

Functional Prediction and Assignment of *Methanobrevibacter ruminantium* **M1 Operome Using a Combined Bioinformatics Approach**

M. Bharathi¹, N. Senthil Kumar² and P. Chellapandi^{1*}

¹ Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India, ² Human Genetics Lab, Department of Biotechnology, School of Life Sciences, Mizoram University (Central University), Aizawl, India

Methanobrevibacter ruminantium M1 (MRU) is a rod-shaped rumen methanogen with the ability to use H_2 and CO_2 , and formate as substrates for methane formation in the ruminants. Enteric methane emitted from this organism can also be influential to the loss of dietary energy in ruminants and humans. To date, there is no successful technology to reduce methane due to a lack of knowledge on its molecular machinery and 73% conserved hypothetical proteins (HPs; operome) whose functions are still not ascertained perceptively. To address this issue, we have predicted and assigned a precise function to HPs and categorize them as metabolic enzymes, binding proteins, and transport proteins using a combined bioinformatics approach. The results of our study show that 257 (34%) HPs have well-defined functions and contributed essential roles in its growth physiology and host adaptation. The genome-neighborhood analysis identified 6 operon-like clusters such as hsp, TRAM, dsr, cbs and cas, which are responsible for protein folding, sudden heat-shock, host defense, and protection against the toxicities in the rumen. The functions predicted from MRU operome comprised of 96 metabolic enzymes with 17 metabolic subsystems, 31 transcriptional regulators, 23 transport, and 11 binding proteins. Functional annotation of its operome is thus more imperative to unravel the molecular and cellular machinery at the systems-level. The functional assignment of its operome would advance strategies to develop new antimethanogenic targets to mitigate methane production. Hence, our approach provides new insight into the understanding of its growth physiology and lifestyle in the ruminants and also to reduce anthropogenic greenhouse gas emissions worldwide.

Keywords: methanobrevibacter, methane mitigation, hypothetical proteins, protein function, molecular machinery

INTRODUCTION

Enteric methane emission from ruminants is of great concern not only for its impact on global warming potential but also for ensuring the long-term sustainability of ruminant-based agriculture. Methane emission from rumen methanogens (163.3 million metric tons of CO₂ equivalents) represents a loss of about 5–7% of dietary energy in ruminants (Hristov et al., 2013;

OPEN ACCESS

Edited by:

Saumya Patel, Gujarat University, India

Reviewed by:

Khanh N. Q. Le, Taipei Medical University, Taiwan Sailu Yellaboina, CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, India

> *Correspondence: P. Chellapandi pchellapandi@gmail.com

Specialty section:

This article was submitted to Computational Genomics, a section of the journal Frontiers in Genetics

Received: 12 August 2020 Accepted: 17 November 2020 Published: 16 December 2020

Citation:

Bharathi M, Senthil Kumar N and Chellapandi P (2020) Functional Prediction and Assignment of Methanobrevibacter ruminantium M1 Operome Using a Combined Bioinformatics Approach. Front. Genet. 11:593990. doi: 10.3389/fgene.2020.593990

1

Chellapandi et al., 2017a, 2018; Chellapandi and Prathiviraj, 2020). Methanobrevibacter genus is a dominant rumen methanogenic archaea (61.6%) in which *Methanobrevibacter ruminantium* M1 (MRU) accounted for 27.3% (Janssen and Kirs, 2008). MRU is a hydrogenotrophic rumen methanogen that use H_2 to reduce CO_2 for methane biosynthesis. It also uses formate as a carbon source for its growth and energy metabolism (Kaster et al., 2011). This is the first genome sequence to be completed for rumen methanogen. It is a circular chromosome (2.93 Mbp) consisting of 2,278 coding-genes and 144 metabolic pathways with 722 reactions, 557 enzymes, and 751 metabolites (Leahy et al., 2010). However, the MRU genome consists of 756 coding-genes (73%) annotated as hypothetical proteins (HPs). It suggests that the entire proteome functions of this organism are not yet known and have to be elucidated to date.

The function of only 50-70% of coding-genes has been annotated with reasonable confidence in the most completely sequenced bacterial genomes using automated genome sequence analysis (Loewenstein et al., 2009). The characterization of proteins with unknown biological function is known as operome (Greenbaum et al., 2001; Chellapandi et al., 2017b; Prathiviraj and Chellapandi, 2019). Putative genes with known orthologs and no orthologs are termed as conserved hypothetical proteins and uncharacterized proteins, respectively (Mazandu and Mulder, 2012; Shahbaaz et al., 2013). Several approaches have been developed for assisting the function of operome from prokaryotic genomes using the information derived from sequence and structural motifs (Sivashankari and Shanmughavel, 2006; Chellapandi et al., 2017b; Singh and Singh, 2018; Prathiviraj and Chellapandi, 2020a; Sangavai et al., 2020). No one has been employed a combined bioinformatics prediction approach including sequence, structure, and literature confidences for functional assignment of operome and its contribution to metabolic subsystems and cellular machinery. A precise annotation of the operome of a particular genome leads to the discovery of new functions for the development of veterinary and human therapeutics (Ijaq et al., 2015).

The conserved domain-based functional assignment was done for HPs from Pongo abelii and Sus scrofa. It has provided a hint for genome-wide annotation in poorly understood genomes (Jitendra et al., 2011). The structure-based approach has been applied to predict the function of operome from Mycoplasma hyopneumoniae (da Fonsêca et al., 2012). Functional and structural domain analysis (Namboori et al., 2004), integrated genomic context analysis (Yellaboina et al., 2007) and literature mining (Doerks et al., 2012), functional enrichment analysis (Mazandu and Mulder, 2012), and genome-scale fold-recognition (Mao et al., 2013) have been used to annotate the potential function of operome from Mycobacterium tuberculosis H37Rv. Sequence-based and structure-based approaches have been used to define and prioritize some HPs from Candida dubliniensis, Vibrio cholerae O139, and Staphylococcus aureus as therapeutic targets for the treatment of their infections in humans (McAdow et al., 2011, 2012; Bharat Siva Varma et al., 2015; Islam et al., 2015). Besides, only one HP (MJ_0577) was functionally annotated in Methanococcus jannaschii using a structural-based approach (Zarembinski et al., 1998).

Many in silico attempts have been focused on the functional prediction of operome from human pathogens and no reports on rumen methanogens. Several genome-scale metabolic networks have been reconstructed for methanogenic archaea with a low fraction of HPs functionally assigned by sequence similarity analysis (Chellapandi et al., 2018; Prathiviraj and Chellapandi, 2020a). Since, functional annotation of operome is a great concern not only for implementing our fragmentary knowledge on the potential drug targets but also for genome refinement and improved microbial genome-scale reconstructions (Poulsen et al., 2010; Mazandu and Mulder, 2012; Prathiviraj and Chellapandi, 2019). Thus, we have employed a combined bioinformatics approach for functional assignment, and categorization of operome from MRU with a biological knowledgebase. The predicted functions of operome allow us to comprehend its growth physiology and metabolic behavior in the rumen environment. Several methanogenic antibiotics, inhibitors, and vaccines have been currently available for enteric methane mitigation, but these are a narrow spectrum and species-specific activity (Pulendran and Ahmed, 2006). The present approach is used to predict new anti-methanogenic targets from its precisely annotated operome that resolves the current demand for veterinary therapeutics.

MATERIALS AND METHODS

Dataset Preparation

We retrieved protein sequences of 756 HPs in the MRU genome from the National Centre for Biotechnology Information (NCBI)1 and Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2018) using a simple text mining approach (Le and Huynh, 2019; Le et al., 2019). We used broad ranges of source types such as keywords, "hypothetical proteins, unknown, uncharacterized, and putative" to retrieve the protein sequences from the NCBI and KEGG (Chellapandi et al., 2017b). The FASTA sequences of all HPs were taken separately to carry out sequence analysis. For functional annotation and assignment of MRU operome, we used six different prediction tasks as detailed below (Figure 1). The overall information about similar or identical functions of HPs predicted from each task was manually evaluated to reasoning out the functional assignment of operome. The prediction tools used for each functional annotation were more robust and confident for our analysis similar to the previous works on archaeal and bacterial operome (Prathiviraj and Chellapandi, 2019; Sangavai et al., 2020). E-value is the number of expected hits of a similar score that could be found just by chance. Like p-value, we used e-value for the scoring of each prediction from the dataset and represented in Supplementary Data.

Conserved Motif Analysis

A motif is a short segment of a protein sequence or structure, which may be conserved in a large number of different proteins. It can be used to determine the function or conformation

¹http://www.ncbi.nlm.nih.gov

of a protein. The conserved motifs in each protein were searched out against the KEGG-Motif search tool², InterProScan (Quevillon et al., 2005), and Pfam library (Finn et al., 2016). To improve the lineament of prediction, cut off value was set as 10^{-5} and DUF (domains with unknown functions) were removed from the dataset. We found motif similarity hits for 756 HPs out of which 257 HPs were chosen for further analysis.

Conserved Domain Analysis

Conserved domains in each protein were identified by the NCBI-CDD v3.16 search tool using the position-dependent weight matrices. Additionally, composition-based statistics adjustment was used to remove low complexity composition for statistical significance using the RPS-BLAST version 2.2.28 (Marchler-Bauer et al., 2015). The query sequence was compared with domain architecture and profiles in the domain databases, after that, the compositionally biased conserved region was identified by the SMART (Letunic et al., 2012). The PROSITE profile

²http://www.genome.jp/tools/motif/

was scanned for detection of the protein domains, families, and functional sites and associated patterns in the protein sequence using ScanProsite (de Castro et al., 2006). The probable function of HPs was predicted with the InterPro database based on the domain and important sites in the sequences (Finn et al., 2016).

Structural Analysis

The secondary structural elements (helix, sheets, extended coil, and loops) in each protein were predicted from the sequences using SOPMA (Geourjon and Deléage, 1995). We identified structural and functional characteristics by PSI-BLAST similarity searching against the protein data bank³ (Altschul et al., 1997). The sequence similarity hits were selected for finding the alignment of functional residues of a protein of known function with the sequence of HPs using ClustalW (Thompson et al., 2002). Fold assignment, target-template alignment, model building, and model evaluation were carried out with the Swiss Model (Biasini et al., 2014). QMEAN was a composite scoring function describing the major geometrical aspects of protein structures as described below.

$$S_{\text{weighted}_{\text{average}}(x)} = \frac{\sum_{i} (\text{GDT}_{\text{TS}(x,i)}^* \text{QMEAN}(i))}{\sum_{i} \text{QMEAN}(i)}$$

where, the GDT_TS score as the target function. We evaluated the structural quality and accuracy of the resulted homology models based on the potential function as below (Benkert et al., 2008).

$$\begin{split} QMEAN5 \; score &= 0.3 \times Score_{torsion \; 3-residue} + 0.17 \times \\ Score_{pairwise \; C\beta/SSE} + 0.7 \times \\ Score_{solvation \; C\beta} + 80 \times Score_{SSE \; PSPIRED} \\ &+ 45 \times Score_{ACCpro} \end{split}$$

Evolutionary Trace Analysis

The evolutionary relationships to deduce the functionality of operome were inferred using the SIFTER (Radivojac et al., 2013). It was used to predict the protein function and Gene ontology term using the following confidence score.

$$Sg(f) = 1 - \prod_{i=1}^{k} (1 - Sg(f))$$

where, Sg(f) confidence score as the default prediction for a query protein g, Sg_i(f) is the probability domain has function f (Sahraeian et al., 2015).

Analysis of Physicochemical Properties

The physiochemical properties including molecular weight, theoretical pI, instability index, aliphatic index, and grand average of hydropathicity of HPs were predicted from their sequences using the Expasy's Protparam server⁴. The instability index provides an estimate of the stability of a protein. An

³www.rcsb.org/

instability index <40 is predicted to be stable, and a value >40 is predicted to be unstable. The instability index uses the following weight values.

$$II = \left(\frac{10}{L}\right) * \sum_{i=1}^{i=L-1} DIWV(x[i]x[i+1])$$

where, L is the length of the sequence, DIWV(x[i]x[i+1]) is the instability weight value for the dipeptide starting in position I (Guruprasad et al., 1990). The aliphatic index of a protein is defined as the relative volume occupied by aliphatic side chain amino acids using the following equation.

Aliphatic index X(Ala) + a * X(Val) + b * (X(Ile) + X(Leu))

Where, X(Ala), X(Val), X(Ile), and X(Leu) are mole percent (100 X mole fraction) (Ikai, 1980). The GRAVY value for a protein is calculated as the sum of the hydropathy values of all of the amino acids divided by the number of residues in the sequence (Kyte and Doolittle, 1982).

Analysis of Protein Subcellular Localization

The subcellular localization of every protein was predicted with PSORTb version 3.0.2 based on the hydrophobicity index of amino acids (Yu et al., 2010). The propensity of a protein for being a membrane protein was predicted by SOSUI 2.0 based on the physicochemical parameters (Mitaku et al., 2002). The transmembrane helix and topology of each protein were detected by the TMHMM 2.0 (Krogh et al., 2001) and HMMTOP (Tusnády and Simon, 2001) using the Hidden Markov Model. The signal peptide and location of the cleavage site in the peptide chain were predicted with the SingnalP 4.0 based on a neural network model (Petersen et al., 2011).

Literature Search

The literature survey is the stepping-stone and an essential skill toward the accomplishment of structural and functional analysis provides of proteins (Hubbard and Dunbar, 2017). A process of uncovering useful knowledge from a collection of data from bioinformatics and literature databases is referred to as a knowledge-based discovery (Chellapandi et al., 2017b). Functional assessment of operome was strengthened by extracting relevant experimental supports from available literature in NCBI-PubMed⁵. A maximum confidence score was set as 12 levels (6 levels from predictions and 6 levels from the literature mining) in which 50% score systematically enumerated and assigned from overall prediction approaches. The rest of them was assigned by manual annotation based on the strength of the literature validation. For example, if the predicted function is similar or identical in all prediction approaches, a maximum confidence score will be assigned as 6. The literature-based confidence score for each predicted function of HPs assigned as; 6- MRU, 5- Phylogenetic neighbors, 4- Methanogens, 3- Archaea,

⁴http://web.expasy.org/protparam/

⁵https://www.ncbi.nlm.nih.gov/pubmed/

2- Bacteria, and 1- Eukaryotes. We have set a confidence score interval as 3-6 for both computational prediction and biological knowledge base and then neglected the predicted function of a protein with a low confidence score (<3).

Functional Categorization

We classified the predicted function of HPs based on conserved domain, protein fold, family, and biological function using the CATH database (Knudsen and Wiuf, 2010). The genomewide analysis was performed to identify the order of gene clusters covering the predicted function of HPs using a genomic context approach (Yellaboina et al., 2007). Gene-neighborhood or adjutant genes were identified by exploring the MRU genome in the KEGG database. Metabolic information of HPs was collected from the MetaCyc (Metabolic Pathways from all Domains of Life) database (Caspi et al., 2014). The resulted data were used to assign the functions of hypothetical proteins of the understudied genome. The overall structural and functional information was manually analyzed to categorize the molecular involvement of HPs in respective metabolic subsystems and the cellular process of the understudied organism.

