figures 1A–

D). Moreover, numerous large adenocarcinomas with poorly to
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moderately differentiated histology were observed in the PC group

colonic specimens by light microscope (Figures 1A, E).

While the MDF counts were markedly lower in the P4 group

compared with the PC and E2 groups (Figure 1B), both

monotherapies equally revealed significantly lower numbers of

gross (Figure 1C) and microscopic (Figure 1D) tumours and

adenocarcinomas (Figure 1E) relative to the PC group. Although

both co-therapy protocols showed further reductions in the

numbers of MDF, microscopic tumours, and adenocarcinomas

compared with the PC, E2, and P4 groups, the numbers of gross

tumours were comparable among the E2, P4 and EP groups

(Figure 1). On the other hand, the sequential co-treatment (E/P)

group showed the lowest numbers of MDF, gross tumours, and

adenocarcinomas in comparison with the PC, both monotherapies,

and the concomitant treatment (EP) groups (Figure 1).
3.2 Effects of ovarian sex steroid
hormones single and combined
therapies on cell cycle

3.2.1 Markers of cell cycle in male mice
colonic tissues

The colonic specimens from the PC group revealed a marked

increase in CCND1 and a substantial decrease in p21 proteins

relative to the NC group (Figure 2). Both E2 and P4 single

treatments showed equal significant reductions in CCND1 and

marked elevations in p21 proteins compared with the PC group.

While both dual therapy protocols revealed additional marked

declines in CCND1 with concurrent augmentations in p21

proteins relative to the PC, E2, and P4 groups, the effects were

significantly more pronounced in the sequential than the

concomitant co-therapy approach (Figure 2).

3.2.2 In vitro cell cycle arrest and expression of
cell cycle regulatory molecules

The percentages of SW480 cells increased markedly with E2

(1.7-fold) and P4 (1.3-fold) single therapies, as well as with their

sequential combination (E/P; 2.1-fold) in the sub-G1 phase,

whereas their concurrent addition significantly reduced the cell

numbers (EP; 1.7-fold), relative to untreated cells (Figure 3A).

Moreover, the concomitant dual therapy revealed significant

increases in the numbers of SW480 cells in the G0/G1-phase

(1.2-fold), whereas the sequential approach demonstrated the

highest percentages in S-phase of cell cycle (1.4-fold), compared

with non-treated cells (Figure 3A). On the other hand, all

treatments showed substantial increases in the percentages of

SW620 metastatic cells in the sub-G1 phase compared with non-

treated cells, with the E2 and E/P groups equally showing the

highest numbers (3.5-fold for both; Figure 3B). Additionally, all

single and dual therapies showed significant decreases in the cell

numbers in all phases of cell cycle relative to untreated SW620

cells (Figure 3B).
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Both E2 and P4 monotherapies revealed similar significant

declines in the expression of CCND1 and CCND3 proteins

compared with untreated SW480 and SW620 cells (Figure 4).

However, only P4 single therapy disclosed marked increases in

the p21 and p27 proteins relative to non-treated and E2-treated

SW480 cells (Figure 4A), whereas both proteins increased

significantly and equally with E2 and P4 monotherapies in

the SW620 cells compared with control cells (Figure 4B).

Both dual-therapy protocols further reduced CCND1 and

CCND3, whilst augmenting p21 and p27 proteins, compared

with all monotherapies in both cell lines. Nevertheless, the

lowest expression of CCND1 and CCND3, alongside the

highest increases in p21 and p27 proteins, were detected
Frontiers in Endocrinology 06
with the sequential dual therapy approach in both cell lines

relative to untreated cells, as well as the other treatment

protocols (Figure 4).
3.3 Effects of ovarian sex steroid
hormones on cell death and
apoptosis markers

3.3.1 In vivo colonic cell apoptosis and
expression of apoptosis markers

Apoptotic bodies and cleaved Casp-3 protein expression

were mostly localised in glandular luminal and cryptic
A B

D

E

C

FIGURE 1

(A) Male mouse colon mucosa from all the study groups by dissecting microscope (×20 magnification; red arrow = tumours & yellow arrow =
mucin depleted foci [MDF]) alongside colonic tissue sections from all groups by H&E stain (×200 magnification; scale bar = 15 mm).
Furthermore, the numbers of (B) MDF, (C) gross tumours, (D) microscopic tumours, and (E) adenocarcinomas are shown as graph bars (mean ±
SD; *Not detected; aP< 0.05 compared with the NC group; bP< 0.05 compared with the PC group; cP< 0.05 compared with E2 monotherapy;
dP< 0.05 compared with P4 monotherapy and eP< 0.05 compared with EP concurrent dual therapy protocol).
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A

