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This study aimed to perform a genome-wide association analysis (GWAS) using the
Random Forest (RF) approach for scanning candidate genes for age at first calving (AFC) in
Nellore cattle. Additionally, potential epistatic effects were investigated using linear mixed
models with pairwise interactions between all markers with high importance scores within
the tree ensemble non-linear structure. Data from Nellore cattle were used, including
records of animals born between 1984 and 2015 and raised in commercial herds located
in different regions of Brazil. The estimated breeding values (EBV) were computed and
used as the response variable in the genomic analyses. After quality control, the remaining
number of animals and SNPs considered were 3,174 and 360,130, respectively. Five
independent RF analyses were carried out, considering different initialization seeds. The
importance score of each SNP was averaged across the independent RF analyses to rank
the markers according to their predictive relevance. A total of 117 SNPs associated with
AFCwere identified, which spanned 10 autosomes (2, 3, 5, 10, 11, 17, 18, 21, 24, and 25).
In total, 23 non-overlapping genomic regions embedded 262 candidate genes for AFC.
Enrichment analysis and previous evidence in the literature revealed that many candidate
genes annotated close to the lead SNPs have key roles in fertility, including embryo pre-
implantation and development, embryonic viability, male germinal cell maturation, and
pheromone recognition. Furthermore, some genomic regions previously associated with
fertility and growth traits in Nellore cattle were also detected in the present study,
reinforcing the effectiveness of RF for pre-screening candidate regions associated with
complex traits. Complementary analyses revealed that many SNPs top-ranked in the RF-
based GWAS did not present a strong marginal linear effect but are potentially involved in
epistatic hotspots between genomic regions in different autosomes, remarkably in the
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BTAs 3, 5, 11, and 21. The reported results are expected to enhance the understanding of
genetic mechanisms involved in the biological regulation of AFC in this cattle breed.

Keywords: beef cattle, candidate genes, ensemble learning, fertility traits, non-parametric methods, physiological
epistasis

1 INTRODUCTION

Adaptation to tropical environments and resistance to parasites
are attributes that make Nellore cattle (Bos indicus) an important
genetic resource for Brazilian pasture-based beef production
systems. Nonetheless, B. indicus breeds generally present lower
reproductive efficiency compared to taurine cattle
(Abeygunawardena and Dematawewa, 2004; Sartori et al.,
2010), which limits the selection pressure on replacement
heifers. It is known that the efficiency of reproductive
performance is intimately associated with beef cattle industries’
profitability since a large proportion of the production system
costs is due to the cow’s maintenance in the herd (Malhado et al.,
2013). Hence, attaining high fertility rates is a key component for
reducing costs in beef production systems.

Age at first calving (AFC) is one of the most common selection
criteria for fertility in beef cattle breeding programs, among other
reasons, because it can be easily measured and contributes to
improving heifers’ sexual precocity. Identifying genes associated
with the maintenance of reproductive functions is therefore of
paramount importance for enhancing the understanding of the
AFC genetic basis, which may have practical implications in
designing more efficient breeding strategies to improve fertility
rates in Nellore cattle populations. Technological advances and
cost reduction of high-throughput genotyping technologies have
popularized genome-wide association studies (GWAS), which
have contributed to revealing several candidate genes for fertility-
related traits in beef cattle over recent years (Melo et al., 2016;
Teixeira et al., 2017; Nascimento et al., 2018).

Generally, methodologies employed for scanning genomic
regions associated with complex traits in livestock capture
individual loci effects assuming either infinitesimal contribution
or locus-specific variance assigned by different a priori
distributions (Schmid and Bennewitz, 2017). Despite the
conceptual differences, most state-of-art GWAS methods
assume only additive gene action for the marker effects, since
the additive variance is the genetic component that accounts for the
heritable resemblance between relatives for quantitative traits.
Paradoxically, under some circumstances, the additive genetic
variance is not solely attributable to additive signals and can be
viewed as an emergent property of non-additive gene action
(Cheverud and Routman, 1995; Hill et al., 2008; Mackay 2013;
Huang and Mackay, 2016; Sackton and Hart, 2016). Specifically,
even if the variance of the target response variable is expected to be
additive, one can expect that epistatic interactions at the level of
gene action play an essential role in biological pathways and gene
networks, necessary for gene regulation and expression (Phillips,
2008). This implies that additional biological information
regarding the trait genetic architecture can be learned from
genome-wide scans considering inter-locus interaction effects.

Some studies have been focused on applying machine learning
methods (ML) to identify potential causal variants using genome-
wide data, especially for human diseases (Szymczak et al., 2009;
Goldstein et al., 2010). ML requires minimal or no assumptions
about the biological mechanisms governing complex traits, which
allows capturing hidden patterns from high-dimensional data
(Libbrecht and Noble, 2015). Thus, ML may offer a general
framework for unrevealing potential novel causal variants
when the true genetic nature underlying the associations
between phenotype and markers is unknown and complex.
For this purpose, the Random Forest (RF) is one of the most
popular learning algorithms. The RF permutation-based variable
importance measures provide an intuitive and straightforward
approach for selecting and ranking relevant predictors (e.g., single
nucleotide polymorphisms—SNPs), while adaptatively dealing
with interaction among explanatory variables (Chen and
Ishwaran, 2012; Yao et al., 2013). These appealing features
may contribute to enhancing our knowledge about the
biological mechanisms underlying the expression of complex
traits. Nevertheless, applications of the RF to identify genomic
regions for reproductive traits in beef cattle are still scarce. This
study aimed to perform a GWAS using the RF approach for
scanning candidate genes for AFC in Nellore cattle. Also,
potential epistatic effects between the top-ranked markers in
the RF analysis were investigated via linear mixed models to
unveil the nature of the effects detected within the tree ensemble
non-linear structure.

2 MATERIALS AND METHODS

2.1 Animals and Phenotypic Data
The phenotypic and pedigree data were obtained from the
Alliance Nellore database, which integrates information from
Nellore cattle raised in different commercial herds, located in the
Southeast, Midwest, and Northeast regions of Brazil. Animals
included in the database were born between 1984 and 2015. The
reproductive management adopted in those herds involves an in-
advance breeding season occurring between February and April,
with approximately 60 days in length, in which heifers between 14
and 18 months of age are exposed to reproduction for identifying
sexually precocious animals. Heifers that did not conceive in the
anticipated breeding season participate along with the other dams
in the regular breeding season occurring between November and
January.

