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Abstract
During the scale-up of a bioprocess, not all characteristics of the process can be kept

constant throughout the different scales. This typically results in increased mixing

times with increasing reactor volumes. The poor mixing leads in turn to the forma-

tion of concentration gradients throughout the reactor and exposes cells to varying

external conditions based on their location in the bioreactor. This can affect process

performance and complicate process scale-up. Scale-down simulators, which aim at

replicating the large-scale environment, expose the cells to changing environmental

conditions. This has the potential to reveal adaptation mechanisms, which cells are

using to adjust to rapidly fluctuating environmental conditions and can identify pos-

sible root causes for difficulties maintaining similar process performance at different

scales. This understanding is of utmost importance in process validation. Additionally,

these simulators also have the potential to be used for selecting cells, which are most

robust when encountering changing extracellular conditions. The aim of this review

is to summarize recent work in this interesting and promising area with the focus on

mammalian bioprocesses, since microbial processes have been extensively reviewed.
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1 INTRODUCTION

The scale up of processes from development scale to pro-

duction scale enables more cost-efficient manufacturing

of products required in large quantities. Development or

laboratory-scale reactors for process optimization and

characterization usually range from 1 to 20 L. In recent

years, miniaturized bioreactors, ranging from microliter to

milliliter volume, have gained popularity to achieve high

Abbreviations: CFD, computational fluid dynamics; CHO, Chinese Hamster ovary; CS, compartment system; PFR, plug flow reactor; STR, stirred tank

reactor; VCC, viable cell count.
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throughput and decrease time lines for process development

and characterization [1]. Particularly production processes for

monoclonal antibodies (mAbs) that are in high demand, like

adalimumab (HumiraTM) [2], are transferred to large-scale

production reactors. These bioreactors can reach volumes

of up to 25 000 L for mammalian cell culture processes [3].

Furthermore, it has been estimated that approximately 50%

of the biologics will continue to be produced in bioreactor

volumes of at least 5000 L [4]. There are different approaches
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for scaling up a process from development to production

scale. Most commonly physical parameters, for example, the

volumetric power input, oxygen transfer rate, or volumetric

oxygen mass transfer coefficient, are kept constant throughout

the different scales [5,6]. However, keeping one parameter

constant results in the change of others parameters. The key

example for this is the mixing time, which inevitably increases

in larger bioreactors [7]. The poor mixing in turn causes

the formation of microenvironments, which can vary in pH,

dissolved oxygen (dO2), partial pressure of CO2 (pCO2),

and substrate concentration. Additionally more concentrated

feedstocks are sometimes used at larger scales, which can

exacerbate this problem [8]. Cells are therefore exposed to

different microenvironments, which change based on the

localization of the cell in the bioreactor. These fluctuations in

the external environment can decrease cell growth, lead to the

accumulation of side products, or impact product quantity and

quality [8–11]. A first step toward the investigation of these

effects is determining to which extent gradients are occurring

in large-scale bioreactors. Experimental approaches include

the characterization of large-scale vessels by installing

multiple probe ports for, for example, pH or oxygen, and

characterizing occurring gradients based on the different

responses of the probes [12]. This is however not feasible

for production bioreactors, since they would require modi-

fications. Furthermore, even characterization of production

reactors might not be possible due to the capacity demands for

production [4]. However, there are published characterization

studies of bioreactors ranging in volume up to 25 000 L [3,13].

Recently, a transparent 15 000 L cell culture reactor has been

used to characterize the occurring flow patterns with the

benefit of optical access into the reactor [14]. Computational

fluid dynamics (CFD) simulations have also been widely

used to characterize the flow fields of large bioreactors and

provide information of the mixing dynamics in these reac-

tors [13,15–17]. Based on these simulations, the time which a

cell spends in a different microenvironment can be estimated

and in turn be used to design scale-down simulators [18,19].

These simulators can either contain two or three separate

compartments (2/3-CS, where CS is compartment system)

with different conditions in each compartment or a single

compartment (1-CS) with oscillating conditions [20]. Both

types of simulators have different limitations and the choice

of the system depends on the particular application. Based on

the design, different residence times of the cells in the simu-

lated gradient can be achieved and different reactor scales can

be simulated. Therefore, scale-down simulators are valuable

tools, which have the potential to elucidate the response of

cells to different fast changing microenvironments. This can

lead to an in-depth understanding of underlying causes for

different process performance at large scale. Reviews about

this topic usually focus on microbial cells, since the majority

of literature exists in this area. Therefore, here the work with

PRACTICAL APPLICATION
The scale-up from development to production scale

can still present challenges. Scale-down simulators

aim to reproduce the large-scale reactor environ-

ment and have therefore the potential to elucidate

culprits for impaired process performance at large

scale. While these simulators are well established for

microbial cells, only little research is available for

mammalian cells. In this review, the current status of

research is discussed, as well as the challenges asso-

ciated with the establishment of these simulators for

mammalian cells.

mammalian cells is reviewed, particularly the associated chal-

lenges and differences to established systems for microbial

cells.

