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Abstract: In recent years, speech recognition technology has become a more common notion. Speech
quality and intelligibility are critical for the convenience and accuracy of information transmission
in speech recognition. The speech processing systems used to converse or store speech are usually
designed for an environment without any background noise. However, in a real-world atmosphere,
background intervention in the form of background noise and channel noise drastically reduces
the performance of speech recognition systems, resulting in imprecise information transfer and
exhausting the listener. When communication systems’ input or output signals are affected by noise,
speech enhancement techniques try to improve their performance. To ensure the correctness of
the text produced from speech, it is necessary to reduce the external noises involved in the speech
audio. Reducing the external noise in audio is difficult as the speech can be of single, continuous
or spontaneous words. In automatic speech recognition, there are various typical speech enhance-
ment algorithms available that have gained considerable attention. However, these enhancement
algorithms work well in simple and continuous audio signals only. Thus, in this study, a hybridized
speech recognition algorithm to enhance the speech recognition accuracy is proposed. Non-linear
spectral subtraction, a well-known speech enhancement algorithm, is optimized with the Hidden
Markov Model and tested with 6660 medical speech transcription audio files and 1440 Ryerson
Audio-Visual Database of Emotional Speech and Song (RAVDESS) audio files. The performance of
the proposed model is compared with those of various typical speech enhancement algorithms, such
as iterative signal enhancement algorithm, subspace-based speech enhancement, and non-linear spec-
tral subtraction. The proposed cascaded hybrid algorithm was found to achieve a minimum word
error rate of 9.5% and 7.6% for medical speech and RAVDESS speech, respectively. The cascading
of the speech enhancement and speech-to-text conversion architectures results in higher accuracy
for enhanced speech recognition. The evaluation results confirm the incorporation of the proposed
method with real-time automatic speech recognition medical applications where the complexity of
terms involved is high.

Keywords: speech recognition; speech enhancement; speech to text; word error rate

1. Introduction

Speech-to-text transcription has gained importance in many applications and benefits
in research, the military, medical sector, smart homes, transportation systems, automatic
transcription on lectures, conversations, record-making [1]. Speech recognition technology
(SRT) involves the identification of patterns in audio waves and matching them with
phonetics of speech to convert them into text. The accuracy of SRT dramatically depends
on the quality of audio. The presence of background noises, multiple speakers, or the
speaker’s accent provides erroneous transcription. Speech enhancement is a significant
problem in communications at airports, medical centers, and other familiar public places.

Sensors 2021, 21, 7025. https://doi.org/10.3390/s21217025 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6022-7907
https://orcid.org/0000-0002-0422-8374
https://orcid.org/0000-0003-1355-710X
https://doi.org/10.3390/s21217025
https://doi.org/10.3390/s21217025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217025
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217025?type=check_update&version=2


Sensors 2021, 21, 7025 2 of 15

The SRT requires enhancement of speech to improve the quality and intelligibility of the
signal before translation. Various approaches have been proposed for improving the quality
of speech, such as the spectral subtraction algorithm [2], the signal subspace system [3],
and the adaptive wiener filtering approach [4].

The spectral subtraction algorithm extracts the speech from additive noise. Enhance-
ment of speech was achieved by estimating the spectrum of the noise-free signal and
subtracting the estimated noisy signal from an available observed signal. The spectral
subtraction algorithm suffered from residual noise [2]. The signal subspace algorithm
was used for enhancing uncorrelated additive noise. This approach decomposes the
noisy signal’s vector space into signal plus subspace and orthogonal noise subspace using
Karhunen–Loeve transforms (KLT) or eigenvalue decomposition. The signal plus slot is
used for processing, and the noisy subspace is discarded [3]. The noisy speech frames
were classified into speech-dominated frames and noise-dominated frames using a signal
KLT-based technique [4]. A Weiner filter-based algorithm was proposed for enhancing the
signals, and it had a drawback of fixed frequency that required estimation of the frequency
spectrum of both clean signal and noise before filtering [5]. An Adaptive Wiener filter
method was proposed to overcome the disadvantage of the traditional Weiner filer that
used an adaptation of the filter transfer function on sample to sample based on speech
signal statistics [6]. The adaptive Weiner Filter-based approach was found to provide the
best improvement over the signal-to-noise ratio.