B

FIGURE 2

(A) Localisation of CCND1 and p21 proteins by immunohistochemistry (IHC) in male mouse colonic tissues from the different groups (20×
objective; Scale bar = 15 mm). Moreover, (B) IHC arbitrary scores from the different groups are shown as graph bars (mean ± SD; aP< 0.05
compared with the NC group; bP< 0.05 compared with the PC group; cP< 0.05 compared with E2 monotherapy; dP< 0.05 compared with P4
monotherapy and eP< 0.05 compared with EP concurrent dual therapy protocol).
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epithelial cells, as well as stromal cells in the NC colonic

specimens (Figure 5A). The apoptosis index, cleaved Casp-3

protein expression, and colonic Cyto-C protein concentrations

declined markedly and coincided with a substantial elevation in

colonic tissue survivin protein levels in the PC group compared

with the NC group (Figure 5). Both E2 and P4 monotherapies

revealed significant declines in survivin and increases in Cyto-C

colonic tissue concentrations in addition to higher apoptosis
Frontiers in Endocrinology 08
index and expression of Casp-3 protein relative to the PC group.

Moreover, Casp-3 protein expression and apoptosis index were

markedly higher in the P4 than the E2 group (Figure 5B),

whereas the levels of survivin and Cyto-C proteins in colonic

tissues were equal between both monotherapy groups

(Figure 5C). Both dual therapy protocols showed significantly

higher apoptosis index and Casp-3 protein expression, with

markedly elevated Cyto-C and lower survivin protein
A B

FIGURE 3

Percentages of cells (mean ± SD) in the different phases of cell cycle following the different treatment protocols with E2 and/or P4 for 48 hours
in the (A) SW480 and (B) SW620 male colon cancer cell lines (mean ± SD; aP< 0.05 compared with the CT group; bP< 0.05 compared with the
E2 monotherapy group; cP< 0.05 compared with P4 monotherapy and dP< 0.05 compared with EP concurrent dual therapy protocol).
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concentrations in colonic tissues, compared with the PC, E2, and

P4 groups (Figure 5). Nonetheless, the maximal increases in

apoptosis index, cleaved Casp-3 expression, and cyto-C

concentrations, with the lowest survivin levels, were detected

in the sequential protocol compared with the PC, E2, P4, and EP

groups (Figure 5).
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3.3.2 In vitro cell apoptosis and expression of
apoptosis markers

While E2, P4 and EP treatments showed similar marginal,

but significant, reductions in SW480 cell viability relative to

control cells (1.1-fold for all), the E/P group displayed the

highest frequency of apoptosis (2.8-fold) that was depicted by
A B

FIGURE 4

Detection of CCND1, CCND3, p21 and p27 proteins by Western blot alongside their relative protein expression (mean ± SD) following the
different treatment protocols with E2 and/or P4 for 48 hours in the (A) SW480 and (B) SW620 male colon cancer cell lines (mean ± SD; aP<
0.05 compared with the CT group; bP< 0.05 compared with the E2 monotherapy group; cP< 0.05 compared with P4 monotherapy and dP<
0.05 compared with EP concurrent dual therapy protocol).
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marked increases in the numbers of early (5.6-fold) and late (3.1-

fold) apoptotic cells relative to all groups (Figure 6A). In the

SW620 cells, E2 monotherapy showed a limited significant

decline in cell viability (1.1-fold), whereas P4 disclosed

substantially lower numbers of living cells (2.4-fold) with

increased early (3.9-fold) and late (5.1-fold) apoptosis,

compared with non-treated cells (Figure 6B). On the other

hand, the lowest numbers of viable SW620 cells were equally

detected in the EP and E/P groups (5.2-fold for both) and

coincided with the highest increases in the percentages of early

apoptotic cells (7.9-fold for both) compared with all groups.

However, the numbers of late SW620 apoptotic cells were equal

among the P4, EP, and E/P groups (Figure 6B).