2 DETERMINING THE EXTENT OF
INHOMOGENEITIES IN
LARGE-SCALE BIOREACTORS AS A
BASIS FOR THE DESIGN OF
SCALE-DOWN SIMULATORS

With the increasing volume of bioreactors, the mixing time

in the reactor increases as well. While the mixing time of

a laboratory-scale reactor with a volume of 3 L was deter-

mined to be approximately 10 s, a reactor with a volume of

15 000 L had a mixing time of 120 s [3]. Figure 1 summarizes

the potential challenges, which can be encountered through-

out the scale-up process from development to production

scale.

Bioreactor mixing times are typically determined experi-

mentally. There are a variety of approaches, which have been

reviewed by Ascanio et al. [21]. However, most commonly

colorimetry or tracer pulses are used [3,14,22]. Furthermore,

these types of experiments are utilized to validate CFD

simulations. Good agreement between experimental studies

and CFD simulations has been demonstrated for mixing time

studies [3,13]. Since CFD simulations describe the flow

fields in the reactor, they can also be used to quantify the

extent of heterogeneity, which can occur in the bioreactor.

Based on these results, inhomogeneities, which have the

potential to influence process performance, can be identified.

For example, a combination of CFD simulations and exper-

imental studies revealed dissolved oxygen (dO2) gradients

of only approximately 10% for a 15 000 L bioreactor [13].

Although it has been shown that glycosylation patterns of

the product can vary with varying dO2 levels [23,24], cells

should not encounter hypoxia, when the process is run at
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F I G U R E 1 Possible challenges during scale-up

common operating dO2 setpoints of around 50%. However, a

previous study reported hypoxia as the root cause for impaired

process performance when scaling up a process from 20 to

5000 L. Although the dO2 profiles were similar in both scales,

decreased viable cell counts (VCCs) and viabilities were

observed in the 5000-L reactor [11]. The differing results

show the benefit of characterization studies for bioreactors

to anticipate possible inhomogeneities. These studies can

potentially be the basis for the optimization of bioreactor

operation and impeller configuration to improve mixing

and therefore the volumetric oxygen transfer coefficient [3].

While bubble-associated shear stress has been mainly elim-

inated by the use of the polymer Pluronic F-68, there is a

threshold at which the hydrodynamic stress can negatively

impact process performance [10,25]. This limitation needs to

be considered for bioreactor operation. Besides oxygen gra-

dients, pH gradients have also been described in cell culture

bioreactors. The experimental characterization of an aerated

8000-L bioreactor revealed pH amplitudes of up to 0.4 units,

when 2 M sodium carbonate (Na2CO3) was added from the

top of the reactor for pH correction [26,27]. CFD simulations

have also been confirming the presence of areas with an

elevated pH [13]. Substrate gradients have been extensively

studied for microbial cells [28–31], while this area of research

has not been pursued for mammalian cells. Since less con-

centrated feed stocks are used for mammalian cell culture

and the cells take up substrate at a lower rate, large substrate

gradients are unlikely. Therefore, the impact of substrate

gradients on mammalian cell culture performance is likely

minimal.

In addition to the extent of the occurring inhomogeneity,

the exposure time of the cells to the different environment

can be estimated by CFD simulations. This has been demon-

strated for a Penicillum chrysogenum cultivation, where life-

lines of the cells have been determined, which represent

the residence time of the cells in a certain environment.

The study showed that cells were exposed to inhomogene-

ity for approximately the circulation time of the bioreactor

[32].

3 MIMICKING
INHOMOGENEITIES IN
SCALE-DOWN SIMULATORS

Scale-down simulators aim to reproduce the large-scale envi-

ronment, particularly its inhomogeneity, at the laboratory

scale. They can be divided into systems consisting of a sin-

gle (1-CS) or of multiple bioreactors (2-CS or 3-CS) [20]. An

overview of the different systems and their applicability to dif-

ferent problems is shown in Fig. 2.

In a 1-CS, a process parameter is either oscillated or tem-

porarily perturbed to simulate the heterogeneous large-scale

environment. An example includes the oscillation of the dO2

between 0 and 14% with different oscillation periods in a

hybridoma culture. In comparison to the control, which was

kept at a dO2 of 10 ± 1%, a decrease in VCCs was observed,

which was more pronounced for longer oscillation periods.