The neural networks that learn the statistical information automatically using non-
linear processing units were introduced for noise reduction. The deeper networks are
considered to be more efficient in learning than the shallow networks [7]. A deep auto-
encoder (DAE) algorithm was proposed for training the deep network architectures [8].
The challenge with DAE is the difficulty in generalizing the algorithm for all types of
speech signals. Over conventional minimum mean square error (MMSE) based statistical
techniques, supervised methods using deep neural networks were proposed to enhance the
large volume of speech data. These methods were found to handle non-stationary noises
effectively [9]. A voice activity detector (VAD) was introduced to estimate the noise during
the non-speech, but it failed on encrypted speech signals [10]. Recurrent neural network
(RNN) based speech enhancement techniques were introduced. The RNNs are found to
produce significant performance by taking advantage of the temporal information over the
noisy spectrum. Long Short-Term Memory (LSTM) was implemented for optimal speech
enhancement and produced optimal results [11].

Generative adversarial networks (GAN) were used to construct the clear speech signals
from the noise signals over RNNs [12]. Multiple deep neural networks were recommended
over the single neural network for speech enhancement with known and unknown sources
of noise [13]. A de-reverberation method combining correlation-based blind de-convolution
and modified spectral subtraction was presented for speech enhancement where inverse
filtered reverberation was suppressed by the spectral subtraction [14]. Though the con-
ventional subtraction method reduces the noise level from speech, it introduces distortion
noise in considerable spectral variation. The multiband spectral subtraction algorithm
was proposed to overcome the distortion, maintaining the quality of speech signal [15,16].
Recent studies focus on the non-linear spectral subtraction algorithm for speech enhance-
ments due to the significant variation in signal-to-noise ratio. The spectrum of real-world
noise is irregular, and they have been affected more adversely at some frequencies. Non-
linear spectral subtraction approaches are recommended to handle cleaning the speech
signal [17,18]. The sub-space-based signal estimation method was proposed based on
modified singular value decomposition (SVD) of data matrices that recovers speech signals
from noisy observations [19]. The technique focused on mapping the observed signal
to a clean signal, suppressing the noise subspace. Though the subspace-based speech
enhancement deals with noise distortion, it is also used to remove colored noise [20].

Generalized sidelobe canceller (GSC) has been used for non-stationary broadband
signals. GSC separates the desired signals from the interference by exploiting spatial
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information about the source location [21]. Noise suppression techniques play a vital role
in automatic voice recognition (AVR) strategies, aiming to provide a clear gap between
the clean and noisy speech signals [22]. Wiener filter and spectral subtraction combined
noise estimator was proposed to control the noise energy in current frames and estimate
noise from preceding frames by minimizing over subtraction [23–25]. Iterative signal
enhancement (ISE) algorithm based on truncated SVD was proposed to obtain improved
selective frequency for filtering noises from speech signals. ISE performed better than other
classical algorithms, especially with speech signals [26,27].

From the literature study, it is evident that Nonlinear Spectral Subtraction (NSS) and
Iterative Signal Enhancement algorithm (ISE) are the most effective methods for speech
enhancement [28]. This paper proposes hybridization of NSS and ISE methods for further
enhancing the speech signals. The performance of the hybrid algorithm is compared with
the implementation of individual practices.

Dynamic time warping (DTW) is a dynamic programming algorithm technique used
for determining the correspondence between two sequences of speech that may differ
in time or speed [29]. For example, resemblances in speaking a specific word would be
identified, even if in one audio the person was speaking slowly and if in another the same
person was talking more quickly, or even if there were hastening and slowing down during
the course of one observation [30]. DTW can be applied to audio, video, or any data
that can be represented using a linear representation. Table 1 gives the insights about the
literature survey.