In this study, the Age at First Calving (AFC) was adopted as a
fertility-related trait, obtained as the difference in days between
the date of first calving and the dam birth date. The contemporary
groups (CG) comprised animals born in the same herd, year, and
season, and which were raised in the same management group at
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weaning and yearling. A data editing step was performed, in
which animals with records deviating ±3.5 standard deviations
from the CG mean were excluded from the dataset. Further, CG
with less than five observations were not considered. A mixed
model approach was used to compute the estimated breeding
values (EBV) for AFC, considering the following model:

y � Xβ + Za + e

in which y is a vector of observed phenotypes; β is the vector of fixed
effects for CG; a is the vector of random additive genetic effects; X
and Z are incidence matrices connecting β and a to the observed
values, and e is the vector of random residuals. It is assumed that a ~
N (0, Aσ2a ) and e ~ N (0, Iσ2e ), where σ

2
a and σ2e are the variance

components for the additive and residual random effects,
respectively; A is the numerator relationship matrix and I is a
diagonal matrix with proper dimension. The number of animals
included in the additive relationship matrix was 329,297. The
variance components were estimated by Restricted Maximum
Likelihood (REML) using the BLUPF90 family programs (Misztal
et al., 2018). The narrow-sense heritability (h2) for the studied trait
was computed as h2 � σ2a/(σ2a + σ2e) and the EBVs were then
considered as response variables in posterior genomic analyses.

2.2 Genotype File and Quality Control
The genotyped population was composed of 8,666 Nellore cattle
(1,128 bulls, 2,737 cows, and 4,801 calves), which were initially
genotyped with either the Illumina BovineHD panel (HD; 4625
animals) or with the GeneSeek Genomic Profiler Indicus HD
(GGP75Ki; 4,041 animals), with approximately 777,000 and
75,000 SNPs, respectively, distributed throughout the genome.
The lower density panel (GCP75Ki) genotypes were imputed to
HD using the FImpute v2.2 software (Sargolzaei et al., 2014),
considering all genotyped animals and pedigree information,
with an expected accuracy higher than 0.97 (Carvalheiro et al.,
2014). After the imputation procedure, only genotyped samples
with EBV accuracy higher than 0.30 for AFC (868 bulls and 2,306
cows) were kept. Because of the low EBV accuracy for AFC, the
progeny data were not considered in the genome-wide
association study. As a quality control (QC) procedure for the
genotypic data, non-autosomal, unmapped, or duplicated SNPs
were discarded as well as those with call rate <0.98, minor allelic
frequency (MAF) < 0.05, and p-value lower than 10−5 for the
Hardy-Weinberg equilibrium test. Only samples with a call rate
higher than 0.90 were maintained in the genotypic data. The
genotypes file filtering was performed using the R software (R
Development Core Team, 2011). After QC, the number of
animals and SNPs retained for analyses was 3,174 and
360,130, respectively.

2.3 Genome-Wide Association Analysis
With Random Forest
2.3.1 Random Forest Algorithm Description
The random forest (RF) is a machine learning method that
aggregates complementary information from an ensemble of
classification or regression trees trained on different bootstrap

samples (animals) drawn with replacement from the original data
set (Breiman, 2001). Briefly, let y(nx1) be a vector of observations
for a given trait and X(nxp) the markers matrix, with n
representing the number of available samples and p the
number of SNPs, coded as 0, 1 and 2 for genotypes AA, AB,
and BB, respectively. Initially, a bootstrap sample is drawn from
this data set and used for training an individual classification or
regression tree. At each node of this given tree, a subset of Mtry

variables are drawn randomly from the overall p SNPs and
evaluated using a recursive binary splitting rule, for which the
best predictor variable Xj (with j = 1, 2, . . . , Mtry ) and the
threshold value tk are those which minimize a given loss function.
For continuous responses, the squared loss function is commonly
adopted. The tree node is partitioned according to the
coordinates {y|Xj ≤ tk} and {y|Xj > tk} originating two child
nodes, which are also partitioned using the same splitting rule
(evaluating different Mtry markers at each node). This process is
repeated until the tree reaches terminal nodes with homogenous
or near homogenous responses (Chen and Ishwaran, 2012). The
predicted outcomes of the tree are the most frequent class (for
categorical responses) or the average observation (for continuous
responses) at terminal nodes. Finally, several trees are built using
Ntree different bootstrap samples of the same size as the original
training data, following the same steps, described previously. The
tree ensemble information is aggregated for computing final
predictions as follows:

ŷ � 1
Ntree

∑Ntree

b�1 T(X,ψb),

where ψb represents an individual tree architecture in terms of the
bootstrap sample, SNPs selected at each node, and terminal node
responses.

A particularity of the RF is the out-of-bag data (OOB), which
corresponds to the animals not included (roughly 1/3) in the
bootstrap sampling for building a specific tree. Since the bootstrap
sampling is performed with replacement, the trees are built using
random samples of the same size as the original training data. Notice
that some observations may appear more than once in the bootstrap
sample, whereas others will not be sampled at all (composing the
OBB sample for that specific tree). The OOB can be used as an
internal validation set for each tree, which allows the computation of
the generalization error term (James et al., 2013). In the continuous
case, the mean squared error is generally used as the loss function:

MSEOOB � 1
NOOB

∑NOOB

i�1 (yi − ŷi)
2,

in which NOOB is the number of observations in the OOB
samples, ŷi is the average of predictions for the ith animal
computed from trees in which this animal was OOB, and yi is
the realized value. The MSEOOB is considered an internal
validation of the prediction error and can be used for tuning
the RF parameters.

Another appealing attribute of this internal validation process
is that it can provide variable importance measures (VIM) for
each predictor variable composing the regression trees. The most
frequently used measure is the permutation-based VIM, which can
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be internally computed for the jth SNP as the average difference
between the MSEOOB when the SNP of interest was randomly
permuted in the OOB data and the MSEOOB obtained without
permutation, considering all trees. SNPs with higher VIM are
suggestive of having an association with the phenotype of interest,
since permuting a relevant SNP is expected to increase the OOB
prediction error (Mokry et al., 2013; Yao et al., 2013). For an SNP
that has no association with the response variable, the
permutation-based score is expected to be approximately zero.
Similarly, negative importance scores indicate that the permutation
of the SNP in the OOB data provided lower generalization error;
therefore, this SNP does not have importance for prediction.