RESULTS

Functional Classification and Categorization

All predicted protein functions were classified and categorized according to their protein folds, molecular function, subsystems, and transmembrane topologies as shown in Figure 2. About 20% of operome encompasses a Rossmann fold consisting of a nucleotide cofactor binding domain of some NAD⁺-dependent dehydrogenases, in particular to ribonucleases (Barbas et al., 2013). Fourteen percent of operome belongs to rubrerythrin that constitutes non-haem iron proteins. This functional fold is responsible for oxidative stress protection in anaerobic bacteria and archaea (Prakash et al., 2018). The arcR repressor mutant fold occupies 4–5% of operome, which performs the functions of small homodimeric proteins involved in transcriptional regulation by sequence-specific DNA binding (Vershon et al., 1986; Homa and Brown, 1997). MRU operome contains phoA fold (3-4%) that fused with the cell surface glycoprotein signal sequence similar to Haloferax volcanii (Kandiba et al., 2013). It indicates the importance of some protein folds for conferring oxidative tolerance and cell wall assembly. We found 91 HPs involving in the metabolic reactions with a confidence score >5. A total of 23 HPs is entailed in the small molecule reactions and 15 HPs required for the biosynthesis of cofactors, prosthetic groups, and electron carriers. About 9 HPs are essential to the protein modification reactions whereas 4 HPs contributed to the formation of precursor metabolites for the energy-driven process of this organism. Approximately 50% of drug targets are transmembrane proteins as they play many roles in transport, cell signaling, and energy transduction processes (Terstappen and Reggiani, 2001). We predicted 91 HPs having transmembrane helixes based on their conservation of membranous helix ratios. The α -helix bundle and the β -barrel are

predicted as fold classes in many membrane proteins. Archaeal transmembrane proteins have two or more α -helixes consisting of hydrophobic amino acids.

Operon-Like Organization

The genome-wide analysis discovered 32 coding genes for HPs, which are all clustered separately, form 6 operon-like organizations (hsp, TRAM, dsr, cbs, anti-toxin, and cas) in the MRU genome (Figure 3). Molecular chaperones such as hsp70, hsp60, and hsp80 resemble some bacterial genomes than the eukaryotic homologs (Gaywee et al., 2002). The hsp gene cluster is essential for chaperone-assisted protein folding in Achaea (Dokland, 1999; Benaroudj and Goldberg, 2000; Large et al., 2009). The assimilatory sulfite reductase (dsrHFEBA) gene cluster detected from this genome provides the importance for the oxidation of accumulated intracellular sulfide and thiosulfate in the diverse environmental niche. The presence of cbs, antitoxin, and cas gene clusters confers host defense response (innate immunity) to this organism against foreign genetic elements in the rumen ecosystem (Louwen et al., 2014; Chellapandi and Ranjani, 2015). The anti-toxin system plays a vital role in toxicity neutralization (Unterholzner et al., 2013).

Cell Division Systems

In this study, we assigned the function of 9 HPs contributing a major role in the cell cycle process in which 8 HPs have shown new functions to this organism (Table 1). AAA⁺ ATPase, cell division inhibitor, cell division control protein, DNA replication protein 6-2, and structural maintenance of chromosomes protein-1 is highly conserved within the archaeal domain and performs archaeal-specific cell cycle process, DNA repair, and replication fidelity (Kalliomaa-Sanford et al., 2012; Grogan, 2015). A proteasome is a central player in energy-dependent proteolysis and forms a nano-compartment where proteins are degraded into oligopeptides by processive hydrolysis. The 20S proteasome is a catalytic core responsible for this processing. AAA⁺ ATPase plays several roles in mediating energy-dependent proteolysis by the proteasome (Forouhar et al., 2011; Maupin-Furlow, 2013). Moreover, it contains a P-loop motif involved in the origin of recognition during DNA replication initiation even if conventional C-terminal winged-helix DNA-binding elements lacked (He et al., 2008).

Transcriptional Regulatory Systems

A total of 26 HPs predicted as functional candidates in which 20 HPs have shown new functions to the transcriptional regulation process of this organism (**Table 2**). Transcriptional regulatory proteins identified from MRU operome can express a set of proteins that protect cellular proteins against a sudden heat-shock stress, copper and arsenic toxicities, protein folding, and nitrogen starvation (Thieringer et al., 1998; Giaquinto et al., 2007; Chang et al., 2014; Prathiviraj and Chellapandi, 2020a,b). Bro N-terminal domain protein has an N-terminal domain with ALI motif that influences host DNA replication and/or transcription (Makarova et al., 2009). HrcA repressor contains a motif of winged helix-turn-helix transcription repressor. It controls the transcription of heat-shock repressor proteins and

FIGURE 2 | Functional classification of MRU operome based on the protein fold (A), functional category (B), subpathway systems (C), and transmembrane topologies (D). AAB, Amino acid biosynthesis; AAT, Aminoacyl-tRNA charging metabolic clusters; ACD, Aromatic compounds degradation; C1UA, C1 Compounds utilization and assimilation; CHB, Carbohydrates biosynthesis; CSB, Cell structures biosynthesis; CPEB, Cofactors, prosthetic groups, electron carriers biosynthesis; FALB, Fatty acid and lipid biosynthesis; GPME, Generation of precursor metabolites and energy; INM, Inorganic nutrients metabolism; NNB, Nucleosides and nucleotides biosynthesis; PMR, Protein-modification reactions; RR, RNA-reactions; SMD, Secondary metabolites degradation; tRR, tRNA reactions; OTR, Other reactions.

protects cellular proteins from being denatured by heat (Liu et al., 2005; Prathiviraj and Chellapandi, 2020b). Hsp70 and Hsp80 from MRU operome perform renaturation of luciferase similar to that found in *M. mazei* (Zmijewski et al., 2004). Hsp60s are more similar to the type II chaperonins found in the eukaryotic cytosol involved in macromolecular assembly and protein folding (Large et al., 2009). TRAM protein regulates the RNA chaperone activity that is essential for MRU to grow and survive in a cold environment (Zhang et al., 2017).

Biosynthesis of Macromolecules

We predicted the function of 20 HPs exhibiting new metabolic roles in this organism and the rest of 76 HPs has shown known functions (**Table 3** and **Supplementary Table S1**). Saccharopine dehydrogenase (NAD/P, L-lysine-forming) (*lysA*) and succinylglutamate desuccinylase (*astE*) genes identified from MRU operome, which are responsible to mediate the

biosynthesis of L-lysine and L-glutamate. LysA protein contains a motif of LOR/SDH bifunctional conserved region that converts L-saccharopine into L-lysine via $1-\alpha$ -aminoadipate pathway (Xu et al., 2007). Cheng et al. (2010), revealed a cross-talk between fungi and methanogens which may occur in host animals since the $1-\alpha$ -aminoadipate pathway is very specific to fungi. The second enzyme transforms N₂-succinylglutamate into succinate and glutamate. Therefore, both enzymes proposed to be involved in amino acid biosynthesis of MRU as reported earlier on other methanogens (Enzmann et al., 2018).

The 2-enoyl-CoA hydratase catalyzes the second step in the physiologically important β -oxidation pathway of fatty acid metabolism in MRU (Agnihotri and Liu, 2003). Glycogen phosphorylase catalyzes the phosphorolysis of α -1, 4 glycosidic bonds in glycogen to yield glucose-1-phosphate for glycolysis (Rath et al., 2000). Interestingly, MRU operome has the ability to synthesis enterobacterial-like common

antigen as it contains dTDP-4-amino-4, 6-dideoxygalactose transaminase (rffA). This enzyme catalyzes the conversion of TDP-4-keto-6-deoxy-D-glucose to TDP-D-fucosamine similar to the enterobacteria family (Meier-Dieter et al., 1990; Hwang et al., 2004). The presence of phosphatidate cytidylyltransferase (cdsA) provides evidence of the biosynthesis of archaeal-specific phospholipids. It catalyzes sn-glycerol 3-phosphate into an L-1-phosphatidylglycerol-phosphate precursor-like Escherichia coli (Carter et al., 1968). We found an AMMECR1 motif in phosphomevalonate decarboxylase from MRU operome, which converts (R)-mevalonate 5-phosphate to isopentenyl diphosphate in the mevalonate pathway, as reported in Methanocaldococcus jannaschii (Grochowski et al., 2006). Results of our study revealed that the MRU genome has shown a metabolic potential for the biosynthesis of enterobacterial-like common antigen, archaeal-specific phospholipids, and isopentenyl diphosphate, a precursor required for cell wall biogenesis.

Cofactors, Prosthetic Groups, Electron Carrier Biosynthesis

We predicted the function of some HPs involving in the biosynthesis of coenzyme F_{420} , flavin, and electron carriers in MRU. F_{420} -0: L-glutamate ligase is a key enzyme identified from MRU operome, which converts multiple γ -linked L-glutamates to the polyglutamated F_{420} derivative in the

biosynthesis of coenzyme F_{420} (Li et al., 2003). As reported in bacteria and plants, MRU operome has diamino hydroxy phosphoribosyl aminopyrimidine reductase (*ribD*) that converts 2, 5-diamino-6-(5-phospho-D-ribosylamino)pyrimidine-4(3H)one into 5-amino-6-(5-phospho-D-ribosylamino)uracil in flavin biosynthesis pathway (Garfoot et al., 2014). Cytidylyltransferase belongs to the NTP transferase superfamily encoded by *mocA* gene (mru_1116) of the MRU genome. It catalyzes the cytidylation of the molybdenum cofactor demanded many functional enzymes (Fay et al., 2015). Energy-converting hydrogenase B subunit O consists of a conserved motif of IHPPAH, which generates low potential electrons required for autotrophic CO₂ assimilation as reported in *Methanococcus maripaludis* (Major et al., 2010).

Aromatic Compounds Degradation Systems

Pyrogallol hydroxytransferase (*athL*) detected from MRU operome has a carboxypeptidase regulatory-like domain. It is involved only in the regulation of peptidase catalyzing the conversion of pyrogallol into phloroglucinol. Phloroglucinolcan stimulates the gut microbiota and decreases the partial pressure of H_2 in the rumen. It suggests the capture of excess H_2 generated from methanogenesis inhibition can be promoted by phloroglucinol utilization in the rumen (Martinez-Fernandez et al., 2017). Interestingly, we assigned a precise function to HP

TABLE 1 Functional annotation of operome involved in the cell division process
of MRU.

Locus tag	Assigned function	Gene
0080 0744 0939 1172 1932	AAA ⁺ ATPase	atad3A
0647	Cell division inhibitor	sepF
1346	Cell division control protein	minE
1419	DNA replication protein 6-2	cdc6-2
1654	Structural maintenance of chromosomes protein 1	smc1

TABLE 2 | Functional annotation of operome involved in the transcriptional regulatory process of MRU.

Locus tag	Assigned function	Gene
0757	Bro N-terminal domain protein	dxs
0349	Nitrogen repressor	nrpR
1052	Heat-inducible transcriptional repressor	hrcA
1099	Translation initiation factor 3	tif3
1366 2156	Arsenical resistance operon repressor	arsR
1862	Copper-sensing transcriptional repressor	csoR
0488 0490 0499 0658 0764 0780 0790 0801 0930 1131 1147 1150 1364 1590 1796	Transcription factor	tf2B
1185	Cold shock protein	
1108	DEAD/DEAH box helicase	polB
0877	Preprotein translocase	secY

Mru_0476 as phenylacetate-CoA oxygenase in phenylacetate catabolic pathway. This enzyme converts phenylacetyl-CoA to a 2-(1, 2-epoxy-1, 2-dihydrophenyl) acetyl-CoA. Archaea harboring key genes of this pathway are some members of the Halobacteria, which may have acquired a multitude of bacterial genes (Kennedy et al., 2001; Notomista et al., 2003). As shown by our analysis, MRU can degrade pyrogallol and phenylacetate produced by gut microbial in ruminants (Martinez-Fernandez et al., 2017).

Detoxification Systems

MRU operome plays a key role in formaldehyde, inorganic arsenate, and copper detoxification process. It contains 6-phosphogluconate dehydrogenase (*gntZ*) gene as homologous to methanotrophic bacteria such as *Methylophilus methylotrophus* and *Methylobacillus flagellates* (Chistoserdova et al., 2000). The presence of arsenate reductase (*arsC*) and Cu⁺-exporting ATPase (*copA*) provides a defense system to its cells against inorganic arsenate and copper toxicities (Liu et al., 2007).

Macromolecule Modification Systems

MRU operome contains α -2, 3-sialyltransferase gene coding protein having a Rossmann fold with the architecture of the α - β complex. This enzyme catalyzes the transfer of sialic acid from CMP-N-acetyl- β -neuraminate to membrane proteins and lipids of the cell wall of MRU (Koga et al., 1993). Dolichylphosphate-mannose-protein mannosyltransferase is identified as carbohydrate carriers to transfer mannosyl residues to the hydroxy group of serine or threonine residues during the post-translational protein modification process of MRU (Podar et al., 2013).

Membrane Transport Systems

We observed 16 HPs contributing to the transport systems of this organism (Supplementary Table S2). MRU operome encompasses genes coding for transporter proteins responsible for maintenance of metal homeostasis in particular to magnesium and manganese ions and uptake/export of vitamin, sulfite, and tricarboxylate (Winnen et al., 2003; Weinitschke et al., 2007; Hattori et al., 2007, 2009; Rodionov et al., 2009; Rosch et al., 2009; Mayer et al., 2012; Karpowich et al., 2015). The presence of PurR-regulated permease regulon and Na⁺/H⁺ antiporter protein carries out the exchange Na⁺ for H⁺ across the cytoplasmic membrane of archaea (Rimon et al., 2012). Cell-cell communication and intra-species electron transfer can be mediated by preprotein translocase predicted from its operome, as described for hydrogenotrophic methanogens and E. coli (Cooper et al., 2017). Translocation sheath protein has an N-terminal domain that mediates the translocation of SPI-2 TTSS effector proteins in MRU (Nikolaus et al., 2001).

D-Gluconate Catabolic System

As shown by our analysis, we proposed a putative D-gluconate catabolic pathway exclusively present in MRU for the biosynthesis of archaeal membrane phospholipids (Figure 4). The presence of six HPs with predicted functions evidences the existence of this pathway in this organism. Klemm et al. (1996), identified a gntP gene to be involved in gluconate uptake by E. coli. Haloferax volcanii contains a DeoR/GlpR-type transcription factor, which has shown its potential role as a global regulator of sugar metabolism and to cotranscribe with the downstream phosphofructokinase (pfkB) gene (Rawls et al., 2010). As similar to Pseudomonas aeruginosa, MRU operome has D-gluconate kinase gene despite a membrane-bound D-gluconate dehydrogenase gene to synthesize phospholipids (Matsushita et al., 1979; Schlictman et al., 1995; Kulakova et al., 2001). As similar to archaea, the utilization of gluconate in MRU leads to a branch point for two central metabolic pathways: the Entner-Doudoroff pathway and phospholipids biosynthesis (Bräsen et al., 2014).

DISCUSSION

The function of operome is obscure and quite unsettling in prokaryotic genomes. Understanding important knowledge gaps in the unknown function of operome can unravel their cellular and molecular mechanisms. The functionality of proteins with unknown function have been identified, characterized, and validated with a broad spectrum of genetic and biochemical experiments (Mills et al., 2015). Several computational methods have been used to describe the physiological states of methanogens from the predicted functions of operome (Chellapandi and Prisilla, 2018; TABLE 3 | Functional annotation of operome involved in different metabolic subsystems of MRU.