Table 1. Literature survey based on category of techniques.

Techniques Performance Advantage(s) Disadvantage(s)

Spectral subtraction
algorithm [2]

Estimating the spectrum of the
noise-free signal and subtracting

the estimated noisy signal is done
to enhance the speech

Can be applied for both
stationary and non-stationary

noises

Resultant speech contains
residual noise

Signal subspace
algorithm [3]

Uses Karhunen-Loeve transforms
(KLT) or eigenvalue decomposition

Discards the noisy space
Can directly use the state-space

representation for the system

Realizations done by
state-space are not unique

Weiner filter-based
algorithm [5]

Mainly used in real
time applications

Better performance for noise
cancellation

Needs more number of
computations

Adaptive Weiner
filter-based algorithm [6]

Mainly used in real
time applications

Reduced/moderate
computational complexity

Mean square error is not
always relevant

Deep Auto-Encoder (DAE)
algorithm [8]

Deep denoising autoencoders are
used to enhance the speech features

Efficient for resonant speech
recognition

Mainly used for
clean/controlled

speech only

Voice Activity Detector
(VAD) [10]

Works on the long pause between
the words

Can classify the noise even
during the pause of the speech

Not efficient for encrypted
speech signals

Long Short-Term Memory
(LSTM) [11]

A type of RNN, and it can learn
long period dependencies

Produces good result in speech
recognition

Concentrates only on the
size (length) of the speech

Generative Adversarial
Networks (GAN) [12]

It is a type of RNN and it constructs
clear speech from the noisy speech

Generate audio that looks
similar to original audio by

eliminating noise
Harder to train

Multiband spectral
subtraction algorithm [15]

Inverse filtered reverberation was
suppressed by the

spectral subtraction

Overcome the distortion,
maintaining the quality of

speech signal

Not suitable for highly
random real-world noise

2. Proposed Methodology

This work aims to enhance the speech signal by suppressing the noise signals in-
volved in voice control applications. Speech enhancement is an essential factor in speech
recognition as it can be used as a pre-processor to enhance speech. Generally, the source of
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the noise signals can be background noise, electromagnetically induced noise. Reducing
these noises will result in increasing the intelligibility of the speech and agreeable speech
recognition. Figure 1 depicts the flow of the idea of enhancing the noisy speech signal.
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Figure 1. Proposed idea.

In this article, a hybridized speech enhancement algorithm is proposed with experi-
mental results. Sections 2.1 and 2.2 present various speech enhancement and speech-to-text
conversion algorithms used for various speech signals, respectively. Section 3 represents
the results obtained for the speech enhancement algorithms and their comparisons by
using the word error rate values by converting the enhanced speech to text.

2.1. Speech Enhancement Algorithms

Enhancement of speech is essential when the terms involved are complex and involve
external noises. There are various speech enhancement (SE) algorithms available, which
are discussed in the following section.

2.1.1. Iterative Signal Enhancement Algorithm (ISE)

The iterative signal enhancement algorithm is used for reducing the noise in speech.
The algorithm is designed based on a trimmed singular value decomposition (SVD) pro-
cedure and can be used as a tool for enhancing the noisy speech signal by suppressing
the additive noise present in the signal. Compared to the classical algorithms, the ISE
algorithm escalates similar improvements in Signal-to-Noise Ratio (SNR).

The ISE algorithm executes in two phases. The first phase produces an enhanced
signal s[i] from the noisy signal ns[i]. The enhanced signal s[i], which comes from phase
I, still contains some noise. So, the noise removal phase is repeated a certain number of
times depending on the level of noise present in the signal. The signal decomposition of
the enhanced signal at each level is given a rank ranging from 1 to level l. The first rank
signal decomposition sd[i] for the s[i] is obtained by averaging the anti-diagonals of the
Hankel matrix to rank-1. Hankel matrices are square matrices with constant ascending
skew-diagonals from left to right. Hankel matrix is constructed from the signal is helpful
for decomposition of constant signals and time-frequency representation. The rank-1 signal
decomposition covers most of the energetic spectral band of the noisy input signal in the
frequency domain.

