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Abstract: The pleiotropic behavior of mesenchymal stem cells (MSCs) has gained global attention due
to their immense potential for immunosuppression and their therapeutic role in immune disorders.
MSCs migrate towards inflamed microenvironments, produce anti-inflammatory cytokines and
conceal themselves from the innate immune system. These signatures are the reason for the uprising
in the sciences of cellular therapy in the last decades. Irrespective of their therapeutic role in
immune disorders, some factors limit beneficial effects such as inconsistency of cell characteristics,
erratic protocols, deviating dosages, and diverse transfusion patterns. Conclusive protocols for
cell culture, differentiation, expansion, and cryopreservation of MSCs are of the utmost importance
for a better understanding of MSCs in therapeutic applications. In this review, we address the
immunomodulatory properties and immunosuppressive actions of MSCs. Also, we sum up the
results of the enhancement, utilization, and therapeutic responses of MSCs in treating inflammatory
diseases, metabolic disorders and diabetes.

Keywords: mesenchymal stem cell (MSC), microenvironment; immunosuppression; immunomodulation;
adipogenesis; type 2 diabetes

1. Introduction

MSCs are Mesenchymal Stem Cells (MSCs), which can be defined as non-hematopoietic multipotent
stem cells with the ability to differentiate into mesodermal lineage (adipocytes, osteocytes and
chondrocytes), ectodermal lineage (neurocytes) and endodermal lineage (hepatocytes) [1,2]. In 1966,
Friedenstein and his team discovered the multipotent behavior of MSCs for the first time [3]. After many
years, the term MSCs was coined by Caplan et al. in 1991 [4]. Since then, MSCs have become a
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well-known and outstanding cell source alluring for clinical applications. They have an excellent
capacity for self-renewal in vitro, lasting for more than four months [5].

Earlier, there was a debate among scientists about the stemness and nomenclature of MSCs. Some
articles preferred mesenchymal “stromal” cells instead of stem cells [6]. Some researchers attempted to
change the name of MSCs to medicinal signaling cells because of their secretory role in the locations
of diseases, injuries, and inflammations [7,8]. However, later reports showed that prostaglandin E2
(PGE2) secreted by MSCs is responsible for maintaining the self-renewal ability and PGE2 is also
involved in the immunomodulation of MSCs, creating a cascade of events, which proves the stemness
of MSCs [9]. Hence, the term Mesenchymal Stem Cells is justified.

There are various sources of isolation of MSCs such as adipose tissue, bone marrow, peripheral
blood and neonatal tissues (umbilical cord, placenta, amniotic fluid, and amniotic membrane) [2,10–12].
The source of isolation of MSCs greatly affects the yield, the expressed variety of surface markers
and cytokine profile [13–15]. However, the basic identification markers of MSCs are CD73 (cluster of
differentiation 73), CD105, CD90 but they should be CD34-, CD14-, CD45-, CD11b-, CD19- and lack
HLAII (Human Leukocyte Antigen complex 2) [16]. Besides that, MSCs must express transcription
factors such as octamer-binding transcription factor 4 (OCT-4) and homeobox protein NANOG [17].

Currently, there is a lack of standardized methods for the isolation and culture of MSCs [18].
Comparative studies are challenging due to MSCs showing different features depending on their
source and microenvironment from which they are isolated [19–21]. Several researchers focused on
optimizing the isolation of MSCs. Talwadekar et al. found out that the clonogenicity and function of
placenta MSCs (P-MSCs) were superior to cord MSCs (C-MSCs) [22]. Similarly, Nagaishi et al. showed
that MSCs from umbilical cord significantly improve diabetic abnormalities and diabetic nephropathy
in comparison to the bone marrow-derived MSCs [23]. Therefore, the source of MSC isolation is critical
in context with its potential and efficacy towards its properties [2,23].

In this review, we aim to discuss the immunomodulatory properties and immunosuppressive
actions of MSCs. Besides that, we sum up the results of the enhancement, utilization, and therapeutic
responses of MSCs in treating human diseases, and particularly their potential towards diabetes and
adipose tissue dysfunction.

2. The Immunological Functions of Mesenchymal Stem Cells

The primary functions of MSCs are: (1) immunomodulation, (2) autocrine and paracrine activities,
and (3) evasion of innate immunity. Below, we discuss every aspect in detail.

2.1. Immunomodulation

The mode of immunomodulation is mediated by cell-cell interactions, cytokines and soluble
factors. Note that, depending on the levels of stimulation, MSCs play either pro-inflammatory or
anti-inflammatory roles in its microenvironment (Figure 1) [13,15,24,25].
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Figure 1. The central role of Mesenchymal Stem Cells (MSC) in immune responses. The above
figure distinguishes the response and interaction of MSCs in pro-inflammatory and anti-inflammatory
conditions on immune cells. These effects demonstrate cell-to-cell contact-mediated immunosuppression
of B and T cell proliferation, induction and transforming growth factor-β (TGF-β)/hepatocyte growth
factor (HGF) mediated regulation of regulatory T cells. Also, it shows the capacity of immunomodulation
of MSCs by inhibiting the natural killer (NK) cells, dendritic cells (DCs) at various maturation stages as
well as macrophage polarization dependency on the microenvironment.

2.1.1. Pro-Inflammation

At low levels of interferon-gamma (IFN-γ) and tumor necrosis factor-α (TNF-α), MSCs show the
pro-inflammatory phenotype (Figure 1, red arrows). MSCs produce chemokines such as macrophage
inflammatory protein-1α/β (MIP-1α/β), RANTES, chemokine (C-X-C motif) ligand 9 (CXCL9), and
CXCL10 within its microenvironment to activate the T cells [26]. MSCs secreting PGE-2 severely
hamper dendritic cell (DC) precursors during the process of differentiation and maturation [27,28].
In the absence of interleukin-6 (IL-6), MSCs promote proliferation and activation of M1 macrophage [29].
The transition from M0 to pro-inflammatory M1 macrophage is induced by secretion of interferon-γ
(IFN-γ) and IL-1, along with surface protein expression of CD40 ligand (CD40L). Further, these M1
macrophages express IFN-γ and tumor necrosis factor-α (TNF-α) within the microenvironment along
with the co-stimulatory surface molecules to respond to T cell activation [29,30]. In contrast, in an
anti-inflammatory microenvironment, this phenomenon can be inhibited by TNF-stimulated gene 6
protein (TSG-6) [31]. The feedback mechanism studied under in-vitro conditions of pro-inflammatory
cytokines make MSCs enhance the immune response by producing chemokines CXCL-9, CXCL-10,
and CXCL-11. This leads to more neutrophils moving towards the site of inflammation where they act
mainly by phagocytosis [26,32]. The point to be noticed here is that human and mice derived MSCs
have these effects only when exposed to low or insufficient levels of pro-inflammatory cytokines such
as IFN-γ and TNF-α.