BayesAmoo acids biosynthesCarbamoyi-shoaphate synthase (glutamine-hydrolycing)0.8.15, 17, 15, 18, 01737Sactorycine dirtycing priste (NAO, P. Liysine-forming)1.5, 17, 15, 18, 01738Aminoacyl-HNA charging metatolic cluster1.5, 17, 15, 18, 01739The cluster of the cl	Locus tag	Assigned function	EC	Gene
Junio 2000 1969Selecture 1971Selecture 1972Selecture <br< td=""><td>Biosynthesis</td><td></td><td></td><td></td></br<>	Biosynthesis			
1986Ontomorphonophane glumme-hydrologna6.3.6.5.76.3.6.71777Sacanacopina dishydrognase (NADR, L-Joine-formig)1.5.1.71.5.1.71781Sacanacopina dishydrognase (NADR, L-Joine-formig)1.5.1.7Netson1781Sacanacopina dishydrognase (NADR, L-Joine-formig)1.5.1.7Netson1781Gallandina dishydrognase (NADR, L-Joine-formig)1.5.1.7Netson1881Gallandina dishydrognase (NADR, L-Joine-formig)2.1.1.2Netson1881Gallandina dishydrognase (NADR, L-Joine-formig)2.1.1.2Netson1881Gallandina dishydrognase (NADR, L-Joine-formig)2.1.1.2Netson1881Gallandina dishydrognase (NADR, L-Joine-formig)2.7.1.1.2Netson1881Gallandina dishydrognase (NADR, L-Jo	Amino acids biosynthesis			
177Backenging methoding denging and MADR Liyanio forming)1.5.1.7.1.5.1.8MyAmisonic JMS Andraging Methoding and MarkaMathemine -fiNA ligaseNotice178Mathemine -fiNA ligaseNoticeNotice178Topicophany 4FNA synthesias (Marhama bound)S.1.1.2Mp178Mathemine -fiNA ligaseS.1.1.2Mp178Mathemine -fiNA ligaseS.1.1.2Mp178Mathemine -fiNA ligaseS.1.1.2Mp178Mathemine -fiNA ligaseS.1.1.2Mp178Mathemine -fiNA ligaseS.1.1.2Mp178Mathemine -fiNA ligaseS.1.1.2Mp178Mathemine -fiNA ligaseS.1.1.2Mp179Mathemine -fiNA ligaseS.1.1.2Mp170Mathemine -fiNA ligaseS.1.1.2Mp170Mathemine -fiNA ligaseS.1.1.2Mp171Mathemine -fiNA ligaseS.1.1.2Mp172Mathemine -fiNA ligaseS.1.1.2Mp173Mathemine -fiNA ligaseS.1.1.2Mp174Mathemine -fiNA ligase <td< td=""><td>1696</td><td>Carbamoyl-phosphate synthase (glutamine-hydrolyzing)</td><td>6.3.5.5</td><td>carB</td></td<>	1696	Carbamoyl-phosphate synthase (glutamine-hydrolyzing)	6.3.5.5	carB
Animosof-HNA charging methodic cluster Number of the second	1737	Saccharopine dehydrogenase (NAD/P, L-lysine-forming)	1.5.1.7 1.5.1.8	lys1
0488 00% 0489 07% 07% 07% 07% 07% 07% 07% 07% 07% 07%	Aminoacyl-tRNA charging metabolic	clusters	,	2
1435) stype5) stype5)5)Construction <td< td=""><td>0488 0490 0499 0764 0780 0790 0801 1131 1147 1150 1364 1590 1796</td><td>Methionine—tRNA ligase</td><td>6.1.1.10</td><td>metG</td></td<>	0488 0490 0499 0764 0780 0790 0801 1131 1147 1150 1364 1590 1796	Methionine—tRNA ligase	6.1.1.10	metG
Chroboycates and Cell structures bis-sub-its sub-its s	1493	Tryptophanyl-tRNA synthetase (Membrane bound)	6.1.1.2	trpS
1418dTDP-4.armo.4.5.4deaxyquadcas transaminase2.6.1.9.0M41886Givogen Prophophophop2.6.1.0.0galce1886UP quocos 4-quincaso5.3.2.1galce1482Partotinate synthas2.7.1.0.0galce1482DP qlycarol quocos phase homo phase2.7.1.0.0galce1581DP qlycarol quocos phase homo phase2.7.3.0galce1581DP qlycarol quocos phase homo phase2.7.7.3.0galce1591Consume Fa2O-OL-quidamate ligase6.3.1.0galce1691Consume Fa2O-OL-quidamate ligase3.6.3.0.1galce1716Consume Fa2O-OL-quidamate ligase3.6.3.0.1galce1716Consume Fa2O-OL-quidamate ligase3.6.3.0.1galce1716Consume Fa2O-OL-quidamate ligase3.6.3.0.1galce1716Consume fullamity clocitansferase2.7.7.0galce1817Consume fullamity clocitansferase3.6.3.0galce1816Consume fullamity clocitansferase3.6.3.0galce1817Outos train dividase3.6.1.0galce1816Consume fullamity clocitansferase3.6.3.0galce1817Outos train dividase3.6.1.0galce1816Consume fullamity clocitansferase3.6.3.0galce1817Outos train dividase3.6.1.0galce1816Consume fullamity clocitansferase3.6.1.0galce1817Outos train dividase3.6.1.0galce1818Consume fullami	Carbohydrates and Cell structures b	iosynthesis		
1886Øjeogen Phogenoyses2.4.1.1øjefje1460WD-guoces 4-spinnerase5.3.2.1øjef1462Portotente synthese5.3.2.1øjef0480Provet kinase5.3.2.1øjef158110P-gluces 1/georal operaphospintramenas2.7.8.1.2.øjef158110P-gluces 1/georal operaphospintramenas2.7.8.1.2.øjef158110P-gluces 1/georal operaphospintramenas2.7.8.1.2.øjef158110P-gluces 1/georal operaphospintramenas3.1.1.0.øjef158110P-gluces 1/georal operaphospintramenas3.3.1.0.øjef1597Costame Pattor 5-tyl diamate figase3.2.3.2.øjef169710P-gluces 1/georal operaphospintramenas3.2.3.2.øjef1781Costame Pattor 5-tyl diamate figase3.3.1.0.øjef1781Costame figas 1/georal operaphospintramenas3.3.1.0.øjef1781Costame partox diamate figase3.3.1.0.øjef1781Costame partox diamate figase3.3.1.0.øjef1895Costame partox diamate figase3.3.1.0.øjef1805Costame partox diamate figas3.3.1.0.øjef1805Costame partox diamate figase3.3.1.0.øjef1805Costame partox diamate figase3.3.1.0.øjef1805Costame partox diamate figas3.3.1.0.øjef1805Costame partox diamate figas3.3.1.0.øjef1805Costame partox diamate figas3.3.1.0.øjef1	1418	dTDP-4-amino-4,6-dideoxygalactose transaminase	2.6.1.59	rffA
1469UDP-glucosa 4-gnimense5.1.9.2gen?1462Parlothena synthase2.3.1.0pA/C1463Parlothena synthase2.3.1.0pA/CColl structures biosynthesis2.7.3.9parlothena156915677.4.9.0parlothena synthase2.7.3.9.0Coll structures biosynthesis2.7.3.9parlothena2019Coll structures biosynthesis protein CDB8.3.1.0parlothena2014Consyme F420-OL-glutanate figas8.3.2.3.1parlothena2014Consyme F420-OL-glutanate figas2.7.7.6parlothena2017Gramp-converting hydrogenase B subunt O18.5.3parlothena2016Gamma-glutami cyclothenaferase3.4.12.0parlothena2017Gramp-converting hydrogenase B subunt O18.5.12.0parlothena2016Gamma-glutami cyclothenaferase3.4.12.0parlothena2016Gumma-glutami cyclothenaferase3.4.12.0parlothena2017Gradphena1.11.19parlothenaparlothena2016Gomperoferin alcohage activity3.4.22.0parlothena2016Gomperoferin alcohage activity3.4.12.0parlothena2017Gradphena1.11.19parlothena2016Gradphena1.11.19parlothena2016Gradphena1.11.19parlothena2017Gradphena1.11.19parlothena2018Gradphena1.11.19parlothena2019Gradphena1.11.19parlothena </td <td>1886</td> <td>Glycogen Phosphorylase</td> <td>2.4.1.1</td> <td>glgP</td>	1886	Glycogen Phosphorylase	2.4.1.1	glgP
1482Partorinants optimisation6.2.1.00optic0460Private kinase6.2.1.000.4.0.00461OP-giocen/ joycen/ byoten/basyntrase7.7.0.01.6.0.00561Collegiton monophosphate syntrase2.7.7.300.4.0.00541Collegiton monophosphate syntrase3.1.1.0.00.4.0.00541Collegiton monophosphate syntrase3.2.7.7.300.4.0.00541Collegiton personening hydrogenase B subuit 03.2.7.7.7.000.4.0.0.00541Collegiton personening hydrogenase B subuit 01.6.5.0.00.4.0.0.00542Collegiton personening hydrogenase B subuit 03.2.2.0.00.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	1469	UDP-glucose 4-epimerase	5.1.3.2	galE
94009xvate kinase9xvate kinase9xvate kinaseBereficient Sector	1462	Pantothenate synthase	6.3.2.1	panC
Cell <ttr>Cell<ttr>CollCo</ttr></ttr>	0480	Pyruvate kinase	2.7.1.40	pykA
1085CDP-glycesol/glycengchoephotensferases27.8.12kapf-15891967Trainine monophoephote synthese27.7.39kapf-1589Coleatorin biosynthesis protein CDB6.3.1.10Alb0844Coersyme F420-01-glutanate ligase6.3.2.10off1116CDP-whydydenum colector oryddyltansferase7.7.76-1450Energy-converting hydrogenese B subunit O1.5.5.3widd1780Galuarin biosynthesis cotapromyltansferase3.2.2.4widd1837Guitathione peroxidase1.11.1.9goidd1836Hubby Hydrogenese B subunit O3.3.2.0widd1836S-Formylterin alcidase3.3.2.0widd1837Dihydroneopterin alcidase4.2.216nadd1836S-Formylterin alcidase3.3.2.0widd1837Dihydroneopterin alcidase cataryntyransferase3.3.2.0midd1837Dihydroneopterin alcidase cataryntyransferase3.3.2.0midd1837Dihydroneopterin alcidase cataryntyransferase3.3.2.0midd1837Dihydroneopterin alcidase (actooxylase)3.1.2.0midd1837Dihydroneopterin alcidase3.1.2.0midd1843Dihydroneopterin alcidase3.1.2.0midd1844Disporterose3.1.2.0midd1845Disporterose3.1.2.0midd1845Disporterose3.1.2.0midd1847Disporterose3.1.2.0midd1847Disporterose3.1.2.0 </td <td>Cell structures biosynthesis</td> <td></td> <td></td> <td></td>	Cell structures biosynthesis			
1889Thismine monophosphate synthase2.7.39tegDCollecture, Prosthotic groups, Electure >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1065	CDP-glycerol glycerophosphotransferase	2.7.8.12	tagF
Character, Prostentic groups, Elector-usitSinthere2219Colatiamin biosynthesis potain CbiB6.3.1.106.11.000947Corsyme F42-0-L-glutamate ligase6.3.2.3.106.11116CTP: Molyodenum cofactor cytidylytransferase2.7.7.64.01460Energy-converting hydrogenase B subunt O1.6.5.39.01781 0756Guitatione peroxidase1.11.1.99.0410055NUDK hydrolese cotaprenytransferase3.6.1.220.00566NUDK hydrolese cotaprenytransferase6.3.3.20.01550Orgitomecoterini aldolase4.1.2.250.00567NUDK hydrolese cotaprenytransferase3.6.1.220.00568Orgitomecoterini aldolase4.1.2.250.00577NUDK hydrolese cotaprenytransferase3.6.1.220.00577NUDK hydrolese cotaprenytransferase3.6.1.220.00577NUDK hydrolese cotaprenytransferase3.6.1.220.00577NUDK hydrolese cotapose (satoxylating)3.6.1.220.00577NUDK hydrolese cotapose (satoxylating)3.6.1.220.00577NUDK hydrolese cotapose (satoxylating)3.6.1.220.00577NUDK hydrolese cotapose (satoxylating)3.6.1.220.00578Nuderse cotapose (satoxylase)2.7.1.1050.00574Discholerator-decotoxylase2.7.1.1050.0058Alegal Membrane bound Phosphatide cythogenate2.7.4.30.0059Discholerator-decotoxylase2.7.1.05 <td>1589 1957</td> <td>Thiamine monophosphate synthase</td> <td>2.7.7.39</td> <td>tagD</td>	1589 1957	Thiamine monophosphate synthase	2.7.7.39	tagD
2219Gobalamin biosynthesis protein GblB6.3.1.10cblB0947Coenzyme F420-01glutamete ligase6.3.2.10co/E0476Coenzyme F420-01glutamete ligase6.3.2.10co/E1116Energy-converting hydrogenase B subunit O1.6.5.3ehbO0776Gamma-glutamir cyclotransferase2.3.2.4.0kpdA0708Hultahione perovidase1.11.1.9gorA0036NUDK hydrolese3.6.1.2.0netdM0586A-Hydroxybencete octapenyfitansferase3.6.1.2.0netdM1507Pointfertahydrolotet cyclo-ligase activity6.3.2.2netdM1508Pointfertahydrolotet cyclo-ligase activity6.3.2.2netdM1209Nicotrate-nucleotide prophosphorylase [carboxylating]3.6.1.2.0netdC1209Nicotrate-nucleotide prophosphorylase [carboxylating]3.6.1.2.0netdC1209Nicotrate-nucleotide prophosphorylase [carboxylating]3.6.1.2.0netdC1272Nicotrate-nucleotide prophosphorylase [carboxylating]3.6.1.2.0netdC1273Nicotrate-nucleotide prophosphorylase [carboxylating]3.6.1.2.0netdC1274Nicotrate-nucleotide prophosphorylase2.7.1.016netdC1274Nicotrate-nucleotide prophosphorylase2.7.1.016netdC1275Nicotrate-nucleotide prophosphorylase2.7.1.016netdC1276Nicotrate-nucleotide prophosphorylase2.7.1.016netdC1276Nicotrate-nucleotide prophosphorylase2.7.1.016netdC1276<	Cofactors, Prosthetic groups, Electro	on carriers biosynthesis		
09470conzyme F420-01-glutamate ligase6.3.2.31colf1116CTP: Molycharum colactor cytch/yltransferase2.7.7.76-1450CTP: Molycharum colactor cytch/yltransferase1.6.5.3Mol0776 [0785Gamma-glutamyl cyclotransferase3.6.1.22ydqA1937Glutathione peroxidase1.11.1.9goxA0845Al-Hydroxybanzoate octapranyltransferase3.6.1.22madM08564-Hydroxybanzoate octapranyltransferase3.6.1.22mdd19505-Formyltertahydrofolate cyclo-ligase activity3.3.2.0mthfs1831Notoinate-nucleotide prophosphorylase [carboxylating]2.4.2.1.9mdd1209Notoinate-nucleotide prophosphorylase [carboxylating]3.6.1.2.2mudC2172NUDK hydrolase3.6.1.2mudC12172Notoinate-nucleotide prophosphorylase [carboxylating]3.6.1.2mudC12172Notoinate-nucleotide prophosphorylase [carboxylating]3.6.1.2mudC12172NUDK hydrolase3.6.1.2mudCmudC12172Notoinate-nucleotide prophosphates3.6.1.2mudC12172Notoinate-nucleotide prophosphates3.6.1.2mudC12172NUDK hydrolase3.6.1.2mudC12172Notoinate-nucleotide prophosphates5.1.24mudC12172Notoinate-nucleotide prophosphates2.7.1.108mudC12182Notoinate-nucleotide prophosphates2.7.1.103mudC12193Adenylate kinase2.7.4.2pudC <t< td=""><td>2219</td><td>Cobalamin biosynthesis protein CbiB</td><td>6.3.1.10</td><td>cbiB</td></t<>	2219	Cobalamin biosynthesis protein CbiB	6.3.1.10	cbiB
1118CTP: Molybdenum cofactor cytlolythransferase2.7.7.76-1450Energy-converting hydrogenase B suburit O5.6.5.3ehbC1450Gumma-glutanyi cyclotransferase2.3.2.4ykdq1037Gutathione peroxidase1.11.1.9goA0036MUDK hydrolase3.6.1.2.2nadl/0596	0947	Coenzyme F420-0:L-glutamate ligase	6.3.2.31	cofE
1450Energy-converting hydrogenase B subunit O1.6.5.3ehbO07/76 [0785Gamma-glutamyl cyclotransferase2.6.2.4ykqA0035MUDK hydrolase1.11.10ykA0036MUDK hydrolase3.6.1.22nadM05964-Hydroxybenzote octaprenytransferase6.3.2.4mthf15015-formyltertanhydrofolate cyclo-ligase activity6.3.2.2mthf1502Formyltertanhydrofolate cyclo-ligase activity6.3.2.2mthf1203Dihydroneopterin aldolase4.1.2.25fol1204Nicotinate-nucleotidie pyrophosphorylase [carboxylating]8.6.1.2.2mdf1205Nicotinate-nucleotidie pyrophosphorylase [carboxylating]8.6.1.2.2mdf1217Riboffavin kinase2.7.1.161Mthf1218Nicotinate-nucleotidie pyrophosphorylase [carboxylating]8.6.1.2.2mdf1217Riboffavin kinase2.7.1.108dkR1218Nicotinate-nucleotidie pyrophosphorylase [carboxylating]8.1.1.9.2dkR1219Dialcho kinase2.7.1.018dkRdkR1210Nicotinate-nucleotidie pyrophosphorylase [carboxylatenge2.7.1.108dkR1230Oilcho kinaseFutorose 2.6.bisphosphate 2.phosphatase2.7.1.108dkR1231Oilcho kinaseGkPosphoritose 2.6.bisphosphate 2.phosphatase2.7.1.108dkR1233Carboxytamionidiazote carboxylase1.4.1.2mdfdkR1234Oilcho kinaseGkPosphoritose 2.6.bisphosphate 2.phosphatase2.7.1.108 <td< td=""><td>1116</td><td>CTP: Molybdenum cofactor cytidylyltransferase</td><td>2.7.7.76</td><td>-</td></td<>	1116	CTP: Molybdenum cofactor cytidylyltransferase	2.7.7.76	-
0776] 0785Gamma-glutamy cyclotransferase2.3.2.4ykpA1937Glutatinone perxoldase1.11.1.9goxA0035Glutatinone perxoldase3.6.1.22nadM0566A-Hydroxyberzoate octaprenyltransferase5.3.3.9ubiA1550S-Formyltetrahydrofolate cyclo-ligase activity6.3.3.2mth's1831Dihydroneopterin aldolase4.1.2.25nadC1209NuDK hydrolase3.6.1.22nadC0277NuDK hydrolase5.1.42vert1219Diophor dyclase5.1.24vert1728Posphomevalonate decarboxylase2.7.1.161odk1833Integral Membrane bound Phosphatidate cytidyltransferase2.7.1.108adk1843Adenylate kinase2.7.1.08adkdk11833Gambrane bound Phosphatidate cytidyltransferase2.7.1.108idk1idk11833Gambrane bound Phosphatidate cytidyltransferase2.7.1.108idk1idk11833Adenylate kinase2.7.1.08idk1idk11833Gambrane bound Phosphatidate cytidyltransferase2.7.1.108idk1idk11833Mergal Membrane bound Phosphatidate cytidyltransferase2.7.1.108idk1idk11833Mergal Membrane bound Phosphatidate cytidyltransferase2.7.1.108idk1idk11933Mergal Membrane bound Phosphatidate cytidyltransferase2.7.1.108idk1idk21933Mergal Membrane bound Phosphatidate cytidyltransferase2.7.1.108idk1idk2 <td>1450</td> <td>Energy-converting hydrogenase B subunit O</td> <td>1.6.5.3</td> <td>ehbO</td>	1450	Energy-converting hydrogenase B subunit O	1.6.5.3	ehbO
1937Glutathione peroxidase1.11.1.9gpxA00056NUDIX hydrolase3.61.22nadM05964-Hydroxybenzoate octaprenytransferase2.51.39wib/a15505-Formyltetrahydrolotate cyclo-lqase activity6.3.2.0mth/s1831Dihydroneopterin aldolase4.1.2.25foll1209Nicotinate-nucleotide pyrophosphorylase [carboxylating]2.4.2.19nadC1209Nicotinate-nucleotide pyrophosphorylase [carboxylating]2.4.2.19nadC1209Nicotinate-nucleotide pyrophosphorylase [carboxylating]3.6.1.22nudC1217Riboflavin Kinase2.7.1.161mb/s1217Riboflavin Kinase2.7.1.161mb/s1218Doichol kinase2.7.1.108dolk1219Doichol kinase2.7.1.108dolk1833Integral Membrane bound Phosphatidate cytidylythransferase2.7.1.105s.1.4.41939Gibrabi kinase2.7.1.4.3dolk1939Gibrabi kinase2.7.1.4.3dolk1939Gibrabi kinase2.7.1.6.5adk1939Gibrabi kinase2.7.1.6.5adk1939Gibrabi kinase2.7.7.8.7yrdC/sua5/ymC1930Gibrabi kinase (DNA binding protein)2.7.8.7yrdC/sua5/ymC1930Carboxylase (DNA binding protein)2.7.8.7yrdC/sua5/ymC1930Lintegradation2.7.8.7yrdC/sua5/ymC1931Judgat kinase (DNA binding protein)2.7.8.7yrdC/sua5/ymC1930Corbo	0776 0785	Gamma-glutamyl cyclotransferase	2.3.2.4	ykqA
00035NUDIX hydrolase3.6.1.22nadM05964-Hydroxyberzoate octaprenyltransferase2.5.1.39ubiA15505-Formylterahydrolate cyclo-ligase activity6.3.3.2mthfs1501Dihydroneopterin aldolase1.2.2.516/B1209Nicotinate-nucleotide pyrophosphorylase [carboxylating]2.4.2.19nadC1209Nicotinate-nucleotide pyrophosphorylase [carboxylating]2.4.2.19nadC1207NUDIX hydrolase3.6.1.22nudC2172Bibofiavin Kinase3.6.1.22nudC0432Tocopherol cyclase5.1.24vie11728Phosphomevalonate decarboxylase2.7.1.101nbK1803Integral Membrane bound Phosphatidate cytichyltransferase2.7.1.102dolk1893Integral Membrane bound Phosphatidate cytichyltransferase2.7.1.105st.3.3.4dyfdb30393 (K18532 adenylate kinaseAdenylate kinase2.7.4.3adk1893Langer Joneolycarbamoyladenylate synthase2.7.4.3adk1893Langer Joneolycarbamoyladenylate synthase2.7.7.87yrdC/sua5/ywC1890Vidylate kinase (DNA binding protein)2.7.4.3yrdC/sua5/ywC1890Langer B12-dependent diol dehydrase4.1.1.21purf1901Sucinylglutamate desuccinylase5.1.96astE2016Sucinylglutamate desuccinylase5.1.96astE2017Vidylate kinase (DNA binding protein)5.1.96astE2018Sucinylglutamate desuccinylase5.1.96 <t< td=""><td>1937</td><td>Glutathione peroxidase</td><td>1.11.1.9</td><td>gpxA</td></t<>	1937	Glutathione peroxidase	1.11.1.9	gpxA