The signal decomposition sd[i] is subtracted from the input signal sn[i] to calculate
the residual signal r[i], and the phase-I procedure is repeated by using the residual signal
as the input for the upcoming iterations. The signal decomposition sd[i] is summed up
throughout the iterations to obtain the enhanced signal s[i]. The iteration is stopped once
the residual signal r[i] contains only the noise components. The phase-2 concentrates on
the residual signal to maintain the number of iterations of phase-I. The working of the ISE
algorithm is depicted in Figure 2.

The ISE algorithm is advantageous over the typical enhancement algorithms as ISE
has a better frequency selectivity for filtering out the noise than the standard algorithms.
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2.1.2. Subspace—Based Speech Enhancement

Subspace methods, also called high-resolution or super-resolution methods, use an
eigenvalue analysis or eigendecomposition of the correlation matrix to derive frequency
component values of a signal. The process for subspace-based speech enhancement can be
stated as follows:

(1) Isolating the subspace as signal and noise subspaces from the original subspace (noise
mixed speech)

(2) Eliminating the noise-only subspace that has been isolated in step1.

Assume s(i) represent the pure speech signals and let n(i) indicates the zero-mean
additive noises mixed in the pure speech. The observed noisy speech x(i) can be given by

x(i) = s(i) + n(i)

Allow Rx, Rs, and Rn to be (p × q) genuine autocorrelation matrices of x(i), s(i), and
n(i), respectively, with q > p. Rx = Rs + Rn is obvious given the assumption of uncorrelated
speech and noise. Regardless of the specific optimization criterion, speech enrichment is
now obtained by

1. By nullifying the components in the noise subspace, the enhanced speech is con-
strained to inhabit only the signal subspace.

2. Changing (decreasing) the eigenvalues of the signal subspace.

The input speech signal with noise is split into unique spaces. Each and every space
is individually processed. In Figure 3, the noisy input signal is fed as the input, whereas
the individual subspaces are allocated with a vector value and rank, respectively. The
filter bank output of each subspace is obtained by filtering the noisy signal n(i) with its
corresponding eigenfilter vector (EVF) and its reversed eigenfilter vector (REFV). This
filtered output is fed to the not gate (NG) and their summation results in the enhanced
speech signal.
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2.1.3. Nonlinear Spectral Subtraction (NSS)

Nonlinear Spectral subtraction is one of the most primitive and notably the most
famous speech enhancement methods. NSS can be predominantly valid in cases where a
boisterous environment contaminates an original speech signal with the same bandwidth
as that of speech. To decrease external noise, the NSS algorithm is developed, which
considers the change of signal-to-noise ratio across the speech spectrum and uses a distinct
over-subtraction factor in each frequency band. Figure 4 describes the steps involved in
extracting only the speech from the noisy speech signal. The speech signal with noise is
given as input to the Fast Fourier Transform module. Let y(i) denote the noisy speech, i.e.,
the pure speech signal s(i) is polluted with the noise signal n(i). Then in the time domain,
their relationship is described as:

y(i) = s(i) + n(i) (1)

To obtain their relation in the spectral domain, take the Discrete Fourier Transform
(DFT) and power magnitude for Equation (1) with the assumption that noise and speech
signals are uncorrelated, then the relation is described as follows:

|Y(r,f)|2 = |S(r,f)|2 + |N(r,f)|2 (2)

where r and f denote the frame and frequency values respectively. Now with the assump-
tion that |N(r,f)| and |N̂(r,f)| can be estimated, the spectral subtraction can be formulated
as follows: ∣∣∣Ŝ(r, f)

∣∣∣2 =
∣∣∣Y(r, f)

∣∣∣2−∣∣∣N̂(r, f)
∣∣∣2 (3)

The spectral subtraction algorithm adapts the damaged speech signal’s short-term
spectral magnitude appropriately. The signal is modified so that the synthesized signal
feels as near to the unbroken voice signal as possible. A noise power estimate and a
subtraction rule are used to calculate the appropriate weighting of spectral magnitudes.
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The Word Error Rate represents the amount of word error occurring during the speech.
It can be calculated using the formula

WER = Ns + Nd + (Ni/Nn) (4)

where ‘Ns’ represents the number of substitutions, ‘Nd’ indicates the number of deletions,
‘Ni’ means the number of insertions, and ‘Nn’ stands for the number of words in a sentence.