Furthermore, increased lactate levels and changes in product

glycosylation were observed, when the cells were exposed

to dO2 oscillations [33]. The generation of pH excursions

by bolus addition of 1 M NaOH to a Chinese Hamster ovary

(CHO) culture is another example for a 1-CS scale-down

model. pH perturbations up to a pH of 8.1 were generated

in this case and increased lactate production and glucose

consumption were observed in comparison to the control

with continuous base addition [34]. However, this study

also illustrates the limitations of a 1-CS to simulate pH

inhomogeneity. Since the addition of increased amounts of

pH corrective agent lead to an increase in osmolality, final

osmolalities of 550 mOsmol kg−1 were reported. This is

problematic, since osmolalities above 400 mOsmol kg−1 are

associated with impaired cell growth [35] and can influence

product quality [36,37]. Therefore, it is difficult to distinguish

between effects caused by the addition of base and the effects

caused by an increased osmolality. Although the study tried

to circumvent this problem by running additional controls

with an increased osmolality to separate the effects, it cannot

account for interactive effects. Furthermore, previous reports

have shown interactive effects, when CHO cells were exposed
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F I G U R E 2 Overview of the different scale-down simulators and their applications, as well as limitations

to multiple stresses simultaneously, necessitating further

studies to evaluate only the effect of pH excursions [38].

This challenge can potentially be circumvented by the use

of a 2-CS, since an increased pH is only generated in a frac-

tion of the bioreactor volume and therefore less base is needed.

Furthermore, the 2-CS offers the benefit that only a part of the

cell population, rather than all cells, is exposed to a different

environment, making it a more accurate simulator of a large-

scale bioreactor. In the case of pH inhomogeneity, a large

stirred tank reactor (STR) represents the well mixed fraction

of a large-scale bioreactor with the pH of the setpoint. This

STR can either be connected to another small STR or plug

flow reactor (PFR), which represents the zone where base is

added and shows an increased pH. The volume of the compart-

ment representing the inhomogeneous zone should ideally be

derived from experimental studies or CFD simulations, where

the extent of the zone was estimated. Studies investigating pH

inhomogeneity have worked with volumes ranging from 5 to

14% of the total volume in the large compartment [39–41].

Brunner et al. used a 2-CS (STR-STR), where pH ampli-

tudes up to a pH of 9.5 were introduced with 2 M sodium

hydroxide (NaOH) in the smaller STR, exposing CHO cells

to an increased pH for 90 s [41]. However, the high ampli-

tudes caused an increase of almost 0.08 pH units in the large

STR, which was counteracted with 1 M hydrochloric acid

(HCl). This resulted in an increased osmolality in the 2-CS

up to 450 mOsmol kg−1, presenting a similar problem as

the previously discussed 1-CS study. For this reason, process

performance was only compared until 120 h of the process,

when a critical osmolality was reached. Until that point only

a decreased maximal VCC was observed. A similar setup and

strategy was used by Osman et al., who investigated the effects

of pH amplitudes reaching a pH of 8.0 and 9.0 on hybridoma

cells [40]. Cells were exposed to different perturbation fre-

quencies as well as different perturbation lengths. With an

increase in the number of perturbations, as well as their

frequency, maximal VCC declined.

However, both studies utilized peristaltic pumps to circu-

late the cells between the two compartments. Nienow et al.

identified the peristaltic pump of their 2-CS setup as the

root cause for a reduced culture time and decreased prod-

uct titer [39]. Peristaltic pumps have furthermore been shown

to increase cell lysis, which is consistent with a study that

showed shear stress up to 1000 Pa in a peristaltic pump [42,

43]. Centrifugal pumps, which generate less shear stress, have

been shown to not adversely influence the cells [42]. A 2-CS,

which was established to investigate the threshold of the max-

imal hydrodynamic stress for CHO and insect cells, used a
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centrifugal pump. No adverse effects of the pumps on process

performance were reported in this study [10]. A summary of

the discussed studies is shown in Fig. 3.

Overall the choice of the scale-down simulator is a tradeoff

between the advantages and disadvantages of the different

systems. While 1-CS are easiest to setup, problems like

increased osmolality of the medium for pH inhomogeneity

studies can arise. Furthermore, the whole cell population is

exposed to changing conditions, rather than just a fraction, as

in a 2-CS. The different types of 2-CS systems also have dis-

tinct advantages. A STR-PFR setup can be equipped with mul-

tiple sensors and sample ports along the PFR, resulting in time

resolved profiles. This setup also generates distinct residence

times, but lacks the controllability of the small compartment,

which can only be achieved with an STR-STR setup [44].

Additional STRs or PFRs can potentially be connected

to generate 3-CS to investigate multiple inhomogeneities

simultaneously. These types of systems have however only

been established for microbial cells at this point [45,46].