95964-Hydroxybenzoate octaprenyltransferase2.5.1.39ubiA15505-Formyltertaryldrololate cyclo-ligase activity6.3.3.2mth/s1831Dihydroneopterin aldolase4.12.25folB1801Nicothratucleolide pyrophosphorylase [carboxylating]8.4.2.19madC0277Nicothratucleolide pyrophosphorylase [carboxylating]3.6.1.22mudC0277Nicothratucleolide pyrophosphorylase [carboxylating]3.6.1.22mudC0432Nicothrat-ucleolide pyrophosphorylase [carboxylating]3.6.1.22mudC0432Nicothrat-ucleolide pyrophosphorylase5.5.1.24mudC0432Diocopherol cyclase5.5.1.24mudC0432Diocopherol cyclase2.7.1.105mudC0450Dolichol kinase2.7.1.108dolk1683Dolichol kinase2.7.1.108dolk1693Olichol kinase2.7.1.105dolk0393(R18522 adenylate kinase)Adenylate kinase2.7.4.3ddl0425Adenylate kinase2.7.4.3ddlgulf0426Nonsphoritocy2-kinase[Fuctose-2,6-bisphosphatae2.7.4.3gulf0425Adenylate kinase2.7.4.3gulfgulf0426Nonsphoritocy2-kinase[Fuctose-2,6-bisphosphatae2.7.4.3gulf0426Nonsphoritocy2-kinase[Fuctose-2,6-bisphosphatae2.7.4.3gulf0425Adenylate kinase2.7.8gulfgulf0426Nonsphoritocy2-kinase[Fuctose-2,6-bisphosphatae2.7.4.3gulf<	0035	NUDIX hydrolase	3.6.1.22	nadM
15505-Formyltetrahydrofolate cyclo-ligase activity6.3.3.2mthfs1831Dihydroneopterin aldolase4.12.25foB1209Nicotinate-nucleotide pyrophosphorylase [carboxylating]2.4.2.19nadC0277NIDDK hydrolase3.6.1.22nudC2172Riboflavin kinase2.7.1.161nbK0432Tocopherol cyclase5.5.1.24vte11728Phosphomevalonate decarboxylase4.1.1.99pmdFatta and lipid biosynthesis0460Dolichol kinase2.7.1.108dolk1883Integral Membrane bound Phosphatidate cytidylytransferase2.7.1.105adsA0439Adenylate kinase2.7.1.09adsABiosphoricto-2-kinase[Fructose-2,6-bisphosphate 2-phosphates2.7.1.105adsABiosphoricto-2-kinase[Fructose-2,6-bisphosphate 2-phosphates2.7.1.05adsABiosphoricto-2-kinase[Fructose-2,6-bisphosphate 2-phosphate2.7.2.2yr	0596	4-Hydroxybenzoate octaprenyltransferase	2.5.1.39	ubiA
1831 Dihydroneopterin aldolase 4.1.2.25 folB 1209 Nicotinate-nucleotide pyrophosphorylase [carboxylating] 2.4.2.19 nadC 0277 NUDIX hydrolase 3.6.1.22 nudC 0472 Riboflavin kinase 2.7.1.161 <i>ibK</i> 0432 Tocopherol cyclase 5.5.1.24 <i>ivfa</i> 0442 Tocopherol cyclase 4.1.1.99 pmd Fatty acid and lipid biosynthesis 0 dolk dolk 0460 Dolichol kinase 2.7.1.108 dolk 0433 Integral Membrane bound Phosphatidate cytidylytransferase 2.7.1.108 dolk 0393 K18532 adenylate kinase A.Phosphofructo-2-kinase] Fructose-2.6-bisphosphate 2-phosphotase 2.7.1.105 3.1.3.46 pfdb3 0393 (K18532 adenylate kinase A.Phosphofructo-2-kinase] Fructose-2.6-bisphosphate 2-phosphotase 2.7.4.3 adk 162:2.7.4.31 VarE 1.1.21 pdfb3 2.7.4.3 pdfb3 0393 (K18532 adenylate kinase Larneonylate kinase 2.7.4.3 pdfC/sua5/ymlC 162:2.7.4.31 Larneonylate kina	1550	5-Formyltetrahydrofolate cyclo-ligase activity	6.3.3.2	mthfs
1209Nicotinate-nucleotide prophosphorylase [carboxylating]2.4.2.19nadC0277NUDIX hydrolase3.6.1.22nudC2172Roblavin kinase2.7.1.161ibK0432Tocopherol cyclase4.1.09pnd728Phosphorevalonate decarboxylase4.1.1.99pndFatt acid and lipid biosynthesis2.7.1.108delkUSocipherol cyclase2.7.1.108delk1630Dolichol kinase2.7.1.008delk1633Socipherol cyclase2.7.4.10delk1634Dolichol kinase2.7.4.108delk1635Adenylate kinase2.7.4.108delk0393 (K18532 adenylate kinaseAdenylate kinase2.7.4.3delk1625.2.4.3.10L'Inreonylcarbamoyladenylate synthase2.7.4.3grdZ/sua5/ywC1626L'Inreonylcarbamoyladenylate synthase2.7.4.3grdZ/sua5/ywC1627Uridylate kinase (DNA binding protein)2.7.4.2grdZ/sua5/ywC1628Conzyme B12-dependent diol dehydrase4.1.2.12grdZ1629Nocinyllutamate desuccinylase3.5.1.96astETTTTTColspan="2">Conzyme B12-dependent diol dehydrase4.1.1.41grdZAdenylate desuccinylase3.5.1.96astETTTColspan="2">Conzyme B12-dependent dio	1831	Dihydroneopterin aldolase	4.1.2.25	folB
D277 NUDIX hydrolase 3.6.1.22 nudC 2172 Riboftavin kinase 2.7.1.161 <i>ribK</i> 0432 Tocopherol cyclase 5.1.24 <i>vte1</i> 1728 Phosphomevalonate decarboxylase 4.1.1.99 <i>pmd</i> Fatly acid and lipid biosynthesis 2.7.1.108 <i>dolk</i> 0460 Dolichol kinase 2.7.7.41 <i>cds</i> A 1693 Integral Membrane bound Phosphatidate cytidylytransferase 2.7.1.105] 3.1.3.46 <i>plktb3</i> 0399 6-Phosphofructo-2-kinase] Fructose-2,6-bisphosphate 2-phosphatase 2.7.1.105] 3.1.3.46 <i>plktb3</i> 0393 K18532 adenylate kinase 2.7.7.41 <i>cds</i> A EC:2.7.4.3) NUC <i>adk</i> VL25 Adenylate kinase (DNA binding protein) 2.7.7.87 <i>ydC/sua5/wlC</i> 0425 Uridylate kinase (DNA binding protein) 2.7.4.22 <i>pyH</i> 0720 Uridylate kinase (DNA binding protein) 2.7.4.22 <i>pyH</i> 0528 Coenzyme B12-dependent diol dehydrase 4.2.1.28 <i>dcuC</i> 0528 Coenzyme B12-dependent diol dehydrase 3.5.1	1209	Nicotinate-nucleotide pyrophosphorylase [carboxylating]	2.4.2.19	nadC
2172Riboflavin kinase2.7.1.161 <i>nibK</i> 0432Tocopherol cyclase5.5.1.24ve11728Phosphomevalonate decarboxylase4.1.1.99pmdFaturation of the phosphomevalonate decarboxylase2.7.1.008pmdPolichol kinase2.7.1.108of kl0460Dolichol kinase2.7.1.108of kl0453Integral Membrane bound Phosphatidate cytidylytransferase2.7.1.1053.4.6Methodic regulators biosynthesis2.7.1.1053.4.6Methodic regulators biosynthesis2.7.1.1053.4.6Methodic regulators biosynthesis2.7.1.1053.4.6Methodic regulators biosynthesis2.7.1.1053.4.6Methodic regulators biosynthesis2.7.1.1053.4.6Methodic regulators biosynthesis2.7.1.1053.4.6Methodic regulators biosynthesis2.7.4.3MethodicNucleosities and nucleotides biosynthesis2.7.4.3MethodicMethodic regulators biosynthesis2.7.8.7MethodicMethodic regulators biosynthesis2.7.8.7MethodicMethodic regulators biosynthesis2.7.8.7MethodicMethodic regulators biosynthesis2.7.8.7MethodicMethodic regulators biosynthesis2.7.8.7MethodicMethodic regulators biosynthesis2.7.8.7MethodicMethodic regulators biosynthesis2.7.8.7 <td>0277</td> <td>NUDIX hydrolase</td> <td>3.6.1.22</td> <td>nudC</td>	0277	NUDIX hydrolase	3.6.1.22	nudC
0432Tocopherol cyclase5.5.1.24ver11728Phosphomevalonate decarboxylase4.1.1.99pmdFatty acid and lipid biosynthesisJolichol kinase2.7.1.018dolk1680Integral Membrane bound Phosphatidate cytldylythransferase2.7.1.1053.0dolkMathemistic Suboxynthesis3.7.1.1053.4.0Mfd33.5.1.24Mfd3Object for cycle kinase6.Phosphofucto-2-kinase Fructose-2,6-bisphosphate 2-phosphatas2.7.1.1053.4.0Mfd3Object for cycle kinase6.Phosphofucto-2-kinase Fructose-2,6-bisphosphate 2-phosphatas2.7.4.3Mfd3Object for cycle kinase6.Phosphofucto-2-kinase Fructose-2,6-bisphosphate 2-phosphatas2.7.4.3Mfd2Object for cycle kinase1.1.1.0pufdMid2/Subox/Sub	2172	Riboflavin kinase	2.7.1.161	ribK
1728Phosphomevalonate decarboxylase4.11.99pmdFatty acid and lipid biosynthesis0460Dolichol kinase2.7.1.108dolk1693Integral Membrane bound Phosphatidate cytidylytransferase2.7.7.41cdsAMetabolic regulators biosynthesis2.7.1.105 3.1.3.46pfkfb3Ogs96-Phosphofructo-2-kinase] Fructose-2,6-bisphosphate 2-phosphatase2.7.1.105 3.1.3.46pfkfb3Ogs96-Phosphofructo-2-kinase] Fructose-2,6-bisphosphate 2-phosphatase2.7.4.3addRecipient Section 10.105 3.1.3.46pfkfb3Ogs96-Phosphofructo-2-kinase] Fructose-2,6-bisphosphate 2-phosphatase2.7.1.105 3.1.3.46pfkfb3Ogs96-Phosphofructo-2-kinase] Fructose-2,6-bisphosphate 2-phosphatase2.7.4.3addRecipient Section 10.105 3.1.3.46pfkfb3Ogs96-Phosphofructo-2-kinase] Fructose-2,6-bisphosphate 2-phosphatase2.7.4.3addRecipient Section 10.105 3.1.3.46pfkfb3Ogs96-Phosphofructo-2-kinase] Fructose-2,6-bisphosphate 2-phosphatase2.7.4.3addNucleosites and nucleotides biosynthese2.7.4.3addPhosphofructo-2-kinase] Fructose-2,6-bisphosphate 2-phosphatase2.7.7.87yrdC/sua5/yrdCOds2Phosphoribosylaminoimidazole carboxylase4.1.1.21pufOds2Conzyme B12-dependent diol dehydrase4.2.1.28pduCArimet Compounds degradation <td>0432</td> <td>Tocopherol cyclase</td> <td>5.5.1.24</td> <td>vte1</td>	0432	Tocopherol cyclase	5.5.1.24	vte1
Pathy acid and lipid biosynthesis2.7.1.108dolk0460Dolichol kinase2.7.1.108dolk1693Integral Membrane bound Phosphatidate cytidylytransferase2.7.7.41cdsAMetabolic regulators biosynthesis2.7.4.3plk/h330393 (K18532 adenylate kinaseAdenylate kinase2.7.4.3adkVEC:2.7.4.3)2.7.4.3adkplk/h33Nucleosides and nucleotides biosynthesis2.7.7.87yrdC/sua5/ywlC0425L-Threonylcarbamoyladenylate synthase2.7.7.87yrdC/sua5/ywlC1890Phosphoribosylaminoimidazole carboxylase4.1.1.21purE0720Uridylate kinase (DNA binding protein)2.7.4.22pyrHCatabolism2.7.4.23pduCAmina cida degradation2.7.4.28pduC2016] 0381Sucinylglutamate desuccinylase3.5.1.96astEAmina cida degradationsetEItel224.Carboxymuconolactone decarboxylase4.1.1.41pacCAromatic compounds degradationItel22Atomatic compounds degradationItel224.Carboxymuconolactone decarboxylase4.1.1.41pacCAromatic compounds degradationItel224.Carboxymuconolactone decarboxylase4.1.1.41pacCAtomatic compounds degradation3.5.1.96astEItel224.Carboxymuconolactone decarboxylase4.1.1.41pacCAtomatic compounds d	1728	Phosphomevalonate decarboxylase	4.1.1.99	pmd
Main Dolichol kinase 2.7.1.108 dolk 1693 Integral Membrane bound Phosphatidate cytidylytransferase 2.7.7.41 cdsA Metabolic regulators biosynthesis 2.7.7.41 cdsA 0393 6-Phosphofructo-2-kinasel Fructose-2,6-bisphosphate 2-phosphatase 2.7.1.105 3.1.3.46 ptkdb3 0393 (K18532 adenylate kinase Adenylate kinase 2.7.4.3 adk E(C: 2.7.4.3) Interonylcarbamoyladenylate synthase 2.7.7.87 yrdC/sua5/ywlC Nucleosides and nucleotides biosynthesis Interonylcarbamoyladenylate synthase 2.7.7.87 yrdC/sua5/ywlC 1890 Phosphoribosylaminoimidazole carboxylase 4.1.1.21 purE 0720 Uridylate kinase (DNA binding protein) 2.7.4.22 pr/H Catabolism InteronylCarbamoyladenylate synthase 4.2.1.28 pd/C Marina cids degradation InteronylCarbamoyladenylate synthase 5.5.1.96 astE S28 Coenzyme E12-dependent diol dehydrase 4.2.1.28 pd/C Arimatic segradation Interonyl Carbamoyladenylase 3.5.1.96 astE S216 [0381	Fatty acid and lipid biosynthesis			,
1693Integral Membrane bound Phosphatidate cytidylytransferase2.7.7.41cdsAMetabolic regulators biosynthesis6-Phosphofucto-2-kinase Fructose-2,6-bisphosphate2-phosphatase7.1.105 3.1.3.40plkfb30393 (K18532 adenylate kinaseAdenylate kinase2.7.4.3adk(Ec:2.7.4.3)Theonylace kinase2.7.4.3adkNucleosides and nucleotides biosynthesis1.1.2.1yrdC/sua5/ydC0425Chronylcarbamoyladenylate synthase2.7.7.87yrdC/sua5/ydC1890Phosphoribosylaminoimidazole carboxylase4.1.1.2.1purE0720Uridylate kinase (DNA binding protein)2.7.4.22purE0528Conzyme B12-dependent diol dehydrase4.2.1.28pduC0529Conzyme B12-dependent diol dehydrase4.2.1.28pduC0510Scinylgutamate desuccinylase5.1.96astE0529Conzyme Gradation1.5.1.96astE0520Conzymuconolactone decarboxylase4.1.1.44pcaC0531Phosphoribosylamate fersoxylase4.1.1.414pad0542Scinylgutamate desuccinylase5.1.96astE0553Conzymuconolactone decarboxylase4.1.1.414pcaC0564Scinylgutamate desuccinylase5.1.91pad0575Scinylgutamate desuccinylase5.1.91pcaC0576Scinylgutamate desuccinylase5.1.91pcaC0576Scinylgutamate desuccinylase5.1.91pcaC0577Scinylgutamate desuccinylaseScinylgutamatepcaC	0460	Dolichol kinase	2.7.1.108	dolk
Metabolic regulators biosynthesisControl09396-Phosphofructo-2-kinase Fructose-2,6-bisphosphate 2-phosphatase2.7.1.105 3.1.3.46pfkfb30393 (K18532 adenylate kinaseAdenylate kinase2.7.4.3adk[EC:2.7.4.3]) </td <td>1693</td> <td>Integral Membrane bound Phosphatidate cytidylyltransferase</td> <td>2.7.7.41</td> <td>cdsA</td>	1693	Integral Membrane bound Phosphatidate cytidylyltransferase	2.7.7.41	cdsA
09396-Phosphofructo-2-kinase Fructose-2,6-bisphosphate 2-phosphatase2.7.1.105 3.1.3.46pfk/b30393 (K18532 adenylate kinaseAdenylate kinase2.7.4.3adk(Ec:2.7.4.3)	Metabolic regulators biosynthesis			
0393 (K18532 adenylate kinaseAdenylate kinase2.7.4.3adk[EC:2.7.4.3])Nucleosides and nucleotides biosynthesis0425L-Threonylcarbamoyladenylate synthase2.7.7.87yrdC/sua5/ywlC1890Phosphoribosylaminoimidazole carboxylase4.1.1.21purE0720Uridylate kinase (DNA binding protein)2.7.4.22pyrHCatabolismAdenylate kinase (DNA binding protein)2.7.4.22pyrHCatabolismAlcohols degradation0528Coenzyme B12-dependent diol dehydrase4.2.1.28pduCAmino acids degradation2016] 0381Succinylglutamate desuccinylase3.5.1.96astEAromatic compounds degradation16224-Carboxymuconolactone decarboxylase4.1.1.44pcaC0476Phenylacetate-CoA oxygenase1.4.13.149paaJ0313Pyrogallol hydroxytransferase1.97.1.2athL	0939	6-Phosphofructo-2-kinase Fructose-2,6-bisphosphate 2-phosphatase	2.7.1.105 3.1.3.46	pfkfb3
Nucleosides and nucleotides biosynthesisNucleosides and nucleotides biosynthesis0425L-Threonylcarbamoyladenylate synthase2.7.7.87yrdC/sua5/ywlC1890Phosphoribosylaminoimidazole carboxylase4.1.1.21purE0720Uridylate kinase (DNA binding protein)2.7.4.22pyrHCatabolismAlcohols degradation0528Coenzyme B12-dependent diol dehydrase4.2.1.28pduCAmino acids degradation2016] 0381Succinylglutamate desuccinylase3.5.1.96astEAromatic compounds degradation16224-Carboxymuconolactone decarboxylase4.1.1.44pcaC0476Phenylacetate-CoA oxygenase1.14.13.149paaJ0313Pyrogallol hydroxytransferase1.97.1.2athL	0393 (K18532 adenylate kinase [EC:2.7.4.3])	Adenylate kinase	2.7.4.3	adk
0425L-Threonylcarbamoyladenylate synthase2.7.7.87yrdC/sua5/ywlC1890Phosphoribosylaminoimidazole carboxylase4.1.1.21purE0720Uridylate kinase (DNA binding protein)2.7.4.22pyrHCatabolismAlcohols degradation0528Coenzyme B12-dependent diol dehydrase4.2.1.28pduCAmino acids degradation5.5.1.96astE2016 0381Succinylglutamate desuccinylase3.5.1.96astEAromatic compounds degradation16224-Carboxymuconolactone decarboxylase4.1.1.44pcaC0456Phenylacetate-CoA oxygenase1.14.13.149paaJ0313Pyrogallol hydroxytransferase1.97.1.2athL	Nucleosides and nucleotides biosynt	thesis		
1890Phosphoribosylaminoimidazole carboxylase4.1.1.21purE0720Uridylate kinase (DNA binding protein)2.7.4.22pyrHCatabolismAlcohols degradation0528Coenzyme B12-dependent diol dehydrase4.2.1.28pduCAmino acids degradation2.5.1.96astE2016 0381Succinylglutamate desuccinylase3.5.1.96astEAromatic compounds degradation16224-Carboxymuconolactone decarboxylase4.1.1.44pcaC0476Phenylacetate-CoA oxygenase1.14.13.149paaJ0313Pyrogallol hydroxytransferase1.97.1.2athL	0425	L-Threonylcarbamoyladenylate synthase	2.7.7.87	vrdC/sua5/ywlC
O720Uridylate kinase (DNA binding protein)2.7.4.22pyrHCatabolismAlcohols degradation0528Coenzyme B12-dependent diol dehydrase4.2.1.28pduCAmino acids degradation2016 0381Succinylglutamate desuccinylase3.5.1.96astEAromatic compounds degradation16224-Carboxymuconolactone decarboxylase4.1.1.44pcaC0476Phenylacetate-CoA oxygenase1.14.13.149paaJ0313Pyrogallol hydroxytransferase1.97.1.2athL	1890	Phosphoribosylaminoimidazole carboxylase	4.1.1.21	purE
CatabolismJerning Presenting P	0720	Uridylate kinase (DNA binding protein)	2.7.4.22	pvrH
Alcohols degradation0528Coenzyme B12-dependent diol dehydrase4.2.1.28pduCAmino acids degradationstE2016 0381Succinylglutamate desuccinylase3.5.1.96astEAromatic compounds degradation16224-Carboxymuconolactone decarboxylase4.1.1.44pcaC0476Phenylacetate-CoA oxygenase1.14.13.149paaJ0313Pyrogallol hydroxytransferase1.97.1.2athL	Catabolism			1-5
0528Coenzyme B12-dependent diol dehydrase4.2.1.28pduCAmino acids degradation2016 0381Succinylglutamate desuccinylase3.5.1.96astEAromatic compounds degradation16224-Carboxymuconolactone decarboxylase4.1.1.44pcaC0476Phenylacetate-CoA oxygenase1.14.13.149paaJ0313Pyrogallol hydroxytransferase1.97.1.2athL	Alcohols degradation			
Amino acids degradationSuccinylglutamate desuccinylase3.5.1.96astE2016 0381Succinylglutamate desuccinylase3.5.1.96astEAromatic compounds degradation16224-Carboxymuconolactone decarboxylase4.1.1.44pcaC0476Phenylacetate-CoA oxygenase1.14.13.149paaJ0313Pyrogallol hydroxytransferase1.97.1.2athL	0528	Coenzyme B12-dependent diol dehydrase	4.2.1.28	pduC
2016/0381Succinylglutamate desuccinylase3.5.1.96astEAromatic compounds degradation16224-Carboxymuconolactone decarboxylase4.1.1.44pcaC0476Phenylacetate-CoA oxygenase1.14.13.149paaJ0313Pyrogallol hydroxytransferase1.97.1.2athL	Amino acids degradation			
Aromatic compounds degradation4-Carboxymuconolactone decarboxylase4.1.1.44pcaC16224-Carboxymuconolactone decarboxylase1.14.13.149paaJ0476Phenylacetate-CoA oxygenase1.97.1.2athL	2016 0381	Succinvlolutamate desuccinvlase	3.5.1.96	astE
16224-Carboxymuconolactone decarboxylase4.1.1.44pcaC0476Phenylacetate-CoA oxygenase1.14.13.149paaJ0313Pyrogallol hydroxytransferase1.97.1.2athL	Aromatic compounds degradation	, ,		
0476Phenylacetate-CoA oxygenase1.14.13.149paaJ0313Pyrogallol hydroxytransferase1.97.1.2athL	1622	4-Carboxymuconolactone decarboxylase	4.1.1.44	pcaC
0313Pyrogallol hydroxytransferase1.97.1.2athL	0476	Phenylacetate-CoA oxygenase	1.14.13.149	paaJ
	0313	Pyrogallol hydroxytransferase	1.97.1.2	athL