2.2. Speech to Text Conversion

The primary purpose of speech to text (STT) or speech recognition is to enable a
real-time dictation of audio signals into text. All the STT systems depend on the acoustic
model and the language model. In the case of including the additional feature vocabulary
systems, a pronunciation model can be used. It is challenging to construct a universal
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speech recognizer. To develop the best quality STT system, it needs to specialize in a
specific language, idiom, application domain, speech type, and communication frequency.

Hidden Markov Model

Hidden Markov Models (HMM) are mainly used for general-purpose speech recog-
nition systems. In general, the speech signals are observed as a stationary signal whose
amplitude and frequency remains constant. It takes a very short time scale for a speech to
be estimated as a static process.

In HMM, it is possible to train the data set automatically, which makes it easy com-
putationally, and hence it is extensively used. The HMM would generate a sequence of
n-dimensional real-valued vectors every ten milliseconds (with ‘n’ being a small integer
value such as 5 or 10) in speech recognition. The first coefficient of a Fourier transform of a
small part of the speech is extracted and decorrelated with the cosine transform to calculate
the cepstral coefficient vectors.

In each state of the HMM, a statistical distribution of a mixture of diagonal covariance
Gaussians is performed to present the probability of each identified vector. In the current
speech recognition systems, every word or phoneme has its output distribution, whereas, in
HMM, the sequence of the terms or phonemes is constructed by cascading the individually
trained cepstral vectors for the specific words and phonemes, respectively.

Modern voice recognition systems use diverse combinations of various common
strategies to improve outcomes beyond the fundamental approach. Context dependency
of the phonemes is required for the traditional large-sized vocabulary system to enable
the phonemes with different pre and post contexts to have unique HMM states. These
HMM states can be used to normalize different recordings and the speaker conditions
using the cepstral normalization method. Vocal tract length normalization (VLTN) can
be used to further normalize male-female or other speaker criteria. To capture the speech
dynamics, linking and linear discriminant analysis (LDA) based projects can be used, which
is followed by either the heteroscedastic LDA step or global semi-tied covariance transform
method. To optimize the classification-related measure of the training data, many systems
employ discriminative training strategies, which can be used to avoid the purely statistical
approach to estimate the HMM parameter.

The HMM is used to convert speech features into HMM parameters and calculate
all speech samples’ likelihood. Recognition of this likelihood of speech samples is used
to recognize the spoken words. Figure 5 represents the working model of the HMM
that decodes the extracted features based on the parameters such as acoustic models,
pronunciation dictionary, and the language model for which speech recognition is required.
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3. Hybrid Speech Enhancement Algorithm (HSEA)

The speech signal can be a single, continuous, or spontaneous word. The spontaneous
words are complicated as their speech is fast and the number of words is high. This
spontaneousness creates complications in automatic speech recognition. The proposed
work mainly concentrates on spontaneous speech in the medical domain. The words
used in the medical environment are complicated, and the medication prescriptions need
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clarity. Hence, the idea is to develop a hybridized algorithm that can resolve the issue and
assure accuracy.