Both monotherapies and their concomitant combination

equally showed marked decreases in the protein expression of

survivin with increases in Casp-3 protein, whereas they had no
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effect on BCL2 and Cyto-C proteins, compared with untreated

SW480 cells (Figure 7A). In contrast, SW480 cells treated with the

E/P sequential protocol revealed the maximal inhibitions in BCL2

and survivin proteins that concurred with the highest increases in

Cyto-C and Casp-3 proteins compared with all groups. In the

SW620 cells, single treatments with E2 and P4 were associated with

marked decreases in survivin and increases in Casps-3 proteins

relative to untreated cells (Figure 7B). Although the expression of

BCL2 in the SW620 cells was comparable between the E2, P4, and

control groups, the effects of P4 monotherapy on the expression of

the remaining cell proliferation and cell apoptosis markers were

significantly more prominent than E2 single therapy (Figure 7B).

However, the concomitant and sequential co-therapy approaches

in the SW620 cells equally exhibited the lowest BCL2 and survivin

proteins with the maximal increases in Cyto-C and Casp-3

proteins compared with all other therapies (Figure 7B).
A B

C

FIGURE 5

(A) Co-detection of apoptotic bodies by TUNEL (green) with cleaved Casp-3 (red) by immunofluorescence in male mouse colonic tissues
from all the study groups (40× objective; scale bar = 8 µm). Moreover, (B) the relative expression of Casp-3 protein alongside apoptosis
index and (C) in male mouse colonic tissues concentrations of survivin and cytochrome C proteins from all groups are as graph bars (mean
± SD; aP< 0.05 compared with the NC group; bP< 0.05 compared with the PC group; cP< 0.05 compared with E2 monotherapy; dP< 0.05
compared with P4 monotherapy and eP< 0.05 compared with EP concurrent dual therapy protocol).
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3.4 Effects of the different treatment
protocols on colonic expression of sex
steroid receptors

3.4.1 Sex steroids hormones and their
receptors in colonic tissues

Testosterone, 17b-oestradiol, and progesterone hormones

were detected in colonic tissue homogenates from the NC group
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(Figure 8A). Additionally, the protein expression of AR, ERa,
ERb, and PGR were detected by IHC in the NC colonic tissues

with exclusive nuclear localisation in glandular epithelial cells

(Figure 8B). The PC colonic tissues showed significantly higher

concentrations of testosterone with marked decreases in E2, and

P4 levels compared with the NC group. Moreover, the protein

expression of AR and ERa increased, whilst ERb and PGR were

lower, in the PC relative to the NC colonic specimens
A B

FIGURE 6

Percentages (mean ± SD) of living, early and late apoptotic alongside dead cells following the different treatment protocols with E2 and/or P4 for
48 hours in the (A) SW480 and (B) SW620 male colon cancer cell lines (mean ± SD; aP< 0.05 compared with the CT group; bP< 0.05 compared
with the E2 monotherapy group; cP< 0.05 compared with P4 monotherapy and dP< 0.05 compared with EP concurrent dual therapy protocol).
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(Figures 8B, C). While testosterone significantly declined and E2

increased with all single and dual therapies, only mice treated

with P4 alone or combined with E2 exhibited marked increases

in colonic tissue progesterone levels, compared with the PC

group (Figure 8A). Moreover, all treatment protocols were

associated with significant decreases in the protein expression

of AR and ERa, whilst ERb and PGR increased, compared with

the PC group (Figures 8B, C). Furthermore, the combined
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therapy protocols demonstrated more significant declines in

colonic testosterone concentrations with AR and ERa protein

expression, whereas colonic E2 and P4 levels with ERb and PGR

proteins were augmented, compared with both monotherapy

groups. Although the protein expression of the targeted

receptors was equal in the EP and E/P co-therapy groups,

colonic testosterone and E2 levels were significantly lower in

the latter group (Figure 8).
A B

FIGURE 7

Detection of BCL2, survivin Cytochrome C and cleaved caspase-3 proteins by Western blot alongside their relative protein expression (mean ±
SD) following the different treatment protocols with E2 and/or P4 for 48 hours in the (A) SW480 and (B) SW620 male colon cancer cell lines
(mean ± SD; aP< 0.05 compared with the CT group; bP< 0.05 compared with the E2 monotherapy group; cP< 0.05 compared with P4
monotherapy and dP< 0.05 compared with EP concurrent dual therapy protocol).
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Additionally, colonic tissue concentrations of testosterone showed

strong negative correlations with those of E2 (r = -0.818; P< 0.0001)

and P4 (-0.690; P< 0.0001) levels. However, the colonic tissue E2 and

P4 levels were weakly and positively linked together (r = 0.406; P<

0.0001). Colonic testosterone levels also displayed direct correlations

with the numbers of MDF (r = 0.698), gross (r = 0.652) and
Frontiers in Endocrinology 13
microscopic (r = 0.774) tumours, and adenocarcinomas (r = 0.704;