(Continued)

Locus tag	Assigned function	EC	Gene
C ₁ Compounds utilization and assimilation	1		
2132	Bifunctional formaldehyde-activating enzyme	4.2.1.147/4.1.2.43	fae-hps
1013	Phosphogluconate dehydrogenase (NAD+-dependent, decarboxylating)	1.1.1.343	gntZ
Inorganic nutrients metabolism			
1280 1936	NADPH-dependent FMN reductase	1.5.1.38	ssuE
0224 0376	Phosphonoacetate hydrolase (membrane bound)	3.11.1.2	phnA
Secondary metabolites degradation			
1330	Carbohydrate kinase (Integral membrane-bound)	2.7.1.4	pfkB
2120	Quercetin dioxygenase	1.13.11.24	qodl
Macromolecule modification			
0421	Alpha-2,3-sialyltransferase	2.4.99.4	siat4a
Small molecule reactions			
1938	Arsenate Reductase (Thioredoxin)	1.20.4.1	arsC
0134	Type I restriction-modification system M subunit HsdM	2.1.1.72	hsdM
0674 1683 1749	Succinate dehydrogenase (guinone)	1.3.5.1	sdh
1013	Phosphogluconate dehydrogenase (NAD+-dependent, decarboxylating)	1.1.1.343	gntZ
2194	2-Enoyl-CoA Hydratase	3.4.21.92	clpP
0747	2-Polyprenylphenol 6- hydroxylase	1.14.13	ubiB2
0202	Aconitate hydratase	4.2.1.3	acnA
2180 2184 2185	Acyltransferase	2.3.1.13	glyat
0496	ATP pyrophosphatase	3.6.1.8	thil
0062 0063 1113 1172	ATP-dependent DNA helicase	3.6.4.12	ashA
2196	Choloylqlycine hydrolase	3.5.1.24	_
0156 0041	DNA binding E3 SUMO-protein ligase	6.3.2	piaS4
0174 (K09723 DNA replication factor GINS)	DNA primase small subunit	2.7.7	, priA
2069	DNA-3-methyladenine glycosylase	3.2.2.20	, taq
1108 2173	DNA-directed DNA polymerase	2.7.7.7	polB
1660 1699 1734	Flavin reductase	1.5.1.36	hpaC
1442	Geranylgeranyl reductase	1.3.1.83	chIP
1290 1291	Lincosamide nucleotidyltransferase	2.7.7	inuA
0930	Manganese-dependent inorganic pyrophosphatase	3.6.1.1	ppaC
0223	Membrane-bound O-acyltransferase	2.3.1	rimL
1242	Nucleoside Triphosphate Pyrophosphohydrolase	3.6.1.8	mazG
1605 0049	Nucleotide diphosphatase	3.6.1.9	ENPP
2146	Oligosaccharyl transferase	2.4.99.18	STT3
1588	Succinvlolutamate desuccinvlase /aspartoacvlase	3.5.1.15	aspA
0100	Peptidoglycan-associated polymer biosynthesis	2	csaB
1555	Pseudouridine-5'-monophosphatase	3.1.3	HDHD1
1964	Sterol 3-beta-glucosyltransferase (Phosphorylating)	2.4.1.173	_
1631	UDP-N-acetvlglucosamine 2-epimerase (non-hvdrolvzing)	5.1.3.14	wecB
0835	von Willebrand/Integrin A Domains	3.6.4	hepA
Protein-modification reactions			- -
1344	Lysine carboxypeptidase	3.4.17.3	CPN1
1375	Membrane-bound dolichvl-phosphate-mannose-protein mannosvltransferase	2.4.1.109	pomT
0791	Methylated-DNA-[protein]-cysteine S-methyltransferase	2.1.1.63	_
1884	Nucleotide-activated 6-deoxybexose biosynthesis	2.4.1.109	pomT
2158	Putative pyruvate formate-lyase	1.97.1.4	pflX
1801 1867	Ribosomal-protein-alanine N-acetvltransferase	2.3.1.128	riml
1389 1514	S-Adenosyl-L-methionine-dependent methvltransferase	1.16.1.8	mtrR
1096	Serine/threonine protein kinase with TPR repeats	2.7.11.1	bub1
1563	Proteasome endopeptidase complex	3.4.25.1	psmA
1311 0426	tRNA-splicing ligase	6.5.1.3	rtcB