2.1.2. Anti-Inflammation

In the anti-inflammatory condition, MSCs suppress the immune response in inflammatory
cytokine-rich microenvironments, such as wounds, infections, or organ transplantations.
These immunosuppressive indications were observed in humans [33–37], baboons [37], and murine [38],
where MSCs successfully inhibited T lymphocyte activation and proliferation (Figure 1, green arrows).
This particular behavior of MSCs in the presence and absence of inflammatory molecules is called
MSC polarization [29]. Under high levels of IFN-γ and TNF-α, MSCs produce cytokines such as
transforming growth factor-β (TGF-β), hepatocyte growth factor (HGF) [39], and secrete soluble factors
such as indoleamine 2,3-dioxygenase (IDO), PGE2 and nitric oxide (NO) [40]. These factors directly
promote the activation of regulatory T cells (Tregs) (CD4+, CD25+, forkhead box P3 (FOXP3+)). Besides,
in responding to IL-6 stimulation, MSCs secrete TGF-β and PGE2 again to induce Treg cell activation.
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MSCs can also promote the activation of T-reg cells indirectly. Recently Heo et al. described the
M2 macrophage stimulation and phenotype changes by the exosomes derived from AD-MSCs in an in-
vitro study [41]. Furthermore, these M2 macrophages (MSC stimulated) express CCL-18 and activate
Tregs cells [42]. The process of immunosuppression is also dependent on factors released by MSCs
or in the microenvironment. MSCs trigger the expression of cyclooxygenase 2 (COX2) and IDO and
further promote homeostatic response towards macrophage polarization [15,43]. In that response,
M2 macrophage expresses CD206 and CD163 co-stimulatory molecules, along with enriching the
microenvironment by IL-6 and IL-10 expression [44]. The excessive IL-10 production by DCs and M2
upon MSCs co-culture further boosts the immunosuppression by suppressing effector T cells [45,46].

MSCs trigger the proliferation, activation and immunoglobulin G (IgG) secretion of B cells by
IDO [47–49]. These again inhibit other T-effector cells to support anti-inflammation (Figure 1) [29,44,50].
Human- and mouse-derived BM-MSCs release specific chemokine ligands such as C-C motif chemokine
ligand 2 (CCL2), CCL3 and CCL12 which help them to work with monocytes and macrophages in
tissue homeostasis and wound healing [51].

2.2. Autocrine and Paracrine Role of MSC Secreted Molecules

MSCs secrete biomolecules such as growth factors, cytokines and chemokines which help
their biological activities in the autocrine or paracrine manner in consonance to the encompassing
microenvironment [52,53].

A typical autocrine manner of MSCs for maintaining self-renewal capacity is through PGE2
signaling [9] (Figure 2). PGE2 belongs to the prostaglandin family. It plays a role in lipid mediation
and other physiological effects. For synthesizing PGE2, the conversion of arachidonic acid to
prostaglandin H2 (PGH2) is regulated by COX-2, a prostaglandin-endoperoxidase synthase; and
the isomerization of PGH2 to PGE2 is induced by PGE2 synthase [54]. COX-2 is the rate-limiting
enzyme to mediate inflammatory cytokines, growth factors and tumor promoters [55,56]. MSCs
secrete PGE2 to the extracellular environment by multidrug-resistant protein 4 (MRP4), later it binds
to the PGE2 receptors on target cells [57]. PGE2 receptor 2 (EP2) augments cell proliferation and
neovascularization by advancing the secretion of vascular endothelial growth factors (VEGF) [55,58,59].
By reviewing considerable amounts of in vitro and in vivo studies of immune disorders, we can say
that COX-2 mediated PGE2 expression by MSCs are pivotal factors for the immunomodulatory ability
of MSCs [60–64]. The loop between COX-2 and PGE2 maintains an axis that influences cell-cycle,
cell-proliferation and cell viability by invigoration of one or more EP receptors [65].

Figure 2. The autocrine and paracrine functions of MSC. The left side depicts the cyclooxygenase-2
(COX-2)/prostaglandin E2 (PGE2) axis for the maintenance of an autocrine/paracrine loop and COX-2
mediated PGE2 production in MSCs as a response to the surrounding microenvironment. The right side
of the figure demonstrates the dominance of MSCs on immune cells (inhibiting cardiomyocyte apoptosis
and DC differentiation, also promoting M2 macrophage polarization and T-reg cell proliferation)
by producing several immunomodulatory factors and chemokines. Note: Figure represents both
conditioned/modified and natural MSCs.
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MSCs are very competent in suppressing and tolerating the immune system via cell-cell contacts
and soluble factors production. The migratory ability of MSCs toward inflammatory signals and
damaged tissues makes them an excellent vector for therapeutics. Gnecchi et al. characterized MSCs and
demonstrated the paracrine mechanism by genetically engineered protein kinase B (PKB, also known
as Akt)-MSCs [66,67] (Figure 2). In this in vitro experiment, Akt-MSCs-derived conditioned medium
collected from hypoxic Akt-MSCs was found to be efficiently protective to cardiomyocytes by inhibiting
the apoptosis. The paracrine effect of MSCs became clearer when they found the effect of other valuable
factors such as VEGF, bFGF (basic fibroblast growth factors), HGF and thymosin β-4 (TB4).

The paracrine mechanism plays a major role in immunomodulation, where MSCs intensify
their action in localized lymphocytes by the factors involving TGF-β, HGF, PGE2, human leukocyte
antigen-G5 (HLAG-5), IL-6, CCL-2, CCL-5 and some other chemokines [68–71]. In the mammalian
immune system, DCs are considered to be one of the most important antigen-presenting cells (APCs).
However, due to the effects of MSCs, immature DC precursors (CD34+ precursors) ceased at the
differentiation [72–74]. PGE2 from MSCs has been reported for its tolerogenic features, such as
IL-10 release, IDO1 expression, also when merged with TNF-α, IL-1β, and IL6, it intensifies the
immunogenicity with the co-stimulatory molecules [75–77]. In the vicinity of microenvironments
treated with MSCs, mature DCs (CD83+ DCs with CD80 and CD86 costimulatory molecules) get
obstructed in their efficiency for T cell activation [74,78]. Together, all these factors and chemokines
generate tolerance against the immune cells and help MSCs to facilitate favorable therapeutic roles.

2.3. Escape Mechanism of MSCs From the Innate Immune System

MSCs escape from the immune system by the cell-cell interactions through the production of
immune regulatory molecules such as IFN-γ, COX 2, PGE2 and IDO [26,79,80]. Among these factors,
IFN-γ plays a crucial role in inducing IDO expression and tryptophan depletion for the escape
mechanism [79]. In addition, HGF and TGF-β support MSCs to develop resistance against immune
cells [81]. Meisel et al. provided comprehensive in vitro results, where the T cell proliferation was
partly restored after adding monoclonal antibodies against TGF-β or HGF to show that both cytokines
are participating in this interplay [82].