P< 0.0001 for all). In contrast, colonic E2 and P4 levels correlated

negatively with the numbers of MDF (r = -0.355 & r = -0.624,

respectively), gross (r = -0.346 & r = -0.449) and microscopic (r =

-0.430 & r = -0.643) tumours, and adenocarcinomas (r = -0.401 & r =

-0.497), respectively (P< 0.001 for all).
A

B

C

FIGURE 8

(A) Concentrations of testosterone, 17b-oestradiol, and progesterone hormones with (B) localisation of androgen (AR), progesterone (PGR) and
oestrogen (ER) a and b receptors by immunohistochemistry (IHC) in male mouse colonic tissues from all the study groups (20× objective; Scale
bar = 15 mm) and (C) the IHC arbitrary scores from the different groups are shown as graph bars (mean ± SD; aP< 0.05 compared with the NC
group; bP< 0.05 compared with the PC group; cP< 0.05 compared with E2 monotherapy; dP< 0.05 compared with P4 monotherapy and eP<
0.05 compared with EP concurrent dual therapy protocol).
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3.4.2 In vitro protein expression of sex
steroid receptors

In agreement with the animal studies, the protein expression

of AR, ERa, ERb, and PGR was detected in the SW480 and

SW620 male cell lines (Figure 9). While E2 single treatment only

showed a significant decrease in ERa protein, P4 monotherapy

was associated with marked declines in AR and ERa together
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with increases in ERb and PGR proteins, relative to untreated

SW480 cells (Figure 9A). Similar effects were also observed in the

SW620 following E2 and P4 monotherapies (Figure 9B). The

protein expression of AR and ERa further declined, whilst ERb
and PGR increased, with the EP and E/P co-therapy protocols

compared with control, E2, and P4 groups in both cell lines.

Although the SW480 and SW620 protein expression of ERa and
A B

FIGURE 9

Detection of androgen (AR), progesterone (PGR) and oestrogen (ER) a and b receptors by Western blot alongside their relative protein
expression (mean ± SD) following the different treatment protocols with E2 and/or P4 for 48 hours in the (A) SW480 and (B) SW620 male colon
cancer cell lines (mean ± SD; aP< 0.05 compared with the CT group; bP< 0.05 compared with the E2 monotherapy group; cP< 0.05 compared
with P4 monotherapy and dP< 0.05 compared with EP concurrent dual therapy protocol).
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ERb was equivalent in both dual therapy groups, the E/P group

showed the lowest AR expression that coincided with the

maximal increase in PGR protein relative to the EP group in

both cell lines (Figure 9).
4 Discussion

This study explored the effects of 17b-oestradiol (E2) and

progesterone (P4) monotherapies, as well as their concomitant

and sequential combinatory actions against AOM-induced CRC

in male mice. Similar treatment regimens were also used in the

SW480 primary and SW620 metastatic male colon cancer cell

lines. AOM-induced CRC is a well-established pre-clinical model

that mimics the different phases, as well as shares several

molecular oncogenic pathways, of sporadic phenotype of human

colon neoplasia (34, 35). Following injection, the metabolites of

AOM accumulate in colonic cells and incite aberrant molecular

and histological alterations that cause mucin depletion and

formation of MDF, which are pre-malignant lesions frequently

used as biomarkers for measuring the efficacy of chemopreventive

agents in preclinical studies (34, 35).

Herein, the PC mice had abundant MDF with colonic

neoplastic lesions that coincided with significantly higher

intratumoral concentrations of total testosterone with AR and

ERa protein expression, whereas E2 and P4 levels and the

protein expression of ERb and PGR decreased, relative to the

NC group. The PC tumorous tissues also showed marked

increases in CCND1 protein expression and higher levels of

survivin protein, whilst p21, Casp-3 and Cyto-C proteins and

apoptosis index declined, relative to the NC mice. Moreover, the

colonic tissue concentrations of testosterone correlated

positively, whereas E2 and P4 negatively, with the numbers of

preneoplastic and neoplastic lesions.

In agreement with our results, the risk of CRC increased by >

20% following oophorectomy and the odds augmented

substantially with bilateral rather than unilateral ovariectomy

(45, 46). Moreover, higher serum levels of female reproductive

steroid hormones alongside increased expression of ERb and/or

PGR in malignant tissues correlated with better prognosis in

male and female CRC patients (14, 16–19). In contrast, elevated

systemic testosterone levels and higher expression of ERa and

AR proteins in CRC were associated with larger tumours, poor

differentiation, advanced clinical stages, and worse outcomes in

both genders (15, 26–28). Hence, our data and results from prior

reports (14–16, 19, 28, 45, 46) suggest that testosterone with AR

and ERa could promote CRC development, while E2 and P4,

alongside ERb and PGR, may act as tumour suppressors.