The nonlinear spectral subtraction and the hidden Markov model are cascaded to
form a hybrid architecture to enhance the accuracy of the speech recognition system.
The NSS provides a better result for the spontaneous signal by suppressing its noise to
a greater extent, and the HMM can give high accuracy in converting the speech to text.
Figure 6 shows the proposed hybrid algorithm architecture to enhance the speech signal by
cascading the NSS and the HMM algorithms. The steps involved in the HSEA is described
in Algorithm 1.
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Algorithm 1 Hybrid Speech Enhancement Algorithm

Input y(i) the noisy speech signal with n(i) the noise and s(i) the clear speech signal

1. Segmentation: the speech signal is segmented into frames.
2. Process: The noisy signal is processed frame by frame and the Fourier transform is

calculated as
y(r,f) = s(r,f) + n(r,f)

where ‘r’ is the frame number.
3. Calculation: The short-term power spectrum of y(i) is calculated as

|y(f)|2 = |s(f)|2 + |n(f)|2

4. Estimation: By removing the noise from the input signal, the speech is estimated as follows:
|ŝ(f)|2 =|y(f)|2−|n̂ (r,f)|2

5. Obtain: The noise spectrum |n̂ (f,t)|2 is obtained by averaging the recent pause frames
|n̂(r, f)|2 = 1

N ∑N−1
k=0 |yk(f)|2

where N is the number of consecutive speech frames
6. Reconstruction: Step 5 is reconstructed by expressing ŝ(t)2 as the product of noise and the

spectral subtraction factor
|ŝ (f)|2 =|n̂ (f)|2/|y(f)|2

7. Formulation: The Hankel matrix of the enhanced speech signal is formulated from step 6.
8. Optimization: The enhanced speech is optimized using the least squares and the minimum

variance optimal estimator as
Hs = ΣVt

9. Conversion: The enhanced speech signal is converted to text.

Output: The text format of the noise removed speech signal with reduced WER.

4. Results and Discussion

The proposed model has been tested on a dataset that contains medical speech of
about 8.5 h and RAVDESS emotional speech dataset. The speech includes both male and
female speeches, with each audio time ranging from 0.2 s to 60 s.

4.1. Performance Analysis of Speech Enhancement Algorithms

Various speech enhancement algorithms are present to enhance the speech signal by
reducing the noise in the surrounding. The proposed work tested the algorithms such as
ISE, sunspace, and NSS for the medical audio dataset, and the findings are discussed in
this section.

4.1.1. ISE for Spontaneous Signal

One of the numerous issues that automatic speech recognition systems face is process-
ing spontaneous speech. Spontaneous speech is characterized as utterances that comprise
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well-formed phrases similar to those found in written texts. Disfluencies (complete pauses,
repetitions, false starts, and so on) are the main characteristics of this type of speech, and
numerous studies have concentrated on detecting and correcting them.

The waveform and the spectrogram results produced by the ISE algorithm are shown
in Figure 7. Figure 7a,b show a speech signal’s time waveform and spectrogram, respec-
tively. Figure 7a shows how the noisy waveform is getting transferred to noise reduced
waveform signal using the ISE algorithm.
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Figure 7. (a,b) Time waveform and Spectrogram of speech signal using ISE.

Figure 7b represents the spectrogram of a signal that has been enhanced using the
ISE. It is visible that there is an enhancement in the noise corrupted speech while using
the ISE speech enhancement algorithm. The WER is calculated for the speech before and
after removing the noise. The comparison of the WER before and after reducing the noise
is given in Table 2.

It is visible from Table 2 that the WER is reduced to a certain extent after using the
speech enhancement algorithm ISE, and hence it increases the accuracy of the speech to a
minimal extent.

Table 2. WER and its percentage after using ISE.

Length of the Word WER (%) Accuracy (%)

100 words 41.6 58.4
150 words 51.5 48.5
200 words 55.5 44.5
250 words 59.9 40.1
300 words 69.5 30.5
350 words 73.4 26.6

4.1.2. Sub Space Method for Spontaneous Signal

The input noise contains the noise from the surroundings, such as the fan and vehicle
noises. It is necessary to suppress the external noise to enhance the actual speech to improve
its recognition irrespective of its length and complexity. Figure 8a shows the waveform
and the spectrogram of the noisy speech signal of length 60 s. When this noisy speech is
treated with the subspace method for enhancing the speech, the external noise is removed,
and its corresponding spectrogram is shown in Figure 8b. The improved speech can be
converted into text for further analysis.
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Figure 8. (a,b) Time waveform and Spectrogram of speech signal using subspace.

