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Genetic mutations in exons of oncogenes and tumor-suppressor genes causing

qualitative abnormalities result in activation of the oncogenes and inactivation of

the tumor-suppressor genes, thereby causing cancer. In contrast, we have previ-

ously demonstrated that decreases in the RB promoter activity by genetic or epi-

genetic abnormalities can also cause carcinogenesis. In addition, activation and

inactivation of a variety of oncogenes and tumor-suppressor genes finally cause

quantitative abnormalities in gene expression. Interestingly, we discovered effec-

tive molecular-targeting agents, such as a novel MEK inhibitor, trametinib, by

screening for agents upregulating the expression of cyclin-dependent kinase

inhibitors. In the present review, we focused on the quantitative abnormalities

in gene expression with carcinogenesis, and discuss the importance of normaliz-

ing the quantitative abnormalities in gene expression with several molecular-

targeting agents.

T here are a variety of complicated carcinogenic mecha-
nisms. Among them, exon mutations activating oncogenes

and inactivating tumor-suppressor genes resulting in qualitative
abnormalities of the product proteins are important. One more
essential mechanism is the inactivation of promoter activities
of tumor-suppressor genes by genetic or epigenetic changes
resulting in quantitative abnormalities of the product proteins.
Interestingly, even qualitative abnormalities of oncogenes or
tumor-suppressor genes finally result in quantitative abnormali-
ties in gene expression as described below.

Silencing of RB gene expression. The RB gene is a representa-
tive tumor-suppressor gene, and mutations and deletions of the
exon regions of the gene are observed in not only retinoblas-
toma, but also many types of malignant tumors. Sakai et al.
reported two types of mutations in the promoter region of the
RB gene in hereditary retinoblastoma patients (Fig. 1).(1) The
mutations in the RB promoter region markedly decreased the
promoter activity, suggesting that the quantitative abnormality is
also important in carcinogenesis. Furthermore, Sakai et al. and
another group also found that the promoter region of the RB
gene was hypermethylated in retinoblastoma tumors (Fig. 1).(2–4)

Subsequently, Ohtani et al. demonstrated that the hypermethyla-
tion of the RB promoter region reduced its promoter activity
by dissociation of the pivotal transcription factors, activating
transcription factor (ATF) and the retinoblastoma binding factor

1 (RBF-1/E4TF1/GABP) from the core RB promoter region
(Fig. 1),(5) which was the first demonstration of epigenetic
silencing of tumor-suppressor genes.(6,7) The results indicate that
epigenetic abnormalities can cause cancer and that quantitative
abnormalities in tumor suppressor genes are essential for car-
cinogenesis. We therefore hypothesized that agents upregulating
the expression of silenced tumor-suppressor genes may be
promising for novel chemotherapeutics.
On the other hand, the p16 gene is also a representative

tumor-suppressor gene and epigenetically silenced by hyperme-
thylation in many types of malignant tumors.(8–10) Indeed, a
DNA methyltransferase (DNMT) inhibitor, decitabine, induced
the expression of p16 in lung cancer cells.(11) At present, decita-
bine (trade name Dacogen) and another DNMT inhibitor, azaci-
tidine (trade name Vidaza), are used in the treatment of
myelodysplastic syndrome. This is consistent with our original
hypothesis.

Inactivation of RB protein in many malignancies, which finally

increases expression of E2F-driven genes causing cancer. In addi-
tion to inactivation of RB promoter activity, RB protein is also
inactivated by phosphorylation. This phosphorylation is caused
by CDKs, for example, CDK2, CDK4 and CDK6 with their
corresponding cyclins, and CDK inhibitors (CKIs), such as
p21, p27, p16, p15, p18 and p19, repress the phosphorylation
(Fig. 2).
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As shown in Fig. 2, RB protein is inactivated by activated
oncogenes and inactivated tumor-suppressor genes. For exam-
ple, RAS genes, such as H-RAS, K-RAS and N-RAS, are rep-
resentative oncogenes, and the active mutations are observed
in a variety types of malignant tumors. As RAS activates both
the mitogen-activated protein kinase (MAPK) pathway, includ-
ing RAF, MEK and ERK, and the PI3K/AKT/mTOR pathway,
mutant RAS constitutively enhances CDK activity through the
upregulation of cyclin D1 expression (Fig. 2).(12,13) Oncogenic
receptor tyrosine kinases (RTKs), such as epidermal growth
factor receptor (EGFR) and human epidermal growth factor
receptor 2 (Her2), and so on, are transmembrane kinases that
act as receptors for extracellular growth factors.(14) As RTKs
activate RAS function, RTKs also have critical functions in
cell proliferation. Indeed, amplification and/or active mutations
in RTKs, such as EGFR and Her2, are observed in malignant
tumors, resulting in the enhancement of CDK activity with
inactivation of RB (Fig. 2).(15) In addition, inactivation of the
representative tumor-suppressor genes p53 and p16, the most
commonly inactivated tumor-suppressor genes, also enhance
CDK activity with RB inactivation (Fig. 2).(16)