Previously, both autologous and allogeneic MSCs were killed by activated natural killer cells
(NK cells) due to surface receptors such as MHC class I-related chain A (MIC-A), UL16-binding protein
(ULBPs), poliovirus receptor and nectin-2 [83,84]. However, IFN-γ treated MSCs are less likely to be
killed by NK cells [84]. MSCs inhibit their cytokines production, cytotoxicity, and cell proliferation
through PGE2 and IDO [85,86]. In a nutshell, there are three large and extensive laps of the immune
response: The first is antigen recognition and presentation, the second is T cell activation, proliferation
and differentiation and the third is the effective stage. The escape mechanism of MSCs can be seen
throughout all the three stages of immune responses.

2.4. Complement System and MSCs

The complement system of a body is the first line of defense against pathogenic foreign invaders [87].
There are more than 30 proteins involved in the interplay of human complement system during an
inflammatory response [88]. The three humanistic pathways by which the complement system activates
are the classical, lectin and alternative pathway. The classical pathway involves complement component
1q (C1q) which is activated by antibodies. The lectin pathway becomes activated by carbohydrate
moieties, and the alternative pathway is stimulated by hydrolysis of complement component 3 (C3).
The ultimate result of this activation is to form a membrane attack complex (MAC) for the initiation of
cell lysis [89].
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2.4.1. Complement System Attack on MSCs

It is well documented that during an infusion of MSCs to study clinical approaches, MSCs
are prone to attract the complements in the blood and suffer damage caused by MACs. Injured
MSCs are more vulnerable to further immune responses and also get compromised in their potent
functionality [90]. Receptors present on monocytes such as CR3 (complement receptor 3) assist in
phagocytosis of complement opsonized MSCs [91]. In some MSC-infusions in vivo experiments,
a particular suppressive cell population has emerged along with M2 monocytes, observed to decrease
the MSC population [15,92–94]. The interactions of MSCs with blood plasma require more extensive
research to find the reason behind MSC depletion after infusion. Recently, Gavin et al. demonstrated the
C3 mediated complement phagocytosis of MSCs by monocytes with markers CD14+CD16- excluding
the involvement of C5 complex [95]. Such examples may answer the question of depletion in the
population of MSC after infusion.

2.4.2. MSCs’ Ability to Counteract the Complement System

The MSC has surface receptors C3aR (C3a receptor) and C5aR (C5a receptor). During a surrounding
inflammatory action in the presence of C3a and C5a, MSCs express them on their surface and bind to
generate resistance against oxidative stress and apoptosis-inducing mechanisms [96]. Additionally,
MSCs have surface expression of CD46, CD55 and CD59, which protect MSCs against the complement
action and consequently prevent cell death [96,97]. Although, if the process of cell lysis is initiated
somehow on an MSC by the complement system, then it is almost impossible to stop the killing [90].

Multiple external factors have been studied to improve the allogenic survival of MSCs and
counteraction against the complement system. Scientists have used anti-C5 antibodies treatment
to MSCs before the infusion, as well as the transfection of recombinant adenovirus for the specific
overexpression of CD55 inhibitor [90]. Li et al. recognized MSCs propagated antigen in vitro, which
is a naturally occurring antibody and has the potential to activate the host complement response.
In addition, they demonstrated a simple and economical method to generate heparin-coated MSCs to
inhibit the complement system within microenvironments [98]. Besides that, the combined pretreatment
of MSCs with IFN-γ and TNF-α has proven to be the best method to inhibit the complement system.
This treatment resulted in the secretion of factor H, which is the primary complement inhibitor
produced by MSCs [97]. We will discuss this pretreatment application in detail later in this review.

3. Therapeutic Role of Modified MSCs

3.1. Unveiled the Role of MSCs in Therapeutics

MSCs have become an alluring topic of research due to their role in modern-day therapeutics.
Recently, a new therapeutic paradigm has emerged using MSC-derived exosomes and modified MSCs.
The exosomes (extracellular vesicles) are rich in lipids, proteins, mRNAs, tRNAs, long non-coding
RNAs, micro-RNAs as well as mitochondrial DNA, which is transferred between cells in both near
and distant vicinities [99,100]. Research evidence has shown that MSC-derived exosomes exert helpful
effects on different disease models such as myocardial infarction [101–104], hepatic fibrosis [105–107]
and cancer [108] [107,109–112]. Additionally, the modified MSCs strive in their effects with the
inflammatory factors and the microenvironment of MSCs, which are responsible for their phenotypic
effects being exerted on the immune system [113].
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Inflammation makes MSCs secrete molecules such as IL-10, galectins, IDO, and PGE2, heme
oxygenase-1 (HO-1), TNF-inducible gene-6 protein (TSG6), chemokine ligand-2 (CCL2) and NO which
are responsible for tissue homeostasis [114]. In addition to that, HLAG-5 secreted by MSCs has
the ability to interact with allo-stimulated T cells which assists them to suppress T-lymphocytes,
NK cells and regulatory T cells (CD4+CD25highFOXP3+ T cells) [115]. These effects were analyzed by
comparing the secretion patterns among molecules of MSCs from murine and humans. Their results
showed that IDO and HLA-G are the key effectors from human, whereas NO was from murine MSCs.
Also, for inducing the immune response, it was IFN-γ in humans for induction of IDO, but both IFN-γ
and TNF-α contributed to iNOS (inducible NO Synthase)/NO induction in murine [29].

Chinnadurai et al. studied this immunosuppression by analyzing basal and inducible MSCs
secretory molecular patterns, which are responsible for the suppression of T cell proliferation.
They identified IDO as a definitive enzyme, which plays a dominant role in MSC-mediated inhibition
of T cell proliferation. Furthermore, the blocking of VEGF, granulocyte-colony stimulating factor
(GCSF), CXCL9, CXCL10, IFN-α, CCL2 and IL-7 failed to inhibit MSC’s effect on blocking the T
cell proliferation. However, this correlation was lost in frozen-thawed MSCs [116]. The potency of
MSCs is only possible after some modifications prior to them being used therapeutically. This was
shown by Kim and Jang et al. who experimented with IFN-γ primed MSCs to study their influence
on IDO activity for progressive inhibition of cell-mediated immunity in graft-versus-host disease
(GvHD) [116,117].

3.2. MSCs Priming and Treatment

Modified or treated MSCs found to be enhanced in their immunomodulatory effects on the immune
system. IFN-γ is a key regulatory cytokine due to which MSCs are privileged for immunosuppressive
functions [118]. Further modifications of MSCs such as homing at targeted sites can promote
not only the escape, but also help in the migration of MSCs towards secondary lymphoid organs.
The expression of C-C chemokine receptor type 7 (CCR7) gene after bioengineering has shown
enhanced immunomodulation and tolerance [119]. The expression of GCSF, CXCL9, IL-7, and CCL2
by MSCs during the interaction with activated peripheral blood mononuclear cells (PBMCs) explains
the mechanism of immunosuppression of MSCs. Some reports also showed that the secretion of VEGF
is only possible with fresh MSCs, otherwise, there was a complete loss of VEGF production and T cell
suppression activity. Such a case was studied with a comparison between fresh and frozen-thawed
MSCs [116].