Although the noise removal can be visibly seen in Figure 8b, the quantitative analysis
is done by applying Equation (1) in the text of the enhanced speech signal to calculate the
word error rate. Table 3 represents the WER calculated, and accuracy of the noise removed
signal by using the subspace method.

Table 3. WER and its percentage using subspace method.

Length of the Word WER (%) Accuracy (%)

100 words 29.8 60.2
150 words 40.4 49.6
200 words 43.1 46.9
250 words 46.7 43.3
300 words 52.8 37.2
350 words 60.2 29.8

4.1.3. NSS for Spontaneous Signal

Spectral subtraction is one of the most basic and also possibly the most famous speech
enhancement methods. Figure 9a shows the time waveform and the spectrogram of
the noisy speech signal, where the noise can be any domestic noise in the surroundings.
The noise can be effectively removed using the non-linear spectral subtraction, and the
corresponding waveform and the spectrogram are shown in Figure 9b. From Figure 9a,b, it
is visible that the noise has been eliminated to a greater extent.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 9. (a,b) Time waveform and Spectrogram of speech signal using NSS. 

The enhanced speech signal is converted into text using the HMM or the DTW-based 
text conversion algorithm to find the accuracy level of the enhanced speech signal. Table 
4 represents the WER calculated for the enhanced speech signal using the NSS. 

Table 4. WER and its percentage using NSS. 

Length of the Word WER (%) Accuracy (%) 
100 words 11.9 88.1 
150 words 19.4 80.6 
200 words 20.3 79.7 
250 words 21.2 78.8 
300 words 23.1 76.9 
350 words 24.3 75.7 

Comparing Tables 1–3, it can be seen that NSS produces less WER, which makes NSS 
a more accurate speech enhancement algorithm compared to ISE and subspace methods. 

The WER calculated for the spontaneous signal after enhancing the signal using the 
NSS, subspace, and ISE are compared and shown in Figure 10. As the number of words 
increases in the speech, the ISE and subspace produce more WER, whereas the NSS can 
maintain the accuracy of the speech. 
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The enhanced speech signal is converted into text using the HMM or the DTW-based
text conversion algorithm to find the accuracy level of the enhanced speech signal. Table 4
represents the WER calculated for the enhanced speech signal using the NSS.
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Table 4. WER and its percentage using NSS.

Length of the Word WER (%) Accuracy (%)

100 words 11.9 88.1
150 words 19.4 80.6
200 words 20.3 79.7
250 words 21.2 78.8
300 words 23.1 76.9
350 words 24.3 75.7

Comparing Tables 1–3, it can be seen that NSS produces less WER, which makes NSS
a more accurate speech enhancement algorithm compared to ISE and subspace methods.

The WER calculated for the spontaneous signal after enhancing the signal using the
NSS, subspace, and ISE are compared and shown in Figure 10. As the number of words
increases in the speech, the ISE and subspace produce more WER, whereas the NSS can
maintain the accuracy of the speech.
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4.2. Speech to Text Conversion of Enhanced Speech

The accuracy and efficiency of the speech can be visualized using the time waveform,
log transformation, and spectrogram. The text analysis is used to represent the efficiency of
the speech with quantitative measurement so that the comparison of speech enhancement
becomes accurate.

Performance of HMM

The word error rate of a noisy signal and the enhanced speech signal is calculated
using the HMM algorithm and is shown in Table 5. It can be seen that the word error rate
of a noisy speech is high compared to that of an enhanced speech signal.

Table 5. WER count and percentage with and without noise.