(Continued)

TABLE 3 | Continued

Locus tag	Assigned function	EC	Gene
Energy metabolism			
Generation of precursor met	abolites and energy		
2214	Fuculose 1-phosphate aldolase	4.1.2.17	fucA
1894	Fumarate hydratase	4.2.1.2	fumA

FIGURE 4 The proposed D-gluconate catabolic pathway in MRU was discovered from the functional annotation of its operome. D-Gluconate is imported into the cytoplasm by the predicted gluconate transporter (*gntP*) gene. It can be phosphorylated to D-gluconate-6-phosphate by D-gluconate kinase (*gntK*), which is then converted to D-ribulose-5-phosphate by the catalytic action of NAD⁺-dependent phosphogluconate dehydrogenase (*gntZ*). D-Ribulose-5-phosphate is next oxidized to hexulose-6-phosphate by 3-hexulose phosphate synthase (*hxlA*) and converted into β -D-fructofuranose 6-phosphate with phospho-3-hexuloisomerase (*phi1*). The 6-phosphofructose 2-kinase phosphorylates β -D-fructofuranose 6-phosphate into β -D-fructose-6-phosphate to β -D-fructofuranose 6-phosphate by fructose-2, 6-bisphosphate 2-phosphatase. In an alternative way, β – D-fructofuranose 6-phosphate is phosphorylated to D-glucopyranose 6-phosphate by 6-phosphofructo-2-kinase. Glucopyranose 6-phosphate is converted to 1D-*myo*-inositol 3-monophosphate by D-glucose 6-phosphate cycloaldolase (*ino1*) and reduced to *myo*-inositol by inositol-phosphate phosphates (*suhB*).

Prathiviraj and Chellapandi, 2019). There are several functional measures (structural and functional motifs) to be considered for computational predictions of operome from available

microbial genomes. The present study employed to collect comprehensive information derived from sequence similarity, conserved domain, motif, structure, fold, protein-protein interaction, subcellular localization, phylogenetic inference, and gene expression profile as the predictive measures to assign a precise molecular function to MRU operome. Collective information of them provides a hint to predict some distinct motifs and annotate the function of each protein accurately for studying growth physiology in the rumen ecosystem.

Generally, the protein sequence is less conserved than the tertiary structure of a protein (Illergård et al., 2009). In this study, experimentally solved structures and accurate protein folding offered the major importance to deduce some level of a functional description of a protein, as described by Nealon et al. (2017). Characterization of binding motifs and catalytic cores present in the proteins and functional categorization in the cell has been achieved by using the predictive measures derived from overall proteome information (Shapiro and Harris, 2000). Many protein domains have unknown functions, but they may contribute to the metabolic regulation of organisms (Kotze et al., 2013). It implied the possibility of finding a new domain and motif as well as discovers additional protein pathways and cascades from functionally annotated operome (Ijaq et al., 2015). Functional prediction and assignment of prokaryotic operome have been either only sequence-based or structure-based strategies. In our study, a combination of bioinformatics tools with 6 different prediction schemas and additional literature evidence with a 6-level confidence score was applied to improve the prediction accuracy of our functional assignment (Figure 1). Compared to earlier functional prediction approaches, our approach provides a strong emphasis to reveal its metabolic subsystems and cellular mechanisms from the assigned function of operome.

The mechanisms of molecular pathogenesis and virulence of many pathogenic organisms and drug targets discovery are being considered an accurate prediction of operome function as an important biological knowledgebase (Amavisit et al., 2003; Lamarche et al., 2008; Kumar et al., 2014). Several bioinformatics tools have been utilized for functional prediction of operome from different pathogenic organisms (Kumar et al., 2014, 2015; Singh et al., 2017; Shrivastava et al., 2017). It clearly described that all of them are pathogenic organisms but no reports on rumen methanogens yet. It was the first computational study to characterize the function of MRU operome, a potential methanogen for enteric methane emission in the ruminants via enteric fermentation.

The Rossmann was a novel and ancient fold found in 5, 10-methenyltetrahydromethanopterin hydrogenase, a key enzyme of hydrogenotrophic methanogenesis. It explains the possibility of hydrogenotrophic lifestyle in MRU, as described by Leahy et al. (2010). The reduction potentials of rubredoxin foldcontaining proteins are known to be involved in biochemical processes including carbon fixation, detoxification, and fatty acid metabolism (Prakash et al., 2018; Prathiviraj and Chellapandi, 2020). Cofactors or other prosthetic groups are more attractive to stimulate enzyme activity in hydrolytic reactions of archaea. Transmembrane helixes are generally independently stable in a membrane or membrane-like environment, which are important for signal recognition, transport phenomena, energy translocation, and conservation in the living cell (von Heijne, 1988; Jennings, 1989). Concerning the functional importance, we classified and categorized the function of MRU operome in this study.

In this study, six operon-like clusters were identified from MRU operome. The functions of predicted gene clusters were contributed in chaperone-assisted protein folding, host defense response, and toxicity neutralization of MRU. Some transcriptional regulatory systems predicted from its operome have shown to protect cellular proteins against sudden heat-shock stress, nitrogen limitation, and heavy metal homeostasis. MRU genome contains many pathway holes, which hinder its accurate metabolic reconstruction at the genome-scale. In our study, we detected some key genes missing in the metabolic network of this organism. Consequently, complete metabolic subsystems were annotated for the biosynthesis of L-lysine, L-glutamate, enterobacteriallike common antigen, archaeal-specific phospholipids, and isopentenyl diphosphate. MRU operome can produce coenzyme F420 and flavin and electron carriers. Cell wall lipids and membrane proteins have been synthesized from the function of some HPs through macromolecule modification reactions. This organism has well-established transporter systems to maintain metal homeostasis and uptake/export of vitamin, gluconate, sulfite, and tricarboxylate. D-Gluconate catabolic pathway was uniquely discovered from MRU operome for the biosynthesis of archaeal membrane phospholipids.

CONCLUSION

The functional assignment of operome is a mandatory process for a better understanding of the metabolic and molecular processes of this organism. The predicted functional properties of its operome afford us not only for new structural information but also for new molecular functions essential for the lifestyle in the rumen ecosystem. A major operome covers all functional counterparts needed to perform diverse metabolic pathways and regulatory processes. Some imperative physiological functions (oxidative stress, archaeal-specific membrane phospholipids, etc.) of this organism are revealed from this study. The genomeneighborhood analysis found six main gene clusters (hsp, tram, dsr, cbs, anti-toxin, and gas), which are contributed to the energetic metabolism and defense systems. MRU operome contains 119 metabolic enzymes with 18 sub-pathways and 25 binding proteins that recognize the DNA, RNA, metal, and membrane for cellular function. Interestingly, we discovered a putative D-gluconate catabolic pathway for the biosynthesis of archaeal-specific membrane phospholipids. Several virulenceassociated and vaccine targeted proteins have been identified from MRU operome. It suggests the development of new methane mitigation interventions that target the key metabolic proteins to reduce methane emissions in ruminants. Functional prediction and assignment of its operome are thus very important to comprehend the cellular machinery at the systems-level for anti-methanogenic compounds discovery. Nevertheless, all of our predicted functions of its operome should be evaluated and validated experimentally with protein expression and purification, crystallization, and structure determination studies.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

PC: research design, concept, and manuscript writing. MB: data preparation and analysis. NS: data analysis and manuscript revision. All authors contributed to the article and approved the submitted version.

REFERENCES

- Agnihotri, G., and Liu, H. W. (2003). Enoyl-CoA hydratase. reaction, mechanism, and inhibition. *Bioorg. Med. Chem*.11, 9–20.
- Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res*.25, 3389–3402. doi: 10.1093/nar/25.17.3389
- Amavisit, P., Lightfoot, D., Browning, G. F., and Markham, P. F. (2003). Variation between pathogenic serovars within *salmonella* pathogenicity islands. *J. Bacteriol*.185, 3624–3635. doi: 10.1128/jb.185.12.3624-3635.2003
- Barbas, A., Popescu, A., Frazão, C., Arraiano, C. M., and Fialho, A. M. (2013). Rossmann-fold motifs can confer multiple functions to metabolic enzymes: RNA binding and ribonuclease activity of a UDP-glucose dehydrogenase. *Biochem. Biophys. Res. Commun.* 430, 218–224. doi: 10.1016/j.bbrc.2012.10.091
- Benaroudj, N., and Goldberg, A. L. (2000). PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. *Nat. Cell Biol.*2, 833–839. doi: 10.1038/35041081
- Benkert, P., Tosatto, S. C., and Schomburg, D. (2008). QMEAN: a comprehensive scoring function for model quality assessment. *Proteins*71, 261–277. doi: 10. 1002/prot.21715
- Bharat Siva Varma, P., Adimulam, Y. B., and Kodukula, S. (2015). Insilico functional annotation of a hypothetical protein from *Staphylococcus aureus*. *J. Infect. Publ. Health*8, 526–532. doi: 10.1016/j.jiph.2015.03.007
- Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., et al. (2014). SWISS-MODEL: modeling protein tertiary and quaternary structure using evolutionary information. *Nucleic Acids Res.*42, W252–W258.
- Bräsen, C., Esser, D., Rauch, B., and Siebers, B. (2014). Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. *Microbiol. Mol. Biol. Rev.* 78, 89–175. doi: 10.1128/mmbr.00041-13
- Carter, J. R., Fox, C. F., and Kennedy, E. P. (1968). Interaction of sugars with the membrane protein component of the lactose transport system of *Escherichia coli. Proc. Natl. Acad. Sci. U.S.A.*60, 725–732. doi: 10.1073/pnas.60.2.725
- Caspi, R., Altman, T., Billington, R., et al. (2014). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. *Nucleic Acids Res.* 42, D459–D471.
- Chang, F. M., Coyne, H. J., Cubillas, C., Vinuesa, P., Fang, X., Ma, Z., et al. (2014). Cu(I)-mediated allosteric switching in a copper-sensing operon repressor (*CsoR*). J. Biol. Chem.289, 19204–19217. doi: 10.1074/jbc.m114.556704
- Chellapandi, P., Bharathi, M., Sangavai, C., and Prathiviraj, R. (2018). *Methanobacterium formicicum* as a target rumen methanogen for the development of new methane mitigation interventions-A review. *Veter.Anim. Sci.*6, 86–94. doi: 10.1016/j.vas.2018.09.001

ACKNOWLEDGMENTS

We would like to thank the University Grants Commission (RA-2012-14-SC-TAM-1768) and Department of Biotechnology (BT/49/NE/2014), New Delhi, India for financial assistance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene. 2020.593990/full#supplementary-material

Supplementary Table 1 | Functional annotation of operome involved in diverse metabolic systems of MRU.