2.3.2 Random Forest Implementation
The GWAS was performed using the randomForest package (Liaw
andWiener, 2002) available for the R software (R Development Core
Team, 2011). Because of the MSEOOB stabilized rapidly in previous
analyses, the parameter Ntree (i.e., the number of trees to grow) was
fixed to 1,000. The assessed values for the Mtry parameter (i.e., the
number of SNPs to test at each node) were 1,

��
p

√
, 0.01p and 0.1p, in

which p represents the total number of SNPs. The nodesize parameter
(i.e., the maximum number of observations at the terminal nodes)
was set to default (nodesize = 5) in all analyses. The parametrization
that produced the lowest final MSEOOB was maintained for further
analysis. After defining the best RF parameters configuration, five
independent analyses were carried out with different initialization
seeds. In addition, a standardized importance factor for each SNPwas
computed by dividing its original permutation-based score
(%IncMSESNPj) by the absolute value of the most negative
importance score (Szymczak et al., 2016):

fSNPj � %IncMSESNPj

|min%IncMSESNP|
To improve the stability of the GWAS results, the importance

scores of each SNP were averaged over the five independent RF
analyses to compute the final importance scores. A common
practice in genome-wide association studies performed with RF is
to set the absolute value of the most negative importance score as
the threshold for identifying a subset of relevant SNPs (Yao et al.,
2013), this would be equivalent to setting fSNPj � 1 in our study.
Nonetheless, to better control the false-positive discovering rate,
we set the threshold fSNPj ≥ 3 to identify the SNPs with the
strongest signals, as suggested by Szymczak et al. (2016). The
pairwise linkage disequilibrium (LD) for the top-ranked SNPs in
the RF algorithm was computed with the r2 metric using the
Gaston R package (Perdry and Dandine-Roulland, 2018). Notice
that the r2 is also used interchangeably as a measure of gametic-
phase disequilibrium (GPD) throughout the manuscript for
conceptually differentiating associations between unlinked loci.

2.4 Identification of Candidate Genes and
Enrichment Analysis
The identification of candidate genes flagged by SNPs previously
selected in the RF analysis was performed using the genome data
viewer (https://www.ncbi.nlm.nih.gov/genome/gdv/?org=bos-taurus)

from the National Center for Biotechnology Information
(NCBI), considering the ARS-UCD1.2 (https://www.ncbi.nlm.
nih.gov/assembly/GCA_002263795.2) as the reference map. For
gene annotation, it was considered a 500 Kb window (SNP
location ±250 Kb) harboring each SNP with fSNPj ≥ 3. For
overlapping windows, only the SNP with the highest
importance factor (fSNPj) was considered as the reference
location. We used the Toppgene software (Chen et al., 2009)
for prioritizing the annotated candidate genes according to their
functional similarity with a list of genes embedding quantitative
trait loci (QTLs) identified for AFC and other fertility traits. The
list of cataloged QTLs and genes was retrieved from the Cattle
QTLdb repository (Hu et al., 2013). The prioritization analysis
considered the information extracted from databases related to
gene ontology (biological processes), pathway enrichments,
mouse and human phenotypes, and coexpression networks.
Furthermore, seeking to provide more insights regarding the
biological processes in which the candidate genes are involved, a
functional analysis of the annotated gene list was performed
using the ClueGo program (Shannon et al., 2003), coupled with
the Cytoscape plug-in (Bindea and Mlecnik, 2012).

2.5 Inferring the Gene Action of Markers
Identified With the Random Forest
The generated hierarchical tree-based structure in the RF
algorithm is informative for capturing both additive and non-
additive effects, especially SNP-SNP interactions. In this regard, a
marker can receive a high importance score if it presents a strong
marginal additive effect or if it interacts with other markers to
create important predictive patterns. However, the RF
importance scores per se do not provide any information on
the nature of the genetic effects captured by SNPs selected in the
genome-wide scan. To investigate the gene action of markers
previously identified with the RF algorithm, the following linear
mixed models were fitted:

yp � 1nµ + xiαi + Zu + e (M1)
yp � 1nµ + xiαi + xjαj + (xi.xj)δij + Zu + e (M2)

in which yp is the vector of n observed response values, 1n is a
vector of 1’s, xi and xj (with i ≠ j) are vectors of pre-selected SNPs
in the RF analysis (fSNPj ≥ 3), with genotypes AA, AB and BB
coded as 0, 1, and 2, respectively, αi is the additive effect of the ith
SNP, xi.xj is the vector of pair-wise interactions, δij is the
interaction effect between the SNPs i and j, Z is the design
matrix relating individuals to the random animal effect, u is
the vector of genomic breeding values (GEBVs) and e is the vector
of random residual effects. In the models M1 and M2 it is
assumed that the animal and residual random effects follow a
normal distribution, with u ~ N(0, Gσ2u) and e ~ N(0, Iσ2e),
where G is a marker-based genomic relationship matrix
(VanRaden, 2008) and σ2u is the marker additive genetic
variance, I is an identity matrix, and σ2e is the residual variance.

The models M1 andM2 were fitted multiple times considering
each lead SNP individually (M1) and each pairwise combination
between two lead SNPs (M2). The variance components were
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estimated iteratively using the EMMREMLR package (Akdemir and
Godfrey, 2015). The significance of individual additive effects (M1)
and interactions between SNPs pairs (M2) was assessed with aWald
test, considering αi � 0 and δij � 0 as null hypotheses. The p-values
were corrected for multiple testing using false-discovery rate (FDR;
Qu et al., 2010) thresholds of 0.1, 0.05 and 0.01. We further
investigated the co-expression relationship among the candidate
genes surrounded by SNP markers with significant interaction
effects through a functional protein-protein interaction (PPI)
analysis using the STRING database (Szklarczyk et al., 2014); the
PPI network nodes were clustered with the k-means algorithm
according with their functional similarity, considering k = 5.