Previously, glucocorticoids, budesonide or dexamethasone-treated MSCs have shown IFN-γ
stimulatory effects. The treatments lead to an enhancement of therapeutic potential of MSCs
by inhibiting active inflammatory cytokines and raising tolerance towards GvHD and Crohn’s
disease [120–124]. In 2010, Dey et al. found beneficial effects by treating mice with genetically
engineered MSCs in cases of Huntington disease. MSCs from brain-derived neurotrophic factor (BDNF)
or nerve growth factor (NGF) transgenic mice could create microenvironments in the striatum, which
ultimately slowed the neurodegenerative process [125]. In 2013, Kwon showed TNF-α-priming MSCs
may manifest the inhibition of tissue necrosis along with the promotion of endothelial progenitor cells
homing and angiogenesis in the ischemic hind limb animal models [126]. Recently, Kim et al. showed
that IFN-γ-priming of human MSCs resulted in the enhancement of immunosuppressive properties.
In contrast, treatment with anti-IFN-γ antibody impairs the properties [117]. Hence, the priming of
MSCs with different factors opens a wide spectrum for its therapeutic applicability. A brief update for
the sites and sources for mesenchymal stem cells used as a therapeutic tool in various models is given
in Table 1.
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Table 1. Therapeutic potential of MSCs tested.

Site of
Isolation

Subject
tested Role of MSCs Modifications Applications Therapeutic

Potential Ref.

BM-MSC Rat Injury healing _ Autologous mode Traumatic brain injury [127]

BM-MSC Mouse Injury healing _ Allogenic mode Traumatic brain injury [128,129]

AD-MSC Human Knee injury healing _ Autologous As a treatment for
osteoarthritis [130]

BM, AD, UC
and WJ-MSC Human Immunosuppression IFN-γ treated MSCs

Allogenic and
autologous mode

treatment and
Prevention

GvHD [131]

BM-MSC Human Immunosuppression _ Autologous Multiple sclerosis [132,133]

AD-MSC
BM-MSC Mouse Antimicrobial and

anti-infection
Collagenase 0.1%

treatment
Allogenic and
in vitro mode Cystic fibrosis [134]

UC-MSC Mouse
human Immunosuppression Vehicle-controlled

without modification
Autologous and
allogenic mode

Cirrhosis and
autoimmune diseases [135]

UC, AD,
BM-MSC,
Placenta

Human Anti-inflammation,
immunosuppression _ Exogenous MSCs Bronchopulmonary

dysplasia [136]

BM-MSC Human Immunomodulation _ Autologous and
Allogenic

Acute myocardial
infarction, chronic

ischemic heart disease,
cardiomyopathy

[137]

BM-MSC Mouse Anti-inflammation,
immunosuppression

Marrow-derived
clonal MSC Autologous Inflammatory bowel

disease [138]

UC-MSC Human Immunosuppression _ Allogenic Systemic lupus
erythematosus [133]

BM-MSC Mouse Anti-inflammation _ Allogenic Chronic wound
healing [139]

BM-MSC Human Immunosuppression,
immunomodulation _ Autologous Drug-resistant

epilepsy [140]

BM-MSC _ MSCs cloning and
proliferation Feta bovine serum Only Cultured Chronic heart failure [141]

AD-MSC Mouse Immunosuppression,
immunomodulation IL-35 gene modified Exogenous Con A-induced liver

injury [142]

BM-MSC
(Purchased) In vitro Immunosuppression Intracellular delivery

of steroids
Allogenic

Co-cultured
GvHD, Crohn’s

disease [124]

BM-MSC YAC128
Mouse

Anti-inflammation,
immunosuppression

Over-expressing
BDNF and NGF genes

Autologous to
mice models Huntington’s disease [125,143]

BM-MSC Rat Anti-inflammation,
immunomodulation

Long term clonal
MSCs

Reduces Fibrotic
scars Rat spinal cord injury [144]

BM-MSC: bone marrow-derived mesenchymal stem cell; AD-MSC: adipose tissue-derived MSC; UC-MSC:
umbilical cord-derived mesenchymal stem cell; WJ-MSC: Wharton’s Jelly-derived MSC; IFN-γ: interferon-γ
BDNF, brain-derived neurotrophic factors; NGF, Nerve growth factor; GvHD: graft versus host disease; Con A:
concanavalin A.

3.3. Outcome of Modified MSCs: Positive and Negative Aspects

The immunosuppressive and immunomodulatory action potential of MSCs has made them
a double-edged sword, which can act favorable as well as against the therapeutics. In 2018,
Wang et al. showed that IL-35 gene-modified MSCs exhibited better protective effects on Concanavalin
A (Con A)-induced autoimmune hepatitis. IL-35 is required for the regulatory and suppressive
functions of Tregs. By a gene-delivery vehicle, IL-35-expressing MSCs decrease IFN-γ and Fas ligand
(FasL) levels in mononuclear cells through the Janus kinase 1 (JAK1)-signal transducer and activator of
transcription 1 (STAT1)/STAT4 signal pathway and eventually inhibit the hepatocyte apoptosis [142].

The behavior of MSCs towards and within its microenvironment is highly complex and needs
further research. One of many versatilities was reported by Galland et al., when the group correlated
the immunomodulatory effect on NK cells between intra-tumor (T) and adjacent non-tumor tissue
(N)-extracted MSCs. The results were astonishing, as they found out that tonsil-derived mesenchymal
stem cells (T-MSCs) were more potent immunosuppressive agents as compared to N-MSCs. T-MSCs
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showed dominance in affecting the NK cells function and phenotype as confirmed by CD56 expression.
Upon detailed insight observation, they concluded that tumor-derived MSCs have a definite mechanistic
pathway to block the activity of NK cell subsets [145]. The microenvironment of MSCs treatment affects
NK cells very deeply and easily. This may be the reason why these cells act favorably depending upon
the microenvironment.

In contradiction with this property, Fregni et al. reported that the tumor microenvironment of
MSCs implies some of the selected genes to overexpress and promotes metastasis in the case of lung
cancer-derived MSCs. Here, the overexpressed genes were found out to be tumor-initiating markers and
progressive towards metastasis [146]. MSCs can be miscreant due to their immune-microenvironment
modulatory property, one recent example was the study of MSCs residing in the tumor microenvironment,
where they developed therapy resistance in tumor cells [147]. However, these effects were influenced
by gemcitabine which made them secrete CXCL10, consequently activating the CXCL10-CXCR3 axis in
tumor-initiating cells. Hence, MSCs should not be held responsible for resistance in the chemotherapy
of pancreatic adenocarcinomas [147] as the results discussed here are influenced by many factors.
Therefore, we believe that MSCs could work against the favorable therapeutics, if not applied with prior
extensive research.