The actions of E2 in CRC are receptor-dependent, and several

studies have shown that ERa is oncogenic, whilst ERb exerts anti-
tumorigenic actions (47). In essence, both ERa and ERb are

expressed by normal male and female colonic epithelium, and the

latter is predominant (12–15). However, ERa increases, whilst
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ERb declines significantly during colon carcinogenesis, and the

former receptor is believed to transduce oncogenic activities (48,

49). E2 therapy induced cell cycle progression and promoted cell

survival by ERa-mediated mechanisms, whereas its treatment

also triggered apoptosis by activating Casp-3 via ERb in DLD1

CRC cells (50). Others have also shown that ERa provoked colon

tumorigenesis by stimulating the Wnt/b-catenin oncogenic

pathway (51, 52). Moreover, ERa and ERb revealed opposing

effects on cell cycle progression in HeLa cells by upregulating and

inhibiting CCND1 protein, respectively (53). ERb overexpression

in several human CRC cell lines also suppressed proliferation and

induced apoptosis by increasing p21 and p27 cell cycle inhibitors,

and Casp-3 and Cyto-C pro-apoptotic proteins, whilst reducing

BCL2 and survivin anti-apoptotic proteins (18, 20–23). Similarly,

prolonged use of natural and synthetic P4 was inversely

correlated with the prevalence and recurrence of CRC in

menopausal women (54). Lower PGR expression in colonic

neoplastic tissues was also associated with poor prognosis and

significantly lower survival rates in both genders (55).

Concurrently, P4 treatment inhibited growth in human LoVo,

HT29, HCT116, SW480 and SW620, as well as, murine MC38

colon cancer cells by decreasing several cell cycle inducer proteins

and cell survival markers, whilst simultaneously increasing cell

cycle suppressors and pro-apoptotic molecules (19, 24, 25).

Moreover, in vitro treatment with folic acid inhibited

proliferation in COLO-205, HT29, and LoVo CRC cells by

PGR-mediated pathways (56).

In the present study, E2 and P4 single treatments equally

reduced the counts of colonic tumours and adenocarcinomas

compared with the PC animals. E2 and P4 monotherapies were

also associated with significant declines in colonic CCND1,

survivin, and BCL2 proteins alongside increases in p21, Cyto-C

and Casp-3 proteins, and apoptosis index relative to the PC group.

Additionally, E2 and P4 single therapies markedly increased the

cell numbers in the Sub-G1 cell cycle phase, as well as, reduced the

percentages of viable cells in the SW480 and SW620 cell lines

compared with untreated cells. The protein expression of p21,

p27, Cyto-C and Casp-3 also increased, whilst CCND1, CCND3,

BCL2 and survivin proteins declined, following single treatments

with E2 and P4 in the cell lines used. Furthermore, E2 and P4

monotherapies were associated with significant increases in ERb
and PGR alongside inhibitions in ERa both in vivo and in vitro.

The present data correlate with many earlier studies and

emphasise the chemopreventive effects of E2 that could involve

inhibition of CRC progression by ERb-induced cell cycle arrest

and apoptosis in malignant enterocytes (18, 20–23, 57). Our study

also underscores the previously reported anti-cancer activities of

P4 against CRC (19, 24, 25, 56), which appear to be equal to those

of E2 monotherapy, both in vivo and in vitro.

Indeed, the molecular pathways mediated via ERs and PGR

interact together, and the activation of one receptor could

influence the activities of the other in neoplastic diseases (58).

In this context, the activation of ERb (57) and PGR (59) halted
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the growth of breast cancer cells by inhibiting ERa-induced
oncogenic actions. Notably, genetic studies have also shown that

both PGR and ERb pathways interacted together in CRC, and

PGR-induced anti-tumorigenic effects were dependent on the

activities of ERb in malignant tissues (60). Furthermore,

concomitant E2 and P4 dual therapy markedly increased the

protein expression of ERb, PGR, and Casp-3 alongside cell

apoptosis, whereas downregulated the markers of cell

proliferation, compared with single hormonal therapies in

ovariectomised female rat model of CRC (31). However, none

of the prior studies measured the potential anti-cancer effects of

E2 and P4 sequential therapy in CRC, which imitates the normal

sequence of reproductive endocrinology in women.