3 RESULTS

3.1 Response Variable Summary Statistics
In the present study, the estimated breeding values (EBVs) for age
at first calving (AFC) of 868 sires and 2,306 dams with available
genotypes were used as response variables in the RF-based
genome-wide association study for AFC. The estimated
heritability for AFC was low (0.08 ± 0.005), indicating that
this trait is highly influenced by environmental factors and
other effects not accounted for in the mixed model analysis.
Because of the low heritability value found, a 0.3 cut-off value was
imposed for the EBV accuracy to reduce the noise inclusion in the
RF analyses. The EBV for both sires and dams showed an
approximately normal distribution, lying in similar intervals
and with average values of −0.37 ± 19.5, and −4.4 ± 15.4 days,
respectively (Figure 1A). On the other hand, the average EBV
accuracies were higher for sires (0.63 ± 0.18) than for dams
(0.46 ± 0.09), as depicted in Figure 1B. The adoption of EBVs
instead of deregressed proofs (dEBV) as response variables was
due to the relatively low average reliability of the EBVs (0.28 ±
0.17). In this case, the parental contribution removal would
incorporate too much noise during the deregression process.

In this scenario, some authors advocate that EBVs would be a
reasonable choice for genome-enabled analysis (Morota et al.,
2014; Fernandes Junior et al., 2016). Furthermore, preliminary
analyses pointed out that the RF algorithm fitted the data better
(considering the percentage of variance explained in the OOB
data) and consequently had higher SNP ranking power when
using the EBVs as response variables rather than dEBVs or
phenotypes adjusted for fixed effects (data not shown).

3.2 Random Forest Hyperparameters
Tuning
The influence ofRFparameters on themodel predictive performance is
presented in Figure 2, it can be seen that the out-of-bag prediction
error stabilizes around 200 trees, and 1,000 trees were used as a reliable
size for theNtree hyperparameter. Among the assessed values forMtry

(number of SNP randomly analyzed per tree node), the random single-
marker drawing per tree node (Mtry � 1) produced the worst

FIGURE 1 | Density plot of estimated breeding values (EBV) for age at first calving in Nellore cattle (A) and their respective accuracy (B), according to the sex
category.

FIGURE 2 | Influence of the random forest hyperparameters (Mtry and
Ntree) in the out-of-bag prediction error for age at first calving in Nellore cattle.
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predictive performance, whereas values
��
p

√
, 0.01p and 0.1p gave

similar results, with Mtry � 0.1p providing a slightly lower OOB
prediction error (Figure 2). This parameter controls the trade-off
between bias and variance, impacting directly the sparsity of variable
importance measures (Goldstein et al., 2010). Since there were no
major differences in the OOB error regarding the Mtry choice, we
decided to use a 0.01 value for the subsequent analyses to allowmarkers
with relatively small effects to be selected within the ensemble of trees
and for reducing the computational burden of running multiple
analyses. Therefore, the genome-wide analyses were performed
using Mtry � 0.01p and Ntree � 1, 000 for all five RF replicates.

3.3 Random Forest-Based Genome-Wide
Association Study
To assess the randomness influence on the results, the importance
factors (fSNPj) for all 360,130 SNPs across the 29 Bos taurus

autosomes (BTA) were obtained in five independent RF-based
analyses, initialized with different seeds (Figures 3A–E). In
general, the RF replicates highlighted the same genomic regions,
providing evidence for the stability of the obtained results. Therefore,
we used the average fSNPj across the RF replicates as a reliable
summary measure for ranking the genomic markers according to
their relative importance for the trait of interest (Figure 3F).
Considering a threshold of three for the average fSNPj, the RF
approach identified 117 SNPs associated with AFC (Figure 3F),
these SNPs were located over 10 BTAs: 2 (2 markers), 3 (11
markers), 5 (29 markers), 10 (4 markers), 11 (7 markers), 17 (1
marker), 18 (2 markers), 21 (59 markers), 24 (1 marker), and 25 (1
marker). The averagefSNPj for the identified SNPs was 5.31 and the
markers with the highest importance factors were in the BTA 21
(Figures 3A–F). Notice that the higher the fSNPj score the stronger
is the SNP predictive importance compared to other markers with
spurious signals.

FIGURE 3 | Manhattan plots for age at first calving (AFC) in Nellore cattle considering the relative importance scores computed for each SNP in five independent
Random Forest (RF) analyses (A–E) and averaged across the RF replicates (F). Negative importance scores were plotted as zero. The blue dashed line corresponds to
the threshold value for SNP selection.
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Based on the genomic annotation we found that from the 117 pre-
selected SNPs, 6.84% (8) were in exon regions, 33.33% (39) were in
intronic regions, and 59.82% (70) were located downstream or
upstream of candidate genes. Considering the 250 Kb size
(downstream-upstream) window, the selected SNPs with the
highest fSNPj harbored 23 non-overlapping genomic regions.
Further details such as the marker ID, chromosome and position
(Mb), and the importance scores of the 23 lead SNPs flagging the non-
overlapped genomic regions are shown in Supplementary Table S1.

Most of the selected variants in the same BTA are in LD blocks
with other relevant neighboring markers (Figure 4), providing
evidence for the presence of single or multiple causal mutations in
these locations. The highest LD blocks were observed in BTA 3
(total length of 0.95 MB, from 0.262 to 1.207 MB), BTA 5 (total
length of 0.23 MB, from 46.02 to 46.25 MB), and BTA 21 (total
length of 1.36 MB, from 0.812 to 2.174 MB). The average r2 in
those blocks were 0.71 (0.45–0.99), 0.92 (0.84–0.99), and 0.96
(0.84–0.99), respectively.

FIGURE 4 |Heatmap of the linkage disequilibrium (LD), measured with the r2metric, among the 117 SNPs identified in the Random Forest analysis. SNPs located in
the same chromosome are identified with the BTA label on the left or right sides.
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3.4 Candidate Genes
The full list of candidate genes located within the 250 Kb
downstream-upstream interval flagged by the lead SNPs is
shown in Supplementary Table S1; 262 genes were annotated
and we provided in Supplementary Table S2 the top 30 genes
presenting the highest functional similarity with a list of genes
previously identified for AFC and other fertility traits. The
training list used in the prioritization analysis and the
biological processes significantly enriched for these genes is
detailed in Supplementary Figure S1. These reference genes
are known to be involved in different fertility-related
biological processes, such as “developmental growth”
(GO0048589), “reproductive process” (GO0022414), “female
gonad development” (0008585), “female pregnancy”
(GO0007565), “ovulation cycle process” (GO0022602), and
“reproductive system development” (GO0061458), which
reinforces their appropriateness for being used as training
list in the prioritization analysis. One must highlight that
some candidate genes identified in the RF analysis pertain
to the same family domain of genes included in the training
list, e.g., NLRP5, NLRP8, NLRP13 (candidate genes), and
NLRP9 (training list), FUT8 (candidate gene) and FUT1
(training list), and SEMA4C (candidate gene) and SEMA4A
(training list).