Supplementary Table 2 | Functional annotation of operome involved in transporter mechanisms of MRU.

Supplementary Data | All predicted information for functional assignment of MRU operome.

- Chellapandi, P., Bharathi, M., Prathiviraj, R., Sasikala, R., and Vikraman, M. (2017a). Genome-scale metabolic model as a virtual platform to reveal the ecological importance of methanogenic archaea. *Curr. Biotechnol.*6, 149–160. doi: 10.2174/2211550105666160901125353
- Chellapandi, P., Mohamed Khaja, Hussain, M., and Prathiviraj, R. (2017b). CPSIR-CM: a database for structural properties of proteins identified in cyanobacterial C1 metabolism. *Algal. Res.*22, 135–139. doi: 10.1016/j.algal.2016.12.005
- Chellapandi, P., and Prathiviraj, R. (2020). A systems biology perspective of Methanothermobacter thermautotrophicus strain ΔH for bioconversion of CO₂ to methane. J.CO₂ Utiliz.40:101210. doi: 10.1016/j.jcou.2020.101210
- Chellapandi, P., and Prisilla, A. (2018). Clostridium botulinum type A-virulome-gut interactions: a systems biology insight. Hum. Microb. J.8, 15–22. doi: 10.1016/j. humic.2018.01.003
- Chellapandi, P., and Ranjani, J. (2015). Knowledge-based discovery for designing CRISPR-CAS systems against invading mobilomes in thermophiles. *Syst. Synth. Biol.*9, 97–106. doi: 10.1007/s11693-015-9176-8
- Cheng, A. G., McAdow, M., Kim, H. K., Bae, T., Missiakas, D. M., and Schneewind, O. (2010). Contribution of coagulases towards *Staphylococcus aureus* disease and protective immunity. *PLoS Pathog*.6:e1001036. doi: 10.1371/journal.ppat. 1001036
- Chistoserdova, L., Gomelsky, L., Vorholt, J. A., Gomelsky, M., Tsygankov, Y. D., and Lidstrom, M. E. (2000). Analysis of two formaldehyde oxidation pathways in *Methylobacillus flagellatus* KT, a ribulose monophosphate cycle methylotroph. *Microbiology*146, 233–238. doi: 10.1099/00221287-146-1-233
- Cooper, R. M., Tsimring, L., and Hasty, J. (2017). Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance. *eLife*6:e25950.
- da Fonsêca, M. M., Zaha, A., Caffarena, E. R., and Vasconcelos, A. T. (2012). Structure-based functional inference of hypothetical proteins from *Mycoplasma hyopneumoniae*. J. Mol. Model18, 1917–1925. doi: 10.1007/s00894-011-1212-3
- de Castro, E., Sigrist, C. J., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P. S., Gasteiger, E., et al. (2006). ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. *Nucleic Acids Res.* 34, W362–W365.
- Doerks, T., van Noort, V., Minguez, P., and Bork, P. (2012). Annotation of the *M. tuberculosis* hypothetical orfeome: adding functional information to more than half of the uncharacterized proteins. *PLoS One7*:e34302. doi: 10.1371/ journal.pone.0034302
- Dokland, T. (1999). Scaffolding proteins and their role in viral assembly. *Cell Mol. Life Sci.*56, 580–603. doi: 10.1007/s000180050455
- Enzmann, F., Mayer, F., Rother, M., and Holtmann, D. (2018). Methanogens: biochemical background and biotechnological applications. AMB Exp.8:1.

- Fay, A. W., Wiig, J. A., Lee, C. C., and Hu, Y. (2015). Identification and characterization of functional homologs of nitrogenase cofactor biosynthesis protein *NifB* from methanogens. *Proc. Natl. Acad. Sci. U.S.A.*112, 14829–14833. doi: 10.1073/pnas.1510409112
- Finn, R. D., Attwood, T. K., Babbitt, P. C., et al. (2016). InterPro in 2017-beyond protein family and domain annotations. *Nucleic Acids Res.*45, D190–D199.
- Forouhar, F., Saadat, N., Hussain, M., Seetharaman, J., Lee, I., Janjua, H., et al. (2011). A large conformational change in the putative ATP pyrophosphatase PF0828 induced by ATP binding. *Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun.*67, 1323–1327. doi: 10.1107/s1744309111031447
- Garfoot, A. L., Zemska, O., and Rappleye, C. A. (2014). Histoplasma capsulatum depends on de novo vitamin biosynthesis for intraphagosomal proliferation. *Infect. Immun.*82, 393–404. doi: 10.1128/iai.00824-13
- Gaywee, J., Xu, W., Radulovic, S., Bessman, M. J., and Azad, A. F. (2002). The Rickettsia prowazekii invasion gene homolog (*invA*) encodes a Nudix hydrolase active on adenosine (5')-pentaphospho-(5')-adenosine. *Mol. Cell Proteom.*1, 179–185. doi: 10.1074/mcp.m100030-mcp200
- Geourjon, C., and Deléage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. *Comput. Appl. Biosci.*11, 681–684. doi: 10.1093/bioinformatics/11. 6.681
- Giaquinto, L., Curmi, P. M., Siddiqui, K. S., Poljak, A., DeLong, E., DasSarma, S., et al. (2007). Structure and function of cold shock proteins in archaea. *J. Bacteriol*.189, 5738–5748. doi: 10.1128/jb.00395-07
- Greenbaum, D., Luscombe, N. M., Jansen, R., Qian, J., and Gerstein, M. (2001). Interrelating different types of genomic data, from proteome to secretome: 'oming in on function. *Genome Res.*11, 1463–1468. doi: 10.1101/gr.207401
- Grochowski, L. L., Xu, H., and White, R. H. (2006). Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J. Bacteriol. 188, 3192–3198. doi: 10.1128/jb.188.9.3192-3198.2006
- Grogan, D. W. (2015). Understanding DNA repair in hyperthermophilic archaea: persistent gaps and other reasons to focus on the fork. *Archaea*2015;942605.
- Guruprasad, K., Reddy, B. V., and Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting *in vivo* stability of a protein from its primary sequence. *Prot. Eng.*4, 155–161. doi: 10.1093/protein/4.2.155
- Hattori, M., Iwase, N., Furuya, N., Tanaka, Y., Tsukazaki, T., Ishitani, R., et al. (2009). Mg⁽²⁺⁾-dependent gating of bacterial *MgtE* channel underlies Mg⁽²⁺⁾ homeostasis. *EMBO J.*28, 3602–3612. doi: 10.1038/emboj.2009.288
- Hattori, M., Tanaka, Y., Fukai, S., Ishitani, R., and Nureki, O. (2007). Crystal structure of the *MgtE* Mg²⁺ transporter. *Nature*448, 1072–1075. doi: 10.1038/ nature06093
- He, Z. G., Feng, Y., Wang, J., and Jiang, P. X. (2008). The regulatory function of N-terminal AAA+ ATPase domain of eukaryote-like archaeal Orc1/Cdc6 protein during DNA replication initiation. Arch. Biochem. Biophys.471, 176– 183. doi: 10.1016/j.abb.2008.01.007
- Homa, F. L., and Brown, J. C. (1997). Capsid assembly and DNA packaging in herpes simplex virus. *Rev. Med. Virol.*7, 107–122. doi: 10.1002/(sici)1099-1654(199707)7:2<107::aid-rmv191>3.0.co;2-m
- Hristov, A. N., Oh, J., Firkins, J. L., Dijkstra, J., Kebreab, E., Waghorn, G., et al. (2013). Special topics–Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci.91, 5045–5069. doi: 10.2527/jas.2013-6583
- Hubbard, K. E., and Dunbar, S. D. (2017). Perceptions of scientific research literature and strategies for reading papers depend on academic career stage. *PLoS One*12:e0189753. doi: 10.1371/journal.pone.0189753
- Hwang, B. Y., Lee, H. J., Yang, Y. H., Joo, H. S., and Kim, B. G. (2004). Characterization and investigation of substrate specificity of the sugar aminotransferase WecE from E. coli K12. Chem. Biol.11, 915–925. doi: 10.1016/ j.chembiol.2004.04.015
- Ijaq, J., Chandrasekharan, M., Poddar, R., Bethi, N., and Sundararajan, V. S. (2015). Annotation and curation of uncharacterized proteins- challenges. *Front. Genet*6:119. doi: 10.3389/fgene.2015.00119
- Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. *J. Biochem.*88, 1895–1898.
- Illergård, K., Ardell, D. H., and Elofsson, A. (2009). Structure is three to ten times more conserved than sequence-a study of structural response in protein cores. *Proteins*77, 499–508. doi: 10.1002/prot.22458

- Islam, M. S., Shahik, S. M., Sohel, M., Patwary, N. I., and Hasan, M. A. (2015). In silico structural and functional annotation of hypothetical proteins of Vibrio cholerae O139. Genom. Inform.13, 53–59.
- Janssen, P. H., and Kirs, M. (2008). Structure of the archaeal community of the rumen. Appl. Environ. Microbiol.74, 3619–3625. doi: 10.1128/aem.02812-07
- Jennings, M. L. (1989). Topography of membrane proteins. *Annu. Rev. Biochem.*58, 999–1027. doi: 10.1146/annurev.bi.58.070189.005031
- Jitendra, S., Narula, R., Agnihotri, S., and Singh, M. (2011). Annotation of hypothetical proteins orthologous in *Pongo abelii* and *Sus scrofa*. *Bioinformation6*, 297–299. doi: 10.6026/97320630006297
- Kalliomaa-Sanford, A. K., Rodriguez-Castañeda, F. A., McLeod, B. N., Latorre-Roselló, V., Smith, J. H., Reimann, J., et al. (2012). Chromosome segregation in Archaea mediated by a hybrid DNA partition machine. *Proc. Natl. Acad. Sci.* U.S.A.109, 3754–3759. doi: 10.1073/pnas.1113384109
- Kandiba, L., Guan, Z., and Eichler, J. (2013). Lipid modification gives rise to two distinct *Haloferax volcanii* S-layer glycoprotein populations. *Biochim. Biophys. Acta*1828, 938–943. doi: 10.1016/j.bbamem.2012.11.023
- Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., and Tanabe, M. (2018). New approach for understanding genome variations in KEGG. *Nucleic Acids Res.*47, D590–D595. doi: 10.1093/nar/gky962
- Karpowich, N. K., Song, J. M., Cocco, N., and Wang, D. N. (2015). ATP binding drives substrate capture in an ECF transporter by a release-and-catch mechanism. *Nat. Struct. Mol. Biol.* 22, 565–571. doi: 10.1038/nsmb.3040
- Kaster, A. K., Moll, J., Parey, K., and Thauer, R. K. (2011). Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. *Proc. Natl. Acad. Sci. USA*.108, 2981–2986. doi: 10.1073/ pnas.1016761108
- Kennedy, S. P., Ng, W. V., Salzberg, S. L., Hood, L., and DasSarma, S. (2001). Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. *Genome Res.*11, 1641–1650. doi: 10.1101/gr.190201
- Klemm, P., Tong, S., Nielsen, H., and Conway, T. (1996). ThegntP gene of Escherichia coli involved in gluconate uptake. J. Bacteriol. 178, 61–67. doi: 10. 1128/jb.178.1.61-67.1996
- Knudsen, M., and Wiuf, C. (2010). The CATH database. *Hum. Genom.*4, 207–212. doi: 10.1186/1479-7364-4-3-207
- Koga, Y., Nishihara, M., Morii, H., and Akagawa-Matsushita, M. (1993). Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. *Microbiol. Rev.*57, 164–182. doi: 10.1128/mmbr.57.1.164-182. 1993
- Kotze, H. L., Armitage, E. G., Sharkey, K. J., Allwood, J. W., Dunn, W. B., Williams, K. J., et al. (2013). A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions. *BMC Syst. Biol.*7:107. doi: 10.1186/1752-0509-7-107
- Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. *J. Mol. Biol*.305, 567–580. doi: 10.1006/jmbi.2000. 4315
- Kulakova, A. N., Kulakov, L. A., Akulenko, N. V., Ksenzenko, V. N., Hamilton, J. T., and Quinn, J. P. (2001). Structural and functional analysis of the phosphonoacetate hydrolase (*phnA*) gene region in *Pseudomonas fluorescens* 23F. J. Bacteriol.183, 3268–3275. doi: 10.1128/jb.183.11.3268-3275.2001
- Kumar, K., Prakash, A., Anjum, F., Islam, A., Ahmad, F., and Hassan, M. I. (2015). Structure-based functional annotation of hypothetical proteins from *Candida dubliniensis*: a quest for potential drug targets. *3 Biotech*.5, 561–576. doi: 10.1007/s13205-014-0256-3
- Kumar, K., Prakash, A., Tasleem, M., Islam, A., Ahmad, F., and Hassan, M. I. (2014). Functional annotation of putative hypothetical proteins from *Candida dubliniensis*. *Gene*543, 93–100. doi: 10.1016/j.gene.2014.03.060
- Kyte, J., and Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol.157, 105–132. doi: 10.1016/0022-2836(82) 90515-0
- Lamarche, M. G., Wanner, B. L., Crépin, S., and Harel, J. (2008). The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. *FEMS Microbiol. Rev.*32, 461–473. doi: 10.1111/ j.1574-6976.2008.00101.x
- Large, A. T., Goldberg, M. D., and Lund, P. A. (2009). Chaperones and protein folding in the archaea. *Biochem. Soc. Trans.* 37, 46–51. doi: 10.1042/bst0370046