The current findings displayed boosted anti-cancer effects

for E2 and P4 simultaneous and sequential co-therapy protocols

that were manifested by marked reductions in tumour counts

compared with the PC and both monotherapy groups. Likewise,

both regimens of combined hormonal therapy disclosed

significantly higher numbers of apoptotic SW480 and SW620

cells relative to non-treated and both monotherapy groups.

However, the anti-cancer effects were substantially more

pronounced with the sequential compared with the

concomitant dual therapy protocol in mice and in the SW480

cells, whereas both protocols had equal apoptotic effects in the

SW620 cells. Furthermore, the use of both hormones alone or

combined revealed marked upregulations in ERb and PGR

alongside declines in ERa protein expression in neoplastic

tissues. Concurrently, both co-therapy protocols showed

significantly higher p21 and Casp-3 protein expression with

colonic Cyto-C protein levels, whereas CCND1 and survivin

proteins decreased markedly and coincided with a lower

apoptosis index, compared with the PC, E2 and P4 groups.

Collectively, our data and the earlier studies suggest that E2 and/

or P4 could provide alternative therapeutic approaches against

CRC and their efficacy could be dependent on the expression

profiles of ERs and PGR in malignant colonic tissues (31, 57, 59,

60). Additionally, we hypothesise that the sequential hormonal

therapy with E2 followed by P4 could be a superlative regimen

against early stages of CRC, whereas their concomitant

combination could be more appropriate for metastatic colon

cancer. Proposed anti-cancer mechanisms for the combined

protocols may involve enhanced expression of ERb and PGR

that subsequently inhibits ERa-mediated oncogenic effects with

concurrent induction of cell cycle arrest and apoptosis in

malignant enterocytes (31, 57, 59, 60).

Our results also revealed marked decreases in colonic tissue

testosterone concentrations with E2 and/or P4 single and dual

treatments. Moreover, both female sex hormones also decreased

the expression of AR in vivo and in vitro. Hence, we speculate

that the observed additive anti-tumorigenic effects for the

combined hormonal therapy could also be related to the

suppressive effects of E2 and P4 on colonic testosterone

concentrations and expression of AR, which are believed to
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trigger tumorigenic activities (15, 27). Although there are no

reports related to the effects of female sex steroid hormones on

colonic AR expression, E2 and/or P4 therapies in transgender

women markedly decreased serum levels of testosterone (61, 62).

Additionally, both hormones decreased the expression of AR in

a variety of tissues, including breast cancer and endometrium

(63, 64). Therefore, we suggest that dual activation of ERb and

PGR by their ligands could initiate a cascade of cellular anti-

cancer events involving inhibition of cancer progression induced

via AR (15, 27) and ERa (57, 59) pathways alongside promoting

anti-proliferative and pro-apoptotic activities (31, 60).

Nevertheless, the present study has several limitations.

Firstly, we only measured the effects of the targeted female

hormones in male mice and male human colon cancer cells,

and future studies should investigate the anti-cancer hormonal

actions in females, both in vivo and in vitro. Further studies are

also required to explore the rapid non-genomic effects of E2 and

P4 in colon cancer to fully elucidate the mechanisms underlying

their anti-cancer effects in CRC (65, 66). Moreover, the

chemopreventive effects of androgen deprivation treatment,

with and without E2 and/or P4, against CRC, should also be

studied to corroborate our observations.

In conclusion, CRC was associated with abnormal alterations

in colonic levels of testosterone, 17b-oestradiol and progesterone

and their nuclear receptors showed aberrant expression in

malignant cells. Moreover, E2 and P4 monotherapies equally

reduced the numbers of malignant lesions and colonic

testosterone levels alongside AR and ERa protein expression,

whilst upregulated ERb and PGR and promoted cell cycle arrest

and apoptosis inmalemice, as well as in humanmale colon cancer

cell lines. In contrast, the greatest anti-cancer activities were seen

with the E2 and P4 combination protocols that could provide a

superlative alternative therapeutic strategy against CRC, possibly

by ERb and PGR-mediated androgen deprivation and inhibition

of ERa-induced cancer progression. However, more studies are

needed to measure the effects of E2 and P4 single and dual

therapies, with and without anti-androgen hormone therapy and/

or chemotherapy (e.g., 5-FU), in male and female experimental

models to define their precise therapeutic values in CRC.
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