According to the evidence found in the reported literature and
the functional analysis results, almost all genomic regions
highlighted in this study encompass candidate genes with key
roles in male or female fertility, or with growth-associated
functions. Considering the prioritization analysis (Toppgene),
the functional enrichment (Cytoscape), and the a priori evidence
reported in the literature, the most promising candidate genes
found for AFC are SP3 (BTA 2), TBX19, CD247, CREG1, DCAF6,
ADCY10, MPZL1, MPC2, POU2F1, GPR161 (BTA 3), ATP2B1,
DYRK2, APOBEC1, USP15, DPPA3, NANOG (BTA 5), FUT8,

LMAN2L (BTA 10),AFF3,ATP6V1B1, SEMA4C,VAX2, TEX261,
ZAP70 (BTA 11), MYO18B (BTA17), CNOT3, NLRP5, NLRP8,
NLRP13, LOC107131469, LOC107131476, LOC107131477,
LOC107131465, PRPF31, RPS9, TFPT (BTA18), MKRN3,
NDN, MAGEL2, SNRPN, SNURF, GABRG3, UBE3A (BTA21),
RAB40C, STUB1, and AXIN1 (BTA 25).

The functional analysis revealed 16 significant biological
pathways with which the candidate genes are associated
(Figure 5). Some pathways are directly involved in fertility-
related processes such as embryo development, pheromone
receptor activity, and response to pheromone (Figure 5).
Further, several important genes are involved in multiple
biological pathways; for instance, the NANOG is associated
with embryo development and cellular response to growth
factor stimulus, and the GPR161 participates in three different
functional groups: “embryo development,” “bounding membrane
of organelle,” and “nucleobase-containing small molecule
metabolic process” (Figure 5). The functional analysis also
evidenced a cluster of genes located in BTA 25 that are
involved in biological processes related to hemoglobin
functions such as oxygen transporter activity and oxygen
binding (Figure 5).

3.5 Gene Action Associated With Markers
Identified in the Random Forest Analysis
As detailed in the Material and Methods section, the gene action
associated with the 117 variants identified in the RF analysis was
further investigated via linear mixed models with pairwise
interactions. The correlation coefficient between the fSNPj

metric and the −log10 (p-value) obtained from the single-
marker linear regression (M1) was 0.61, indicating only partial
agreement between the two approaches. The M1 analyses
revealed that several SNPs identified with the RF algorithm do

FIGURE 5 | Gene network for Age at First Calving (AFC) in Nellore cattle. Different node colors represent the functional groups in which the candidate genes are
involved.
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not present strong marginal linear effects, especially those located
in BTAs 3, 5, and 11. However, the M2 analyses indicated that
several of these markers with weakmarginal effects are potentially
involved in hotspots of local or inter-chromosomal additive-
additive epistatic interactions (Figure 6).

There were 764 epistatic interactions with nominal p-values <
0.05, indicating a rejection rate of 11.26% for the null hypothesis
(δij � 0), which is more than twice the expected by chance. The
number of significant interactions at FDR thresholds of 0.1, 0.05
and 0.01, were 65, 7, and 0, respectively. These involved 66 SNPs,
located in the BTAs 3, 5, 11, 18, 21, and 24. Table 1 presents the
BTA number, position (base pairs), and nearest genes for SNPs
involved in significant pairwise interactions (FDR threshold of
0.10), considering markers flagging at least one different gene.
The gametic-phase disequilibrium (GPD) between interacting
markers and p-values for the epistatic effects are also provided.

The most significant interaction effect in the M2 analysis
involved a marker in the BTA 11 (2,811,617 bp) within an
intronic region of the ANKRD39 gene, and a marker in the
BTA 24, located 133,740 bp downstream of an uncharacterized
gene (Table 1). Interestingly, another marker also located in the
BTA 11 (4,969,068 bp), at an intronic region of the gene AFF3,
interacts with markers at intron or exon regions of multiple genes
in the BTA 3, namely, CD247, DCAF6, TBX19, and MPZL1.
Similarly, a marker in BTA 5 (19,823,030 bp), located
approximately 109 Kb upstream of an uncharacterized gene
(gene ID: 112446651), presented suggestive interaction
(p-value < 8.9 × 10−4) with markers located in intronic or
exonic regions of at least 4 different genes of the BTA 21
(MKRN3, MAGEL2, SNRPN, and GABRG3).

The PPI analysis revealed 128 edges for the 69 genes entered,
with roughly 54% of the connections representing moderate to
strong evidence according to the database mining (Figure 7). The
PPI enrichment analysis was statistically significant (p-value < 1 ×
10−6), indicating that the resultant gene transcripts are at least
partially biologically connected and interact more than expected
for a random set of proteins of the same size. Although the
statistical interactions found in this study were not directly
confirmed by the PPI network, many genes flagged by SNPs
with significant inter-chromosomal epistasis appeared in the
network with connections involving the same set of
autosomes. For instance, the CD247 (BTA3) presented the
strongest evidence for a functional link with the ZAP70
(Figure 7), which is located only ~1.57 Mb distant from the
AFF3 (BTA11). Another noticeable example is the TBX19, that
formed edges with two other genes located in the BTA11
(ANKRD39 and ANKRD23). In addition, there is strong
evidence that the edge SNRPN—PRPF31 connects functionally
two clusters of genes located in the BTA21 and BTA18 (Figure 7).
Noticeably, some markers located in the chromosome regions
covered by these two clusters presented a suggestive interaction
with a marker in the BTA5 (Table 1). Moreover, a cluster of genes
in the BTA21 (GABRG3, MAGEL2, MKRN3, NDN, SNRPN, and
SNURF) was significantly associated (FDR = 1.07 × 10−6) with the
Prader-Willi and Angelman syndromes pathway in the PPI
analysis.