Taken together, activation of most oncogenes and inactiva-
tion of most tumor-suppressor genes finally activate CDK
activity, thereby converting RB protein to the phosphorylated
inactivated form.(17) Unphosphorylated RB protein is an active
form that binds to the transcription factor E2F.(18) E2F can
transactivate the genes accelerating the cells from G1 phase to
S phase at the restriction point (R point),(19) such as dihydrofo-
late reductase, myc, cyclin E, thymidylate synthase and DNA
polymerase a, resulting in cellular proliferation (Fig. 2).(20) In
summary, carcinogenesis is caused by the quantitative abnor-
malities in gene expression with most malignant tumors.
As CDK activity is regulated by upstream molecules, as

mentioned above, we focused on the direct measurement of

the CDK activity in clinical samples. As a result, CDK profil-
ing technology, which was named “Cell Cycle Profiling
(C2P)” was established in collaboration with Sysmex corpora-
tion, Kobe Japan. Using C2P technology, we found that CDK2
activity in more than 70% of gastric cancer and colon cancer
tissues was higher than that in adjacent normal tissues.(21) This
result reflects that various qualitative and/or quantitative abnor-
malities of oncogenes and/or tumor-suppressor genes in malig-
nant tumor cells converge on the elevation of CDK activity,
resulting in inactivation of RB protein.

Inactivation of tumor-suppressor gene p53 decreases expres-

sion of p53 target genes causing malignancy, and histone

deacetylase (HDAC) inhibitors reactivate the expressions of the

genes suppressing tumor growth. In addition to RB, p53 is also
a representative tumor suppressor gene inactivated in a variety
of malignant tumors. As p53 protein acts as a transcription fac-
tor and activates the expression of cell cycle-, DNA repair-
and apoptosis-regulating genes as a tumor suppressor, the
expression of the target genes is decreased in p53-mutant
malignant tumor cells. Therefore, we tried to screen agents to
upregulate the expression of the target genes. First, we found
that butyrate induces the expression of a CDK inhibitor, p21,
through the Sp1 sites of the promoter in a p53-independent
manner and converts RB protein to the unphosphorylated
active form with G1-cell cycle arrest.(22) Subsequently, we
demonstrated that HDAC inhibitors also induce the expression
of p21 in a similar manner (Fig. 3).(23–25) We also found that
an HDAC inhibitor enhances the promoter activities of other
p53 target genes, gadd45 and DR5, in p53-mutated cancer
cells in a p53-independent pathway (Fig. 3).(26,27) Taken
together, when expression of p53 target genes is not induced
in p53-mutant cancer cells, HDAC inhibitors can reactivate
expression, thereby suppressing cancer. The data above
strongly suggest that carcinogenesis can be caused by quantita-
tive abnormalities in gene expression and molecular-targeting
agents, such as HDAC inhibitors, can normalize the quantita-
tive abnormalities.
As mentioned previously, the p16 gene is another important

tumor-suppressor gene inactivated in a variety of malignant
tumors,(8–10,28) and p16 converts RB protein to the unphospho-
rylated active form as a CDK inhibitor. The p16 gene belongs
to the INK4 family genes, and we hypothesized that upregula-
tion of other family genes, such as p15, p18, or p19, may com-
pensate for the function of inactivated p16. We then found that
HDAC inhibitors can activate the promoter activities of the
family genes, such as p15, p18, and p19, converting RB pro-
tein to the unphosphorylated active form compensating for
inactivated p16 (Fig. 3).(29–31) The results also demonstrate
that quantitative normalization by molecular-targeting agents is
useful for treating malignant tumors.