4. Role of MSCs in Adipocyte Vicinity

It is well known that high-fat diets can induce obesity which represents the risk factors for
the development of insulin resistance (IR) and type 2 diabetes (T2DM) [148,149]. Obesity-related
diseases such as T2DM induce diabetic wounds and are also associated with rapid cartilage loss and
osteoarthritis [150–152]. Among the sources of MSCs, adipose tissue is the preferred provider of
adipose-derived mesenchymal stem cells (AD-MSCs) [153]. There has been an increase in interest for
its therapy potential toward wound healing, tissue engineering and hepatocellular carcinoma [154,155].

4.1. Endocrine Function of Adipose Tissue and MSCs Within

Adipose tissue plays an important role in continuing optimal lipid and glucose homeostasis [156].
The adipocytes possess an endocrine system that helps them to alter metabolism known as
adipokines [157]. Before going into the details, we would like to shed some light on the role
of TGF-β/BMP (bone morphogenic protein) signaling towards the adipogenic and osteogenic
differentiation. Both TGFβ and BMPs are recognized to possess dual differentiation function with
MSCs and it has also been observed that upon TGF-β/BMP stimulation, the overall expression of
runt-related gene 2 (Runx2/Cbfa1) and peroxisome proliferator-activated receptor-γ (PPAR-γ) can be
regulated [158]. Recently, studies have shown BMP2 to be forcing MSCs towards both adipogenic or
osteogenic differentiation, while TGF-β was found to be inhibiting this development [159,160].

In Figure 3, we characterized the important contributions of MSCs in adipocyte vicinity by
undergoing the process of adipogenic differentiation. Previously, research revealed that BMP2-
and BMP4-expressing cells in cultured fibroblasts are committed towards adipogenesis [161–163].
PPAR-γ plays an imperative role in adipocyte differentiation during adipogenesis in vitro [164] as
well as in vivo [165–167]. During adipogenesis, MSCs start expressing transcription factor ZFP423
(Zinc finger protein 423) for committing to pre-adipocyte lineage and the produce regulators PPAR-γ and
C/EBP-α/β (transcription co-activators CCAAT/enhancer-binding protein α and β) for differentiation
and maturation [168–170]. Hence, MSCs residing in the adipose tissue contribute towards healthy
mass storage by their differentiation into adipocytes.
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Figure 3. Progression of adipogenic MSCs differentiation and maturation into mature fat cells due to
an excess of calories.

4.2. Loss of Potency of MSCs

There are suggestions from many teams that dysfunctional adipocytes in obese or diabetic patients
are due to pro-inflammatory cytokines [171–174]. In our previous work, understanding the mechanism
of electronegative low-density lipoprotein (L5 LDL) involved adipose tissue inflammation; we observed
that atherogenic lipid deposition and excessive hypertrophy resulted in macrophage infiltration and
adipose tissue dysfunction [175]. Figure 4 highlights the hallmarks of adipose tissue dysfunction. In the
case of overnutrition, the storage of extra calories in adipose tissue is needed, and to accommodate
extra calories, either adipose tissue needs to expand (hypertrophy) or increase its number (hyperplasia).
The excessive fat overload leads to an increase in serum LDL and VLDL, which further promotes
atherogenic lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) overexpression, these
interactions result in variable postliminary processes depending upon microenvironment conditions
and type of cells [176]. The proposed hypothesis in Figure 4 suggests the possible links of a feedback
loop mechanism of adipocyte dysfunction which promotes adipocyte hypertrophy and dysfunction by
inhibiting hyperplasia.

Figure 4. The above figure demonstrates the failure of overnutrition accommodation resulting in
adipose tissue dysfunction. Insufficient pre-adipocytes pressure the matured adipose cells to undergo
hypertrophy resulting in adipocyte fibrosis (macrophage accumulation and collagen deposition).
Furthermore, these cells progress towards adipose dysfunction (ectopic lipid deposition leads to
hypoxia and necrosis).

Adipocyte hyperplasia or hypertrophy occurs in an operative state by a distinct secretory pattern
of adipokines of these cells [177,178]. An impaired multipotency of MSCs was found in T2DM
cases, where oxidative stress impaired the blood flux recovery [179]. Adipogenic MSCs from the
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diabetic patients failed to differentiate into fully functional adipocytes. Hence, insulin resistance
might advance via hypertrophy of existing mature adipocytes [180]. The mechanistic view behind this
impairment is hyperinsulinemia induced Nox4 (NADPH oxidase 4) triggering oxidative stress leading
to restrict multipotency and increases adipogenic predictions of diabetic mice [181]. Additionally,
insulin treatment of WT-MSCs elevated the expression of Nox4 and ultimately increased the rate of
differentiation into adipocytes [181–183].

4.3. Need for Therapeutic Targets

Yan et al. unveiled that MSCs derived from T2DM are compromised in their multipotency which
made them boost post-ischemic neovascularization in diabetic mice [181]. In 2016, Zoelen et al. showed
that TGF-β promotes osteogenic differentiation of hMSCs while at the same time inhibiting adipogenic
differentiation by lowering the expression of PPARγ, ADAMTS5, and AKR1B10. They concluded that
these findings might support the therapeutic capabilities for preventing osteoporosis and obesity [160].
However, antidiabetic TZDs to target PPARγ, exaggerate the expression of oxidized LDL receptor 1
(OLR1) in adipocytes. Hence, targeting PPARγ alone may worsen the obesity seen in other metabolic
diseases [156]. The mechanism of fat mass expansion is poorly understood. Earlier, scientists concluded
that adipocyte hypertrophy comes down to fat mass expansion [184–186] and they justified that this
condition is due to a fixed number of pre-adipocytes in adults [187–190]. Later, scientists proved this by
tailoring the isotopic methodology to track down the process of adipogenesis with rare stable isotopes.
Some groups were successful in identifying the adipocyte hypertrophy as the dominant mechanism of
adult fat mass expansion by using mass spectrometry [191,192].

5. MSCs Response and Potential Towards Diabetes

Diabetes affect millions of people and is considered as a worldwide epidemic [193]. T2DM
covers 85-95% of overall diabetes cases, having insulin resistance or problem with the insulin
secretion by pancreatic β-cells [194]. MSCs have served to generate insulin-secretory cells,
increase in islet engraftment and survival, and also be useful in treating diabetic ulcers and limb
ischemia [195–198]. They also facilitate a micro-environmental niche by the secretion of some paracrine
factors and deposition of extracellular matrix [51,199–203]. Therefore, MSCs have huge potential for
diabetic therapeutics.