4 DISCUSSION

Age at first calving is a complex trait that reflects the heifer’s
reproductive performance in at least three different stages, the
time to puberty onset, the interval between puberty onset and
the first conception, and gestation length. It is a sex-limited
trait that presents low to moderated heritability estimates and
has polygenic nature, which imposes several limitations on
gene mapping (Grossi et al., 2008; Mota et al., 2017; Schmidt
et al., 2018). In this regard, GWAS results reported with
different methods are expected to provide complementary
insights for clarifying the genetic mechanisms involved in
AFC expression. Here we performed an RF-based non-
parametric GWAS to rank high-density SNP markers
according to their average predictive importance, computed
in multiple independent runs. This approach enabled us to
identify several SNPs within genomic regions sp anning
multiple promising candidate genes, some which of them
have not been previously reported in GWAS for
economically important traits in Nellore cattle.

Remarkably, many lead SNPs are close to at least 11 candidate
genes (SP3, DPPA3, NANOG, GPR161, SEMA4C, VAX2,
MYO18B, CNOT3, NLRP5, ATP6V1B1, and AXIN1) that
coordinate biological functions indispensable for embryonic
development (Figure 5). These annotated genes are located in
7 different BTAs (2, 3, 5, 11, 17, 18, and 25), illustrating the
tremendous complexity of this process. Failure in the pre-
implantation stages causes embryo resorption, which delays
the interval between the female exposure and the successful
calving. Not surprisingly, most of these genes are required for
embryo viability after conception and play critical roles in early
and later developmental processes. For instance, the SP3 gene, a
member of the SP1-like transcription factors family (Zhao and
Meng, 2005), has ubiquitous expression in early embryos, and its
knockout is associated with growth retardation and death at birth
in mice (Bouwman et al., 2000). This gene is also required for
skeletal ossification in mice (Gollner et al., 2001; Pichel et al.,
2003) and for enhancing the ability of embryonic stem cells to
differentiate into osteoblasts (Gollner et al., 2001).

Located in the Bos taurus autosome 5, the DPPA3
(Developmental pluripotency-associated 3) has been found to
present high expression in the oocyte of human primordial
follicles (Markholt et al., 2012) and female mice embryonic
gonads at 18.5 days after breeding (Small et al., 2005). This is
a maternal effect gene that regulates normal development in mice
during the embryo preimplantation stage. It has been detected in
primordial germ cells, oocytes, preimplantation embryos, and
pluripotent cells (Payer et al., 2003). Similarly, NANOG and its
paralog NANOGNB are highly expressed during embryo
preimplantation stages in humans, mice, and cows (Dunwell
and Holland, 2017). Therefore, it is clear that these
pluripotency cell-associated neighboring genes (DPPA3 and
NANOG) have a co-expression role in the bovine embryo pre-
implantation process (see Figure 7), probably also coordinating
cell differentiation after embryo fertilization (Dunwell and
Holland, 2017).
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The CNOT3 and NLRP5, located in the BTA 18, were found
close to the BovineHD1800018414 (63.43 Mb). The CCR4-NOT
transcription complex subunit 3 (CNOT3) is a transcription
activity regulator, this gene was flagged by SNPs validated for
fertility (pregnancy within the first 42 days of mating) in two
distinct dairy breeds (Pryce et al., 2010). In mammals, the CNOT3
may have roles in embryonic viability, since a deficiency in this
gene resulted in lethality at early embryonic stages in mice
(Morita et al., 2011). Interestingly, interactions between the
NANOS2 gene (Nanos C2HC-Type Zinc Finger 2) and the
CCR4-NOT deadenylation complex (including CNOT3) play
an essential role in male germ cell development in mice
(Suzuki et al., 2012). The NLRP5, also known as the maternal
antigen that the embryo requires (MATER), integrates the
subcortical maternal complex, an essential multiprotein
complex for embryonic development and uniquely expressed

in mammalian oocytes and early embryos (Bebbere et al.,
2016). Additionally, other genes of the NLRP subfamily stand
side by side with the NLRP5, the NLRP8 initializes approximately
28 Kb upstream to the BovineHD1800018414 marker, whereas
the NLRP13 is flagged at an intronic region by this same SNP.
These are oocyte- or germ-cell-specific syntenic genes required
for the normal operation of mammalian reproductive systems
(Tian et al., 2009).

The AX1N1 in the BTA 25 is also required for normal
embryogenesis, it is known that the complete inactivation of
this gene results in early embryonic lethality in mice, caused by
different development defects such as forebrain absence and
embryonic axis duplications (Zeng et al., 1997; Chia et al.,
2009). Furthermore, a cluster of genes (HBZ, HBA, HBM,
HBQ1, RFPS9, and NARFL) in this same chromosome may
have complementary functions in embryo development

FIGURE 6 | Heatmap of the −log10 (p-values) for the marginal (diagonal) and pairwise interaction effects (off-diagonal) computed viamixed model analyses for the
117 lead SNPs identified in the Random Forest genome-wide scan for Age at First Calving in Nellore Cattle. The heatmap color key (right side) indicates the significance
magnitude for the main and interaction effects in the −log10 (p-value) scale. Side color bars (top and left) indicate the Bos taurus autosome (BTA) where each marker is
located.
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regulation through hemoglobin complex-related pathways
(Figure 5). Hemoglobin (Hb) is mainly found in erythrocyte
cells; however, there is recent evidence of ovarian regulation of
Hb synthesis through the ovulatory signal cascade, with high
expression of Hb subunits in human granulosa and cumulus cell
samples, suggesting a potential role of the hemoglobin complex in
the early embryo development (Brown et al., 2015).

Another interesting biological pathway involving the genes
LOC107131465, LOC107131469, LOC107131476, and
LOC107131477 (all located in the BTA 18) was associated with
pheromone receptor activity (Figure 5). Pheromone activity
influences sexual behavior and reproductive hormone secretion
in different species. Although the role of pheromone in cattle
reproduction is not fully understood, there are shreds of evidence
that beef heifers attain puberty faster when exposed to the male
presence (Oliveira et al., 2009; Fiol et al., 2010). Fiol and
Ungerfeld (2016) reported that exposing anestrous heifers to
androgenized steers promoted an increase in basal levels of
LH after 10 days of exposure. Therefore, the high frequency of
favorable alleles involved in pheromone recognition is
particularly interesting in extensive beef production systems,
where females are exposed to bulls during the breeding season.