Length of the Word WER (%) with Noise WER (%) without Noise

100 words 26.2 21.4
150 words 28.1 23.3
200 words 31.6 28.9
250 words 34.9 32.7
300 words 41.5 39.8
350 words 44.3 41.2
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4.3. Performance Analysis of HSEA

There are various speech enhancement algorithms to reduce the domestic noises
recorded during the speech and produce an enhanced signal. When the length of the
speech (the number of words involved in the speech) increases, the performance of the
algorithms does not seem to be effective as many of them work well with only small words.
The enhancement also depends on the complexity of words involved in the speech. Specific
applications such as medical speech need more accuracy as the terms involved are complex,
and the noise removal should not affect the originality of the words uttered. Hence it is
more important to select the best noise removal algorithm for complicated applications.

In the proposed method HSEA, the speech enhancement algorithm NSS and the
speech to text conversion algorithm HMM are cascaded to further increase the accuracy
of the speech. Table 6 shows the WER of the spontaneous signal with different lengths of
words. The WER is calculated for the NSS algorithm without using the HMM speech-to-text
conversion method, and the NSS is cascaded with HMM.

Table 6. WER, accuracy using the HSEA and NSS.

Length of the Word
WER (%)

HSEA NSS

100 words 9.5 11.9
150 words 11.4 19.4
200 words 13.6 20.3
250 words 16.7 21.2
300 words 17.1 23.1
350 words 19.9 24.3

Figure 11 represents the graph for the WER values calculated for the spontaneous
signal using the NSS speech enhancement signal with and without cascading it with HMM.
Although the length of the spontaneous speech increases, the cascaded hybrid method
produces less WER than the stand-alone NSS speech enhancement method.
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Table 7 represents the WER calculation for the RAVDESS data with a spontaneous sig-
nal. RAVDESS contains audio of different length with both male and female speakers. The
WER is calculated using the NSS algorithm and the proposed HSEA method. Compared
to Table 6, it is visible that the WER of RAVDESS data is less than that of medical speech.
This is because the complexity of medical speech is high compared to that of RAVDESS
emotional speech data.
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Table 7. WER, accuracy using the HSEA and NSS for RAVDESS.

Length of the Word
WER (%)

HSEA NSS

100 words 7.6 8.1
150 words 9.2 14.5
200 words 11.9 17.9
250 words 14.8 19.2
300 words 15.3 21.1
350 words 17.5 22.9

Figure 12 describes the performance comparison of HSEA and the NSS algorithm for
the RAVDESS dataset with 1440 audio files. It can be seen that RAVDESS has less WER
compared to that of the medical speech transcription data as the terms involved in medical
speech are complex compared to that of emotional speech. Additionally, HSEA produces
less WER compared to that of the NSS algorithm.
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5. Conclusions

In this study, an HSEA is employed for medical audio data to reduce the word error
rate. The entire procedure of the proposed method consists of the NSS and the HMM
architecture with the medical data set. The typical NSS algorithm is optimized with least
squares and minimum variance and then cascaded with the speech-to-text algorithm
HMM to establish the proposed HSEA. In HSEA, the speech is enhanced using the NSS
algorithm, and again the enhanced speech is optimized using the optimization criteria
of the subspace method. As the double layer of enhancement is performed, HSEA can
perform competitively with other typical speech enhancement models such as NSS, ISE, and
Subspace. The proposed model has been validated with 6660 medical and 1440 RAVDESS
audio data. The validation of the proposed HSEA architecture has proven to achieve
maximum accuracy of 90.5% with a minimum word error rate of 9.5% for medical speech
transcription and accuracy of 92.4%, the word error rate of 7.6% for the RAVDESS audio
data. The validation of the proposed HSEA architecture has proven to achieve maximum
accuracy of 90.5% with a minimum word error rate of 9.5%.

The proposed methodology can produce a clear speech signal as the output with
reducing word error rate, making it efficient for all kinds of applications involving speech in
open space. Despite the advantages, the methodology involves mathematical complexities
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as the layer of speech purification increases, which remains a limitation of the proposed
method. Therefore, future work can concentrate on integrating the layers in such a way as
to reduce the computational complexities and to achieve high efficiency.
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