5.1. Direct therapeutic use of MSCs

There are many reports on animal models for dose-dependent therapeutics of MSCs infusion
(mixed MSCs from different sites). Due to a lack of standardization, there are great variations within
clinical trials regarding MSCs dosage and the frequency [120–122,204–206]. However, the factors
influencing MSCs therapy are the type of MSCs (isolation and source dependent), administration of
delivery, viability and purity of MSCs. Besides these factors, the most important issues are the stages,
types and conditions of diabetic patients [207]. This was supported by a study in which researchers
administered a direct injection of the MSCs for both the single as well as multiple times to diabetic rats
that improved hyperglycemia in 4 weeks [200]. Similarly, in some other studies for the treatment of
diabetic patients, scientists considered a single injection to not be enough, therefore, they administered
mainly 2-4 times a day for 2 to 12- weeks, multiple injections which resulted in improvement of the
patients [208–211]. In 2014, Bhansali et al. demonstrated 9 out of 11 diabetic patients reached the
endpoint, and insulin requirement was lowered down by 66.7%. Also, the same group found that 7 out
of 10 patients ended with 75% lower insulin requirements. Additionally, three out of them were able
to discontinue the insulin completely after a single BM-MSC autologous transplantation. However,
they did not mention the effective duration in their reports [208,212]. These reports still need some
clarification regarding how they understood the mechanism of improvement in diabetes through MSCs
therapeutics (for quality assurance).
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5.2. MSCs and Their Exertion in Diabetes

It was Chen et al. who first made the incompletely differentiated MSCs into insulin-producing
cells (IPCs) derived from rat, which successfully expressed insulin and nestin [213]. Later, MSCs were
found to be successfully promoted islet of beta cells even after hypoxia and oxidative stress [214,215].
Until now, more than 96 phase I/II clinical trials have been attempted for the treatment of diabetes (https:
//clinicaltrials.gov/ct2/results?cond=Diabetes+Mellitus&term=MSC&cntry=&state=&city=&dist=), yet
only few of them (Table 2) were considered promising for the effect of MSC treatment in the management
of T2DM [216].

Table 2. Details of the clinical trials using MSCs on diabetes mellitus.

Status
Outcomes/Complications Criteria

NP Treatment
approach

Mode of
intervention

Center/
NCT No.Primary Secondary Inclusions Exclusions

Completed
Reduction
(≥50%) of

insulin dose

HbA1c
increases

T2DM for 5
years, 3 months’

medication
before therapy,
HbA1c range:

7.5% to 9%

Type 1 diabetes,
chronic or severe

diseases
30

2 treatment
at 6 months
of interval

BM-MSCs,
autologous
inoculation

VRISCGT
Hanoi

Vietnam,
NCT03343782

Unknown;
crossed the
completion

date

Reduction of
insulin dose,

change of
C-peptide levels

vs. baseline

Evaluation
of adverse
events e.g.,

fever, allergy

T2DM of age
18-80, ITT
indicating

insulin
resistance, no

infection

Chronic or
severe diseases,
HIV, Hepatitis B

or C infection

30
2 treatment
at 3 months
of interval

UC-MSCs,
allograft and
intravenous

Shandong
University,

China
NCT01413035

Completed

NF-κB
inflammatory
markers and

osteoblast-specific
gene expression

NF-κB
inflammatory
markers and

apoptotic
marker

T2DM of age 18
and above,

HbA1c range
between 6.5%

Receiving TZD,
steroid or other

medication, high
serum creatinine

1.4 mg/dL for
female and 1.5

for male

75
Cross-sectional
2-4 weeks of
time frame

Not
mentioned

Chiang Mai
University,
Thailand

NCT02286128

Unknown;
crossed the
completion

date

Reduction of
insulin dose,

HbA1c increases

Adverse
events

T2DM of age
18-75, ITT
indicating

insulin
resistance

Severe diseases,
HIV, Hepatitis B

or C infection,
pregnant

24

One-year
time frame, 0
to 14 ±2 days

3 times

BM-MSCs
intravenous

APGH, Beijing
China,

NCT01142050

Completed

HbA1c
monitored for 1
year, results not

posted

Insulin dose,
severity of

adverse
events

T2DM of age 35
or above, HbA1c
range between

7.5% to 12%

Insulin
requirement

above 100 U/day,
proteinuria,

chronic or severe
diseases

receiving TZD,
steroid or other

medication

22

Cross-sectional
for 1 year;

Number of
times not
specified

Autologous
BM-MSCs

infused with
BM-MNCs

with insulin
drug

FGH, Fuzhou
China,

NCT01719640

Unknown;
crossed the
completion

date

HbA1c
monitored for 1

year

Fasting
blood

glucose
monitored
for 1 year

T2DM of age 35
to 65, HbA1c

range between
7.5% to 11%

Insulin
requirement

above 100 U/day,
proteinuria,

chronic or severe
diseases

receiving TZD,
steroid or other

medication

100

Cross-sectional
for 1 year;

Number of
times not
specified

UC-MSCs
infused with

GLP-1
(Liraglutide)

Diabetes care
center of
Nanjing
Military

Command,
Fuzhou China,
NCT01954147

Completed
Reduction
(≥50%) of

insulin dose
N.A.

T2DM of age 30
to 70, HbA1c
below 7.5%

Type 1 diabetes,
severe diseases,
HIV, Hepatitis B

or C infection

30 6 months
cross-sectional

Autologous
BM-MSCs

infused with
vitamin B and

MNCs

PIMER
Chandigarh,

India,
NCT01759823

Unknown;
crossed the
completion

date

Osteoporosis in
T2DM patients N.A. T2DM patients

of age 40 to 99
Organization

people 1200 3 years
cross-sectional Not provided

NTUH, Taipei,
Taiwan,

NCT01846533

Active but not
recruiting

CTCAE-assessment
of 12 months
and change in
hypoglycemia

Fasting
glucose

monitored
for 1 year,
change of
C-peptide

and HbA1c

Type 1 diabetes
detection less
than 6 weeks,

antibodies
against

pancreatic
β-cells

Pregnant or
breastfeeding,

cancer or severe
diseases, known
HIV, Hepatitis B

or C infection

20

12 month
cross-sectional,
time frame
of weeks 0

and 3

Intravenous
injection of
autologous
BM-MSCs

RIT, Tehran
Iran,

NCT04078308

https://clinicaltrials.gov/ct2/results?cond=Diabetes+Mellitus&term=MSC&cntry=&state=&city=&dist
https://clinicaltrials.gov/ct2/results?cond=Diabetes+Mellitus&term=MSC&cntry=&state=&city=&dist
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Table 2. Cont.

Status
Outcomes/Complications Criteria

NP Treatment
approach

Mode of
intervention

Center/
NCT No.Primary Secondary Inclusions Exclusions

Completed Change of
C-peptide N.A.

Type 1 diabetes
detection within
10 days, fasting
C-peptide below

0.12nmol/L

BMI,
immuno-suppressive
treatment, HIV,
Hepatitis B or C

infection,
pregnant

20
1-year

follow-up
study

Intravenous
injection of
autologous
BM-MSCs

UUH, Uppsala,
Sweden

NCT01068951

Terminated Change of
C-peptide N.A.