Other candidate genes found in this study are necessary to
regulate biological functions related to male fertility maintenance.
For instance, the adenylated cyclase 10 (ADCY10) has a critical
role in spermmaturation in the epididymis, this gene is located in
the BTA 3 and downstream the marker BovineHD0300000287. It
was noticed that splicing errors in the ADCY10 were responsible
for bovine spermatozoa subfertility (Noda et al., 2013), whereas
the orthologous version of ubiquitin Specific Peptidase 15 (USP15)
in mice is expressed in the developing acrosomal cap of
spermatids in the testes (Crimmins et al., 2009). Besides
ADCY10 and USP15, expressed in male germ cells, there are
other annotated genes previously associated with bull fertility
traits, such as FUT8 (located in the BTA 10), significantly
associated with sire conception rate (Rezende et al., 2018), and
NOB1 and NFTA5 (located in the BTA 18), found in whole-

exome sequencing of bulls divergent for fertility (Whiston, 2017).
Furthermore, some genes identified in the BTA 25 may have a
deleterious role on male andrological parameters, such as the
Calpain-15 (CAPN15), which has a causal variant affecting
cryptorchidism susceptibility in rats (Barthold et al., 2016). It
is biologically plausible that several genes have pleiotropic effects
on both male and female fertility traits, for instance, the AXIN1 is
requested for successful embryo development (Xie et al., 2011)
and has been shown to act as a suppressor of testicular germ cell
tumors (Xu et al., 2017). Similarly, the APOBEC1 controls
testicular germ cell tumor susceptibility and embryonic
viability through transgenerational epigenetic inheritance
(Nelson et al., 2012). These findings corroborate the favorable
genetic correlations between male and female reproductive traits
reported for beef cattle (Terakado et al., 2015).

There is also statistical evidence of the genetic association
between reproductive and growth traits in Nellore and other
cattle breeds (Santana et al., 2012; Caetano et al., 2013, Pires et al.,
2017). Part of our findings reinforces biologically these estimated
associations as some genomic regions highlighted here have been
previously associated with growth-related traits in Nellore cattle.
In the BTA3, the RF analysis pointed to an LD block of several
neighboring SNPs associated with AFC, located between
positions 0.262 and 1.207 Mb and harboring a total of 30
candidate genes (Supplementary Table S1), including the
POU2F1 and CREG1, two transcription factors that integrate
metabolic pathways for the regulation of muscle and fat tissues
development (Pérez-Montarelo et al., 2014; Hashimoto et al.,
2019). This genomic region in the BTA3 encompasses a 1 Mb
length window, previously associated with muscling and
conformation scores in Nellore cattle (Carreño et al., 2019).
Further, the BovineHD0500014854 marker (51.43 Mb) found
in the BTA 5 (Supplementary Table S1) is located at an
intronic region of the FAM19A2 gene, which was previously
identified using Bayesian inference within a 1 Mb length window
that explained 1.78% of the additive genetic variance for weight
gain from birth to weaning in Nellore cattle (Terakado et al.,

TABLE 1 | Significant pairwise epistatic effects in the mixed model analyses considering the subset of SNP pre-selected with the Random-Forest-based genome-wide scan
for Age at First Calving in Nellore. Only pairs with at least one marker within a different candidate gene are shown.

SNP 1 SNP 2 GPD p-value

BTA Position (bp) Nearest Gene Distance BTA Position (bp) Nearest Gene Distance

3 1207469 CD247 intron 11 4969068 AFF3 intron 0.075 3.0 × 10−4*

3 633619 DCAF6 intron 11 4969068 AFF3 intron 0.101 2.7 × 10−5**

3 261913 TBX19 exon 11 4969068 AFF3 intron 0.075 3.6 × 10−5**

3 981696 MPZL1 intron 11 4969068 AFF3 intron 0.081 1.0 × 10−4*

3 1135161 LOC104971407 intron 11 4969068 AFF3 intron 0.084 7.3 × 10−4*

3 1207469 CD247 intron 11 2811617 ANKRD39 intron 0.068 3.0 × 10−4*

5 19823030 LOC112446651 108817 18 63426736 NLRP13 intron 0.051 7.7 × 10−4*

5 19823030 LOC112446651 108817 21 5004507 GABRG3 intron 0.039 1.0 × 10−4*

5 19823030 LOC112446651 108817 21 1164298 MKRN3 exon 0.043 6.4 × 10−4*

5 19823030 LOC112446651 108817 21 1195551 MAGEL2 exon 0.043 6.4 × 10−4*

5 19823030 LOC112446651 108817 21 1940618 SNRPN intron 0.043 5.7 × 10−4*

11 2811617 ANKRD39 intron 24 55609449 LOC112444186 133740 0.069 1.0 × 10−5**

11 4969068 AFF3 intron 24 55609449 LOC112444186 133740 0.053 6.2 × 10−4*

BTA, Bos taurus autosome; Bp, base pairs; GPD, Gametic-phase disequilibrium.
*, **, Significant at the false discovery rate (FDR) threshold of 0.1 and 0.05, respectively.
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2017). These results suggest that these regions in BTAs 3 and 5
span QTLs with pleiotropic effects in reproductive, growth, and
muscle development traits in Nellore cattle. This hypothesis is
strengthened by the fact that the POU2F1 integrates the
interactome associated with the control of embryonic stem cell
pluripotency (Ferraris et al., 2011, see also Figure 7) and that the
CREG1 promotes cardiomyogenesis in the mouse embryo, with
its genetic ablation resulting in embryonic lethality (Liu et al.,
2016).

Among the SNPs with the highest importance scores, four
markers were located in the BTA21, between 0.81 and 2.17 Mb
(Supplementary Table S1). This region harbors the SNRPN,
SNURF, MAGEL2, MKRN3, and NDN imprinted genes, which
have well-known roles in epigenetic regulation of precocious
puberty onset, reproductive hormones synthesis, oocytes

development, and, pre or post-implantation of embryos in
cattle and humans (Suzuki et al., 2009; Piedrahita, 2011;
O’Doherty et al., 2012; Abreu et al., 2013; Duittoz et al., 2016).
This LD block highlighted in BTA21 also encompasses the
UBE3A gene, ranked as third in the functional prioritization
analysis (Supplementary Table S2). The UBE3A is a maternally
imprinted gene that encodes the E3 ubiquitin ligase protein and is
also responsible for coactivating steroid hormone receptors,
including estrogen (TFF1 and GREB1), progesterone (PGR),
and androgen (KLK3) receptor responsive genes (Nawaz et al.,
1999; Khan et al., 2006; Catoe and Nawaz, 2011).