4 QUANTIFYING THE IMPACT OF
INHOMOGENEITIES AND
VALIDATION OF THE SCALE-DOWN
SIMULATOR

In addition to choosing an appropriate scale-down simula-

tor, suitable analytics are necessary to gain understanding of

how large-scale inhomogeneities affect the cells. While stan-

dard cell culture analytics often already reveal an impact on

the cells, underlying mechanisms are difficult to elucidate

without additional data. Particularly single cell analytics are

well established for mammalian cells and can give informa-

tion about cell cycle distributions and mode of cell death, for

example [47]. These tools were used to determine the influ-

ence of single pH excursions on hybridoma cells, revealing

a transient increase of apoptotic cells in response to the pH

shift. However, the level of apoptotic cells returned to ini-

tial values, if the pH shift was not extensive [48]. While this

shows that cells are able to adapt to an increased pH, if they

are exposed to it for hours, pH inhomogeneity at large-scale

occurs frequently and only for minutes. It still has to be deter-

mined whether or not cells are able to adapt in this scenario

as well.

Omics approaches are another tool, which can enable an in-

depth understanding of how cells respond to the large-scale

bioreactor environment and aid in the validation of scale-

down simulators. For example, proteomics have been used

to investigate the difference in protein abundance between a

10 mL and 300 L bioreactor and found almost no difference

between the scales [49]. A similar approach could be used to

investigate differences to larger scales. Transcriptomics were

used to identify the response of CHO cells to stress induced

by agitation as well as sparging. The results showed differ-

ent expression patterns for stress caused by agitation and

sparging, with only little overlap between the two causes of

stress [50]. Based on those differences in the transcriptome,

agitation- or sparging-related stress during scale-up could be

potentially identified. Furthermore, other relevant stress fac-

tors could be described by comparing transcription patterns
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between the scales, which could also provide a basis for the

validation of scale-down simulators. Novel tools, which can

track epigenetic modifications in addition to changes in the

transcriptome, have the potential to further solidify the under-

standing of the differences between reactor scales [51].

Eventually, it is necessary to judge whether the scale-down

simulator is a good representation of the large-scale reactor.

One way to assess this is by comparing the process perfor-

mance of the large-scale reactor with that of the scale-down

simulator. An example is the work of Neunstoecklin et al.

where the process performance for the investigated 300 L

reactor and the scale-down simulator were compared [25].

The study focused on the impact of hydrodynamic stress

on insect cells (SP2/0). Therefore, the hydrodynamic stress

resulting from different operating conditions of the 300 L was

characterized. By varying sparger types, aeration rates, and

stirring speed, it was possible to identify scenarios in which

the large-scale reactor was operated at conditions, where the

hydrodynamic stress exceeded the upper threshold of the

SP2/0 cells. A comparison between the scale-down simula-

tor and the 300 L reactor at similar levels of hydrodynamic

stress showed similar VCCs, specific metabolic rates, as well

as product concentration and quality, establishing the scale-

down simulator as a valid representation of the 300 L reac-

tor. The study furthermore showed that common indicators

to assess whether or not cell damage occurs in response to

hydrodynamic stress were not able to predict cell damage for

the investigated scenarios.

5 CONCLUDING REMARKS

With an increasing amount of research, which focuses on

the characterization of flow fields in large-scale bioreactors,

occuring large-scale inhomogeneities are well described. It is

however still unclear how these inhomogeneities affect par-

ticularly mammalian cells. Although there are studies, which

identify factors for poor process performance at large scale,

no studies have investigated differences between the scales for

a successful process transfer at large scale. While proteomics

confirmed almost identical patterns between the 10 mL and

300 L scale, it is unclear whether this would hold up for larger

scales as well. Since it has been shown that transcriptomics

can be used to distinguish between different stress responses,

an in-depth study of transcriptomic patterns at different scales

could provide the basis for the design of rational scale-down

simulators. Furthermore, new methods for the determination

of epigenetic changes of the cells have the potential to illu-

minate how cells are adapting to the large-scale environment.

More in-depth knowledge about these mechanisms has the

potential to guide genetic engineering to generate cell lines,

which are more robust in the large-scale environment.

At this point, multiple compartment scale-down simulators

can only be designed to reproduce the large-scale environ-

ment in terms of the expected volume of the inhomogeneous

zone and the residence time of the cells in that zone. Since

the setup of such a system is however more challenging than

for microbial cells, only little research has been conducted

in this area. Mainly pH inhomogeneity has been investigated

and rather extreme scenarios have been simulated. More

work is needed to evaluate at which point pH inhomogeneity

becomes critical. Furthermore, effects have been investigated

for single cell lines and it has to be assessed whether there

are differences in robustness between the different cell line

lineages. A comparison between inherently more robust

cell line lineages and their not so robust counterparts could

further elucidate mechanisms of adaptation to fast changing

environmental conditions. This knowledge could also guide

the choice of which cell line lineage to use for development,

if large-scale production is planned.
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