Type 1 diabetes
detection within
3 weeks, fasting
C-peptide below

0.12nmol/L

BMI,
immuno-suppressive
treatment, HIV,
Hepatitis B or C

infection,
pregnant

50
2-year

follow-up
study

Intravenous
injection of
autologous
BM-MSCs

UUH, Uppsala,
Sweden

NCT02057211

Unknown;
crossed the
completion

date

Change of
C-peptide OGTT

curve

Fasting
blood

glucose
monitored
for 1 year, a
decrease in

HbA1c

Type 1 diabetes
of age 35 or

below, HbA1c
7.5% or above

Insulin
requirement

above 100 U/day,
proteinuria,

chronic or severe
diseases,

receiving TZD,
steroid or other

medication

44
1-year

follow-up
study

Intravenous
injection of

allograft UC
–MSCs infused

with
pancreatic

MNCs

FGH, Fuzhou
China,

NCT01374854

Ongoing Change of
C-peptide

Change of
C-peptide

and change
in β-cell
function

Type 1 diabetes
detection within
3 months, male
and female of
age 12 and 30

years

Body Mass
Index < 14 or
>35, HbA1c

>12%, and/or
fasting blood
glucose >270

mg/d

50
1-year

follow-up
study

Allograft
BM–MSCs

infused with
plasmalyte

0.5%

MUSC, South
Carolina USA
NCT04061746

Ongoing Safe assessment
of Allogenic use N.A.

Type 1 diabetes
of age 18 to 35,
HbA1c change,

baseline
C-peptide

Type 1 diabetes
below 18 and
above 35 age,
pregnant or

comatose

20

1-year
follow-up
study, 2

dosages at
the interval
of 6 months

Allogenic
AD-MSCs

infused with
BM-MNCs

intravenously

Cell Therapy
Center,

Amman,
Jordan,

NCT02940418

Enrolling by
invitation

Pancreatic
β-cells

monitoring by
follow-up for 2

years and
change of
C-peptide
analysis

Oral
cholecalciferol
2000UI/day

supplementation
for 2 years

Type 1 diabetes
detection within

4 months and
pancreatic

autoimmunity

HIV, Hepatitis B
or C infection,

pregnant, cancer
30

1-year
follow-up

study

Allogenic
AD-MSCs

along with oral
cholecalciferol
supplementation
and vitamin D

CFFUH Rio De
Janeiro, Brazil,
NCT03920397

NP: Number of participants; N.A.: Not Available; NF-κB: Nuclear factor-κB; VRISCGT: Vinmec Research Institute of
Stem Cell and Gene Technology; ITT: Intravenous insulin tolerance test; APGH: Armed police general hospital;
FGH: Fuzhou general hospital; PIMER: Postgraduate Institute of Medical Education and Research; NTUH:
National Taiwan University Hospital; BM-MNCs: Bone marrow mononuclear cells; CTCAE: Common terminology
criteria for adverse events; RIT: Royal Institute of Tehran; UUH: Uppsala University Hospital; MUSC: Medical
University of South Carolina; CFFUH: Clementino Fraga Filho University Hospital; NCT number refer to its
www.clinicaltrials.gov identifier.

5.2.1. MSCs Clinical Trials and Combination Therapy

The randomized trials of phase 1 were first studied by a combined infusion therapy. Bone marrow
derived mononuclear cells (BM-MNCs) and hyperbaric oxygen treatment combination demonstrated
that infusion formula between two or more is beneficial, although both failed to synergize [217,218].
The most important scrutiny in clinical trials is the ratio of patient safety to risk. In that concern,
there must be an evaluation of MSCs treatment in T2DM cases for analysis of detrimental events.
In many studies, no acute and immunological events were noted, as the hypothetical risks involved
here, pulmonary and upper respiratory destructions by intravenous injection which may be followed
for interspersing cell fleeting through lungs, bruises caused by perforation, all these studies noticed no
such developments [208–210,212,217–225]. However, mild nausea, headache, vomiting and abdominal
pain were noted after MSC transplantation [212,219,222]. Therefore, the response of MSC towards
diabetes is very optimistic and can be considered as a therapeutic option.

Bhansali et al. performed an infused transplant of autologous BM-MSCs and BM-MNCs in T2DM
cases and found improvement in insulin sensitivity in 67% of patients. Besides this, they also concluded
that MSCs mediated the IRS-1 gene expression for the betterment of insulin sensitivity, while MNCs

www.clinicaltrials.gov
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boosted the C-peptide response [226]. Similar infusion results were obtained by Wang et al. [224].
However, the withdrawal technique of BM-MSCs and BM-MNCs from the femur or iliac crest is painful
and could cause infection [227].

The increase in C-peptide and decrease in HbA1c are considered to be two major positive outcomes
of MSC therapy. Guan et al. explored such improvements with WJ-MSCs therapy treatment twice
in diabetes patients [228]. Taking a message from these results, the number of T-reg cells was also
increased after infusion of WJ-MSCs with UC-MSCs, followed by reduced insulin dose [210]. Besides
these trials, the motive of stem cell therapy was to reverse the insulin resistance and improvement in
immune dysfunction. To some extent Zhao et al. found some positive results of reversing the immune
dysfunction. They observed metabolic improvement and balancing between Th1/Th2/Th3 cytokine
secretion using CB-MSCs, but the reversal in insulin resistance was not achieved [225].

5.2.2. Mechanistic Details of MSCs with Clinical Trials

Along with immunomodulatory and immunosuppressive roles, the regenerating capability of
MSCs make them unique and a very suitable candidate for cell-based therapy in autoimmune and
inflammatory disorders [229–231]. The differentiation potential of MSCs into IPCs is the most striking
of their features, which can be used to ameliorate hyperglycemia. The differentiation of endocrine
portions within the pancreas is strictly regulated by transcription factors Pdx-1, Ngn-3, NeuroD1, Pax4
and Pax6 [232]. For the equitable reprogramming of these cells, it becomes mandatory for the MSCs to
differentiate into IPCs. In 2005, human BM-MSCs were successfully differentiated into IPCs with the use
of adenoviral vectors encoding for murine Pdx-1. Later, Xie et al. studied the differentiation of human
BM-MSCs into IPCs by a three-step process and resulted in them becoming insulin-secreting cells in a
glucose dose-dependent manner [233,234]. Similarly, Nam et al. performed in vitro differentiation of
human eyelid AD-MSCs into IPCs and transplanted them into T2DM mice model [235]. Out of the two
groups; T2DM and control, T2DM mice group experienced IPCs mediated improvement, high IL-6
and also an increase in circulating insulin level promoting the metabolic improvements.

5.3. Possible Approaches of MSCs prior to Clinical Trials

Functions of stem cells are highly dependent on the microenvironment, which is strictly regulated
by its ECM (extracellular matrix), growth factors and immune cells [236]. ECM of MSCs has a
great potential for the quality improvement of MSCs such as adhesion and proliferation. Disturbed
metabolic conditions and hyperglycemia often leads to organ damage and also hampers the quality of
MSCs, which is a major hurdle of autologous clinical application. Therefore, we highly recommend a
particular kind of 3D (three dimensional) ECM culture, which may be used to enhance such functions
of MSCs [237]. For instance, Block et al. used 3D-ECM culture for a phenotype of interest on the basis
of cell size and stage-specific embryonic antigen-4 levels [238]. These kinds of findings may assure
the autologous use of MSCs, with high quality and genetic modifications in order to improve the
therapeutic potential of MSCs in several diseases and disorders [239].