Fig. 2. Activated oncogenes and inactivated tumor-suppressor genes
finally activate CDK activity with inactivation of RB function.

Fig. 3. Histone deacetylase (HDAC) inhibitors can normalize the
quantitative abnormality in gene expression with p53-mutated
tumors, and can compensate for the inactivated p16 function by
increasing the expression of the family genes.

Fig. 1. Decreases in the RB promoter activity by genetic or epige-
netic abnormalities can cause carcinogenesis.
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Approved molecular-targeting agents increase expression of

CKIs. As described above, HDAC inhibitors can increase the
expression of several CKIs, normalizing the quantitative abnor-
malities in gene expression in cancer cells (Table 1). Indeed,
several HDAC inhibitors, vorinostat (trade name Zolinza),
romidepsin (trade name Istodax), panobinostat (trade name
Farydak), and belinostat (trade name Beleodaq) have been
approved as molecular-targeting agents for chemotherapy.
Interestingly, other approved molecular-targeting agents also

increase the expression of CKIs (Table 1). We found that the
EGFR kinase inhibitor gefitinib (trade name Iressa) can induce
the expression of p15.(32) The anti-Her2 antibody trastuzumab
(trade name Herceptin) was shown to upregulate p27 expres-
sion.(33) The Bcr-Abl kinase inhibitor imatinib (trade name
Gleevec) also upregulates p18 expression.(34) Furthermore, an
inhibitor of mammalian target of rapamycin (mTOR), everoli-
mus (trade name Afinitor), was reported to induce p27 expres-
sion and decreased cyclin D1 expression inhibiting CDK
activity.(35) These results clearly demonstrate that inhibition of
oncogenes by molecular-targeting agents finally induces the
expressions of CKIs, thereby converting RB protein to the
unphosphorylated active form.

Screening for novel molecular-targeting agents regulating

expression of CKIs. We therefore hypothesized that screening
for agents upregulating expression of CKIs may be useful. As
a result of the screening in collaboration with several pharma-
ceutical companies, we found several potent compounds,
including a novel MEK inhibitor trametinib by screening for
p15 inducers.(36) After submitting the patent, trametinib was
in-licensed by GlaxoSmithKline (GSK) in 2006 and clinically
developed. Trametinib was approved as a first-in-class MEK
inhibitor (trade name Mekinist) in 2013 in the U.S. as a single

agent for treatment of BRAF V600E or V600K mutation-posi-
tive unresectable, or metastatic melanoma based on the results
of a phase 3 study.(37) Drug discovery of the year awarded
trametinib from British Pharmacological Society in 2013. Fur-
thermore, combination therapy of trametinib and the BRAF
inhibitor dabrafenib was also approved in 2014 in the US
based on the results of a phase 1/2 study.(38) After trametinib
and dabrafenib were in-licensed by Novartis from GSK in
2015, the combination treatment was approved in Japan in
2016. Against patients with previously treated BRAF-mutant
metastatic non-small cell lung cancer, 63.2% achieved overall
response by the combination therapy with dabrafenib and tram-
etinib in phase 2 trial,(39) and the combination therapy for
BRAF-mutant metastatic non-small cell lung cancer received
breakthrough therapy designation from FDA.
In addition, a dual RAF/MEK inhibitor, CH5126766/

RO5126766, which is undergoing a clinical phase I trial, was
found by screening for p27 inducers,(40) and the most potent
HDAC inhibitor, OBP-801/YM753/spiruchostatin A, which is
also undergoing a clinical phase I trial, was identified by
screening for p21 inducers.(41,42) We are still developing our
original screening strategy to find novel molecular-targeting
agents for unmet medical needs in chemotherapy.

Conclusion

In carcinogenesis, both qualitative and quantitative abnormali-
ties are important. However, we focused on the importance of
quantitative abnormalities in gene expression because even a
variety of qualitative abnormalities finally can also cause quan-
titative abnormalities in gene expression and molecular-target-
ing agents could normalize the quantitative abnormalities. In
addition, in our experience, we actually discovered very effec-
tive molecular-targeting agents with our original screening sys-
tem searching for agents regulating the quantity of several
molecules. We therefore emphasize the importance of quantita-
tive abnormalities in gene expression with carcinogenesis and
regulating the quantitative abnormalities by effective molecu-
lar-targeting agents.
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