- Le, N. Q. K., and Huynh, T. T. (2019). Identifying SNAREs by Incorporating Deep Learning Architecture and Amino Acid Embedding Representation. Front. Physiol.10:1501. doi: 10.3389/fphys.2019.01501
- Le, N. Q. K., Huynh, T. T., Yapp, E. K. Y., and Yeh, H. Y. (2019). Identification of clathrin proteins by incorporating hyperparameter optimization in deep learning and PSSM profiles. *Comput. Methods Progr. Biomed*.177, 81–88. doi: 10.1016/j.cmpb.2019.05.016
- Leahy, S. C., Kelly, W. J., Altermann, E., Ronimus, R. S., Yeoman, C. J., Pacheco, D. M., et al. (2010). The genome sequence of the rumen methanogen *Methanobrevibacter ruminantium* reveals new possibilities for controlling ruminant methane emissions. *PLoS One5*:e8926. doi: 10.1371/journal.pone. 0008926
- Letunic, I., Doerks, T., and Bork, P. (2012). SMART 7: recent updates to the protein domain annotation resource. *Nucleic Acids Res.*40, D302–D305.
- Li, H., Xu, H., Graham, D. E., and White, R. H. (2003). Glutathione synthetase homologs encode alpha-L-glutamate ligases for methanogenic coenzyme F₄₂₀ and tetrahydrosarcinapterin biosyntheses. *Proc. Natl. Acad. Sci. U.S.A.*100, 9785–9790. doi: 10.1073/pnas.1733391100
- Liu, J., Huang, C., Shin, D. H., Yokota, H., Jancarik, J., Kim, J. S., et al. (2005). Crystal structure of a heat-inducible transcriptional repressor *HrcA* from *Thermotoga maritima*: structural insight into DNA binding and dimerization. *J. Mol. Biol.* 350, 987–996. doi: 10.1016/j.jmb.2005.04.021
- Liu, T., Ramesh, A., Ma, Z., Ward, S. K., Zhang, L., George, G. N., et al. (2007). CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat. Chem. Biol.3, 60–68. doi: 10.1038/nchembio844
- Loewenstein, Y., Raimondo, D., Redfern, O. C., Watson, J., Frishman, D., Linial, M., et al. (2009). Protein function annotation by homology-based inference. *Genome Biol*.10:207. doi: 10.1186/gb-2009-10-2-207
- Louwen, R., Staals, R. H. J., Endtz, H. P., van Baarlen, P., and van der Oost, J. (2014). Therole of CRISPR-cas systems in virulence of pathogenic bacteria. *Microbiol. Mol. Biol.* 78, 74–88. doi: 10.1128/mmbr.00039-13
- Major, T. A., Liu, Y., and Whitman, W. B. (2010). Characterization of energyconserving hydrogenase B in *Methanococcus maripaludis*. J. Bacteriol.192, 4022–4030. doi: 10.1128/jb.01446-09
- Makarova, K. S., Wolf, Y. I., van der Oost, J., and Koonin, E. V. (2009). Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. *Biol. Direct*.4:29. doi: 10.1186/1745-6150-4-29
- Mao, C., Shukla, M., Larrouy-Maumus, G., Dix, F. L., Kelley, L. A., Sternberg, M. J., et al. (2013). Functional assignment of *Mycobacterium tuberculosis* proteome revealed by genome-scale fold-recognition. *Tuberculosis*93, 40–46. doi: 10.1016/ j.tube.2012.11.008
- Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., et al. (2015). CDD: NCBI's conserved domain database. *Nucleic Acids Res.* 43, D222–D226.
- Martinez-Fernandez, G., Denman, S. E., Cheung, J., and McSweeney, C. S. (2017). Phloroglucinol degradation in the rumen promotes the capture of excess hydrogen generated from methanogenesis inhibition. *Front. Microbiol.*8:1871. doi: 10.3389/fmicb.2017.01871
- Matsushita, K., Shinagawa, E., Adachi, O., and Ameyama, M. (1979). Membranebound D-gluconate dehydrogenase from *Pseudomonas aeruginosa*. Purification and structure of cytochrome-binding form. *J. Biochem*.85, 1173–1181.
- Maupin-Furlow, J. A. (2013). Ubiquitin-like. proteins and their roles in archaea. *Trends Microbiol.*21, 31–38 doi: 10.1016/j.tim.2012.09.006
- Mayer, J., Denger, K., Hollemeyer, K., Schleheck, D., and Cook, A. M. (2012).
 (R)-Cysteate-nitrogen assimilation by *Cupriavidus necator H16* with excretion of 3-sulfolactate: a patchwork pathway. *Arch. Microbiol*.194, 949–957. doi: 10. 1007/s00203-012-0825-y
- Mazandu, G. K., and Mulder, N. J. (2012). Function prediction and analysis of *Mycobacterium tuberculosis* hypothetical proteins. *Int. J. Mol. Sci.*13, 7283– 7302. doi: 10.3390/ijms13067283
- McAdow, M., DeDent, A. C., Emolo, C., Cheng, A. G., Kreiswirth, B. N., Missiakas, D. M., et al. (2012). Coagulases as determinants of protective immune responses against *Staphylococcus aureus*. *Infect. Immun.*80, 3389–3398. doi: 10.1128/iai. 00562-12
- McAdow, M., Kim, H. K., Dedent, A. C., Hendrickx, A. P., Schneewind, O., and Missiakas, D. M. (2011). Preventing *Staphylococcus aureus* sepsis through the

inhibition of its agglutination in blood. *PLoS Pathog*.7:e1002307. doi: 10.1371/journal.ppat.1002307

- Meier-Dieter, U., Starman, R., Barr, K., Mayer, H., and Rick, P. D. (1990). Biosynthesis of enterobacterial common antigen in *Escherichia coli*. Biochemical characterization of Tn10 insertion mutants defective in enterobacterial common antigen synthesis. *J. Biol. Chem.* 265, 13490–13497.
- Mills, C. L., Beuning, P. J., and Ondrechen, M. J. (2015). Biochemical functional predictions for protein structures of unknown or uncertain function. *Comput. Struct. Biotechnol. J.* 13, 182–191. doi: 10.1016/j.csbj.2015.02.003
- Mitaku, S., Hirokawa, T., and Tsuji, T. (2002). Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membranewater interfaces. *Bioinformatics*18, 608–616. doi: 10.1093/bioinformatics/18.4. 608
- Namboori, S., Mhatre, N., Sujatha, S., Srinivasan, N., and Pandit, S. B. (2004). Enhanced functional and structural domain assignments using remote similarity detection procedures for proteins encoded in the genome of *Mycobacterium tuberculosis H37Rv. J. Biosci.*29, 245–259. doi: 10.1007/ bf02702607
- Nealon, J. O., Philomina, L. S., and McGuffin, L. J. (2017). Predictive and experimental approaches for elucidating protein-protein interactions and quaternary structures. *Int. J. Mol. Sci.* 18:E2623.
- Nikolaus, T., Deiwick, J., Rappl, C., Freeman, J. A., Schroder, W., Miller, S. I., et al. (2001). SseBCD proteins are secreted by the type III secretion system of *Salmonella* pathogenicity island 2 and function as a translocon. *J. Bacteriol*.183, 6036–6045. doi: 10.1128/jb.183.20.6036-6045.2001
- Notomista, E., Lahm, A., Di Donato, A., and Tramontano, A. (2003). Evolution of bacterial and archaeal multicomponent monooxygenases. J. Mol. Evol.56, 435–445. doi: 10.1007/s00239-002-2414-1
- Petersen, T. N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. *Nat. Methods*8, 785–786. doi: 10.1038/nmeth.1701
- Podar, M., Makarova, K. S., Graham, D. E., Wolf, Y. I., Koonin, E. V., and Reysenbach, A. L. (2013). Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. *Biol. Direct*.8:9.
- Poulsen, C., Akhter, Y., Jeon, A. H., Schmitt-Ulms, G., Meyer, H. E., Stefanski, A., et al. (2010). Proteome-wide identification of mycobacterial pupylation targets. *Mol. Syst. Biol.*6:386. doi: 10.1038/msb.2010.39
- Prakash, D., Walters, K. A., Martinie, R. J., McCarver, A. C., Kumar, A. K., Lessner, D. J., et al. (2018). Toward a mechanistic and physiological understanding of a ferredoxin:disulfide reductase from the domains archaea and bacteria. *J. Biol. Chem.*293, 9198–9209. doi: 10.1074/jbc.ra118.002473
- Prathiviraj, R., and Chellapandi, P. (2019). Functional annotation of operome from Methanothermobacter thermautotrophicus ΔH: An insight to metabolic gap filling. Int. J. Biol. Macromol.123, 350–362. doi: 10.1016/j.ijbiomac.2018.11.100
- Prathiviraj, R., and Chellapandi, P. (2020). Comparative genomic analysis reveals starvation survival systems in Methanothermobacter thermautotrophicus ΔH. *Anaerobe*64:102216. doi: 10.1016/j.anaerobe.2020.102216
- Prathiviraj, R., and Chellapandi, P. (2020a). Comparative genomic analysis reveals starvation survival systems in *Methanothermobacter thermoautotrophicus* ΔH. *Anaerobe*64:102216.
- Prathiviraj, R., and Chellapandi, P. (2020b). Modeling a global regulatory network of *Methanothermobacter thermautotrophicus* strain ΔH. *Netw. Model. Anal. Health Inform. Bioinform.*9:17.
- Pulendran, B., and Ahmed, R. (2006). Translating innate immunity into immunological memory: implications for vaccine development. *Cell*124, 849– 863. doi: 10.1016/j.cell.2006.02.019
- Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., et al. (2005). InterProScan: protein domains identifier. *Nucleic Acids Res.*33, W116–W120.
- Radivojac, P., Clark, W. T., Oron, T. R., Schnoes, A. M., Wittkop, T., Sokolov, A., et al. (2013). A large-scale evaluation of computational protein function prediction. *Nat. Methods*10, 221–227.
- Rath, V. L., Ammirati, M., LeMotte, P. K., Fennell, K. F., Mansour, M. N., Danley, D. E., et al. (2000). Activation of human liver glycogen phosphorylase by alteration of the secondary structure and packing of the catalytic core. *Mol. Cell.*6, 139–148. doi: 10.1016/s1097-2765(05)00006-7

- Rawls, K. S., Yacovone, S. K., and Maupin-Furlow, J. A. (2010). GlpR represses fructose and glucose metabolic enzymes at the level of transcription in the haloarchaeon *Haloferax volcanii*. J. Bacteriol.192, 6251–6260. doi: 10.1128/jb. 00827-10
- Rimon, A., Kozachkov-Magrisso, L., and Padan, E. (2012). The unwound portion dividing helix IV of NhaA undergoes a conformational change at physiological pH and lines the cation passage. *Biochemistry*51, 9560–9569. doi: 10.1021/ bi301030x
- Rodionov, D. A., Hebbeln, P., Eudes, A., ter Beek, J., Rodionova, I. A., Erkens, G. B., et al. (2009). A novel class of modular transporters for vitamins in prokaryotes. *J. Bacteriol*.191, 42–51. doi: 10.1128/jb.01208-08
- Rosch, J. W., Gao, G., Ridout, G., Wang, Y. D., and Tuomanen, E. I. (2009). Role of the manganese efflux system *mntE* for signalling and pathogenesis in *Streptococcus pneumoniae*. *Mol. Microbiol.*72, 12–25. doi: 10.1111/j.1365-2958. 2009.06638.x
- Sahraeian, S. M., Luo, K. R., and Brenner, S. E. (2015). SIFTER search: a web server for accurate phylogeny-based protein function prediction. *Nucleic Acids Res.*43, W141–W147.
- Sangavai, C., Prathiviraj, R., and Chellapandi, P. (2020). Functional prediction, characterization and categorization of operome from Acetoanaerobium sticklandii DSM 519. Anaerobe61:102088. doi: 10.1016/j.anaerobe.2019.102088
- Schlictman, D., Kubo, M., Shankar, S., and Chakrabarty, A. M. (1995). Regulation of nucleoside diphosphate kinase and secretable virulence factors in *Pseudomonas aeruginosa*: roles of *algR2* and *algH. J. Bacteriol*.177, 2469–2474. doi: 10.1128/jb.177.9.2469-2474.1995
- Shahbaaz, M., Hassan, M. I., and Ahmad, F. (2013). Functional annotation of conserved hypothetical proteins from *Haemophilus influenzae Rd KW20. PLoS One8*:e84263. doi: 10.1371/journal.pone.0084263
- Shapiro, L., and Harris, T. (2000). Finding function through structural genomics. *Curr. Opin. Biotechnol.*11, 31–35. doi: 10.1016/s0958-1669(99)00064-6
- Shrivastava, A. K., Kumar, S., Sahu, P. S., and Mahapatra, R. K. (2017). In silico identification and validation of a novel hypothetical protein in Cryptosporidium hominis and virtual screening of inhibitors as therapeutics. Parasitol Res.116, 1533–1544. doi: 10.1007/s00436-017-5430-1
- Singh, G., and Singh, V. (2018). Functional elucidation of hypothetical proteins for their indispensable roles toward drug designing targets from *Helicobacter pylori* strain HPAG1. J. Biomol. Struct. Dyn.1:13.
- Singh, S., Singh, S. K., Chowdhury, I., and Singh, R. (2017). Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. *Open Microbiol. J.* 11, 53–62. doi: 10.2174/1874285801711010053
- Sivashankari, S., and Shanmughavel, P. (2006). Functional annotation of hypothetical proteins - A review. *Bioinformation*1, 335–338. doi: 10.6026/ 97320630001335
- Terstappen, G. C., and Reggiani, A. (2001). *In silico* research in drug discovery. *Trends Pharmacol. Sci.*22, 23–26.
- Thieringer, H. A., Jones, P. G., and Inouye, M. (1998). Cold shock and adaptation. *Bioessays*20, 49–57. doi: 10.1002/(sici)1521-1878(199801)20:1<49::aid-bies8>3. 0.co;2-n
- Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2002).) Multiple sequence alignment using ClustalW and ClustalX. *Curr. Protoc. Bioinform.*2, 2.3.
- Tusnády, G. E., and Simon, I. (2001). The HMMTOP transmembrane topology prediction server. *Bioinformatics*17, 849–850. doi: 10.1093/bioinformatics/ 17.9.849

- Unterholzner, S. J., Poppenberger, B., and Rozhon, W. (2013). Toxinantitoxin systems: Biology, identification, and application. *Mob. Genet. Elements*3:e26219. doi: 10.4161/mge.26219
- Vershon, A. K., Bowie, J. U., Karplus, T. M., and Sauer, R. T. (1986). Isolation and analysis of arc repressor mutants: evidence for an unusual mechanism of DNA binding. *Proteins*1, 302–311. doi: 10.1002/prot.340010404
- von Heijne, G. (1988). Transcending the impenetrable: how proteins come to terms with membranes. *Biochim. Biophys. Acta*947, 307–333. doi: 10.1016/ 0304-4157(88)90013-5
- Weinitschke, S., Denger, K., Cook, A. M., and Smits, T. H. (2007). The DUF81 protein *TauE* in *Cupriavidus necator H16*, a sulfite exporter in the metabolism of C2 sulfonates. *Microbiol*153, 3055–3060. doi: 10.1099/mic.0.2007/ 009845-0
- Winnen, B., Hvorup, R. N., and Saier, M. H. (2003). The tripartite tricarboxylate transporter (TTT) family. *Res. Microbiol*.154, 457–465. doi: 10.1016/s0923-2508(03)00126-8
- Xu, Z., Nie, P., Sun, B., and Chang, M. (2007). Molecular identification and expression analysis of tumor necrosis factor receptor-associated factor 2 in grass carp *Ctenopharyngodon idella*. Acta Biochim. Biophys. Sin.39, 857–868. doi: 10.1111/j.1745-7270.2007.00355.x
- Yellaboina, S., Goyal, K., and Mande, S. C. (2007). Inferring genome-wide functional linkages in E. coli by combining improved genome context methods: comparison with high-throughput experimental data. *Genome Res.*17, 527–535. doi: 10.1101/gr.5900607
- Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., et al. (2010). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. *Bioinformatics*26, 1608–1615. doi: 10.1093/bioinformatics/ btq249
- Zarembinski, T., Hung, L. W., Mueller-Dieckmann, H. J., Kim, K. K., Yokota, H., Kim, R., et al. (1998). Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. *Proc. Natl. Acad. Sci.U.S.A.*95, 15189–15193. doi: 10.1073/pnas.95.26. 15189
- Zhang, T., Tan, P., Wang, L., Jin, N., Li, Y., Zhang, L., et al. (2017). RNALocate: a resource for RNA subcellular localizations. *Nucleic Acids Res.*45, D135–D138.
- Zmijewski, M. A., Kwiatkowska, J. M., and Lipińska, B. (2004). Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro. Arch. Microbiol.182, 436–449. doi: 10.1007/s00203-004-0727-8

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Bharathi, Senthil Kumar and Chellapandi. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.