The survival rate of MSCs is an essential quality factor for clinical trials. We have discussed the
loss of potency in frozen-thawed MSCs [240], but in an experiment of allergic asthma, frozen-thawed
MSCs were as efficient as the fresh MSCs [241]. Hence, we need more light to explore the features
of frozen-thawed MSCs as compared to fresh MSCs. Apart from that, some scientists have explored
the challenges of MSCs to sublethal risks of cellular stress in vitro, i.e., hypoxia, heat or compromised
nutrition. With preconditioning incubation, MSCs demonstrated a reduction of cell apoptosis in vivo
while maintaining their biological functions [242,243]. When comparing hypoxia and normoxia
exposure to cells in vitro, hypoxia-treated MSCs emerged to show an increase in population multiplying
rate [244,245]. This phenomenon can be explained by understanding the role of stabilizing factor
HIF-1α. During hypoxia, the expression of HIF-1α rises by 3.4 fold in MSCs that in turn to reduce the
ROS (reactive oxygen species), block the oxidative phosphorylation and promote glycolysis [242,245].
Besides that, HIF-1α also activates NF-κB to downregulate the level of Bcl (B cell lymphoma) and
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caspase 3, and activation of PrPc (cellular prion protein) enhances the superoxide dismutase (SOD)
and catalase to attain complete protection from oxidative stress [242,246].

Enduring oxidative stress in hypertension and diabetic conditions, cells are influenced by
ROS [247]. High-calorie diet induces ROS accumulation in the adipose tissue of the T2DM mice model
and promotes senescence of MSCs by expressing β-galactosidase and p53 [248]. Besides, the viability
of MSCs is severely hampered by oxidative stress [249,250]. Thus, the direct use of MSCs for treatment
may not be practical. In 2016, Cheng et al. observed the upregulation of sex-determining region
Y-box 2, (SOX2), Oct-4, and NANOG in high glucose-treated MSCs by the influence of intracellular
ROS formation, signifying the improvement in the stemness of MSCs [251]. These pieces of evidence
show preconditioning of MSCs may be of help in maintaining function and enhancing survival rates in
clinical trials.

6. Perspective

MSC therapy exemplifies a materializing style of modern alternative treatment with the retention
to hold site-specific immune regulation that controls T cells in autoimmune diseases and allograft
rejection. The current review article on immunosuppressive properties holds great confidence for
treating immune-mediated diseases, obesity, CVD and diabetes. However, it is also mandatory
not to augment the therapeutic potential as many unanswered questions need elucidation before
making promises. MSCs are known to bear effects in vascular repair by enactments into blood vessels,
differentiation into endothelial cells, pericytes and other vascular phenotypes [252–254], which is
further supported by autocrine and paracrine properties by producing vascular growth factors and
proangiogenic cytokines [255,256]. As far as the endocrine properties of MSCs are concerned, it is
credible that the classification of admissible effector molecules could lead to novel treatment and
rehabilitation of cellular therapy with MSCs [29].

There is very limiting but reassuring data available for ameliorating glycemic controlled MSCs
therapy in T2DM cases. We have highlighted many experiments to overcome hyperglycemia such as
differentiating MSCs into IPCs (insulin-producing cells), mitigating insulin resistance, conversion of
alpha cells to beta cells and remodeling pancreatic regeneration. However, animal models used for
the aforementioned analysis did not equal human T2DM patients and hence, the underlying scheme
involved here must be cross-examined in detail.

Coordinators for upcoming research must incorporate a definite identification of cell markers
such as the marker explored by Hudak et al. [257]. Standardized and validated isolation and culture
protocols with lineage differentiation and stimulation methods, which may ease the animal and clinical
studies. Additionally, cell modification, injection frequency and dosages are required to be studied in
detail to further guide the therapeutic potential of MSCs. An exceptional insight of this compelling
cell population might be apprehensive of a contemporary therapeutic scheme to recover the immune
response in an array of immune-mediated diseases, obesity, CVD and diabetes.
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Abbreviations

ADAMTS5 A disintegrin and metalloproteinase with thrombospondin motifs 5
AKR1B10 Aldo-keto reductase Family 1 Member B10
Akt-MSC Protein kinase B recombinant MSCs
APCs Antigen presenting cells
BCL B Cell Lymphoma
BDNF Brain-derived neurotropic factor
BMP Bone morphogenic protein
C/EBP CCAAT-enhancer binding proteins
Cbfa1 Core-binding factor alpha 1
CCL2 Chemokine ligand-2
CD Cluster of differentiation
C-MSC Cord tissue derived MSCs
COX-2 Cyclooxygenase 2
CR3 Complement Receptor 3
CVD Cardiovascular disease
CXCL Chemokine Ligand
CXCR Chemokine receptor
ECM Extracellular Matrix
Foxp3+ Fork-head box P3
GCSF Granulocyte-colony stimulating factor
GDM Gestational diabetes mellitus
HGF Hepatocyte growth factor
HIF-1α Hypoxia inducible factor-1α
HLA-G Human leukocyte antigen-G
HO Heme-oxygenase
IBMX 3-isobutyl-1-methylxanthine
IDO Indolamine 2:3-dioxygenase
IL Interleukin
IR Insulin resistance
IPC Insulin producing cell
iNOS Inducible NO synthase
MAC Membrane attack complex
MMP-9 Metalloproteinase 9
MIP α/β Macrophage inflammatory protein
MNC Mononuclear cell
MSC Mesenchymal stem cell
N-MSC Non-tumor MSCs
Ngn 3 Neurogenin 3
NO Nitric oxide
Nox4 NADPH oxidase 4
04-Oct Octamer-binding transcription factor 4
OLR1 Oxidized LDL receptor 1
P-MSC Placenta tissue derived MSCs
Pax 4 Pairedbox 4
PBMC Peripheral blood mononuclear cell
Pdx-1 Pancreatic and duodenal homeobox-1
PGE2 Prostaglandin E2
PGH2 Prostaglandin H2
PPAR-γ Peroxisome proliferator-activated receptor-γ
RANTES Regulated on activation, Normal T cell expressed and secreted
ROS Reactive oxygen species
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Runx2 Runt-related gene 2
SOD Superoxide dismutase
SOX2 Sex-determining region Y-box 2, (SOX2)
T1DM Type 1 diabetes mellitus
T2DM Type 2 diabetes mellitus
TB4 Thymosin β-4
TNF-α Tissue necrosis factor-α
Treg Immunoregulatory T cell
T-MSC Tumor derived MSCs
TGF-β Transforming growth factor-β
TSG6 TNF-inducible gene -6 protein
TZD Thiazolidinedione
VEGF Vascular endothelial growth factors
ULBP UL16 binding protein
ZFP423 Zinc finger protein 423
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