Using the single-step GBLUP (ssGBLUP) approach, the same
set of genes found in the BTA21 was reported for early pregnancy
in Nellore cattle, in a study that used partially the same dataset as
in the present work (Irano et al., 2016). These authors noticed that

FIGURE 7 | Protein-protein interaction analysis of genes surrounding SNPs involved in significant inter-chromosomal hotspots (p < 8.9 × 10−4) for age at first
calving in Nellore cattle. Different node colors represent genes clustered according to their functional similarity. Edges represent protein-protein associations. The edges
thickness represents the interaction confidence degree (the thicker the highest is the confidence). Dotted lines represent interactions between clusters. The original figure
was edited for including the autosomes (BTAs) in which the genes are located.
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a window comprising the genomic region between 8,725 and
3,028,689 bp in the BTA21 (which flanks the SNPs with the
highest importance scores in the present study) was responsible
for the largest genetic variance explained (1.31%) for early
pregnancy. The MAGEL2 gene region was also previously
associated with the scrotal circumference in Nellore cattle,
similarly, the genomic region spanning this gene explained the
highest proportion of the additive genetic variance (Utsunomiya
et al., 2014). Hence, the empirical evidence provided so far points
out that the SNPs identified in our study in the BTA21 (between
0.81 and 2.17 Mb) are in LD with single or multiple QTLs
presenting major effects for fertility-related traits in Nellore cattle.

It is also worth noting that other candidate genes annotated
near relevant SNPs in our study have been validated in different
dairy cattle populations. The ATPase Ca++ transporting plasma
membrane 1 (ATP2B1) ends approximately 215 Kb downstream
of the marker BovineHD0500005765 (19.82 Mb). This same gene
was located in the vicinities of single nucleotide polymorphisms
significantly associated with calving interval in Italian Holstein
Cattle (Minozzi et al., 2013). Besides CNOT3 and NLRP5, flagged
by the SNP BovineHD1800018414 in the BTA18 (63.43 Mb), the
RPS9 may also have an important role in the regulation of AFC.
This gene is located at an intronic region of a putative QTL for
calving traits (calving ease, calf size, stillbirth, birth index, body
depth, and stature) segregating in Holstein cattle at
approximately 57 Mb (Mao et al., 2016). Additionally, eight
sequence variants of the RPS9 had the strongest associations
with fertility traits (p < 1 × 10−10) in dairy cattle and, at the same
time, exhibited lesser expression in the corpus luteum of low
fertility cows (Moore et al., 2016).

In summary, an extensive literature search revealed that many
annotated genes have well-known functions associated with
embryo pre-implantation, embryonic development, male
fertility, synthesis of reproductive hormones, and pheromone
recognition. Some genomic regions identified in BTA3 and BTA5
in the present study were previously associated with weight gain
from birth to weaning and visual scores at weaning in Nellore
cattle (Terakado et al., 2017; Carreño et al., 2019); these traits are
closely related to heifers body condition before puberty onset. In
beef cattle, high body size delays the puberty onset, whereas
animals with high weight-height ratios at 11 months of age are
expected to have low age at puberty (Pereira et al., 2017).
Therefore, genes with important roles in the regulation of
growth traits are expected to influence fertility as well. Also, a
genomic region strongly associated with fertility-related traits in
Nellore cattle, validated with different methods and in different
populations (Utsunomiya et al., 2014; Irano et al., 2016) was also
highlighted in the present study, which reinforces RF
effectiveness for pre-screening candidate QTLs associated with
complex traits. Nevertheless, some regions significantly
associated with AFC in previous studies were not identified
here, for instance, the genomic region surrounding the PLAG1
in the BTA14 (Mota et al., 2017). This lack of replication between
trait-associated markers in the same breed may be due to data
particularities such as sample size, the extent of LD, minor allelic
frequency, population structure, and also due to potential false
discoveries and the different data analysis methods employed.

Most of the standard parametric methods for genome-wide
scans focus only on the additive allelic substitution effect, whereas
genomic variants involving hidden non-linear patterns within or
between loci remain overshadowed. Mapping epistatic
interactions in high-density SNP data is both statistically and
computationally challenging because testing every first order
epistatic interaction reduces drastically the statistical power
due to multiple testing penalization, while exponentially
increasing the computational runtime. These challenges
explain the relatively small number of epistatic loci reports for
complex traits in livestock species.

Here, the associations between the markers and the response
variable were investigated under a non-parametric approach. It
has been shown that the tree-based ensemble in the RF can
implicitly capture the additive effects and possible non-linear
genetic associations between the markers and phenotype, e.g.,
dominance and epistasis (Garcia-Magarinos et al., 2009; Yao
et al., 2013; Alves et al., 2020). Epistatic interactions between
markers are adaptatively captured in the RF during the tree
recursive splitting process so that SNP pairs that jointly
present a large interaction effect will appear more frequently
as a parent-child node in the same branch of a tree (Yao et al.,
2013). Following this assumption, pairwise interactions were
tested between the relevant SNPs pre-selected in the RF
genome-wide scan for AFC, treating the marginal and epistatic
effects as fixed in linear mixed models. These complementary
analyses revealed that many SNPs highlighted in the RF approach
present relatively small additive effects in the linear model but are
potentially interacting with other markers in different
chromosomes. The markers with weak marginal effects would
possibly not surpass standard p-values threshold criteria adopted
in GWAS performed with traditional linear parametric models.
This fact shed light on the importance of aggregating the
complementary biological knowledge obtained with different
methodologies.

As an alternative to reducing the statistical and computational
complexities of testing multiple interactions some authors
propose to test epistatic effects only between SNPs with the
highest −log10 (p-values) in standard GWAS and the
remaining markers (Bolormaa et al., 2015) or between SNPs
surpassing a nominal p-value threshold for the additive effects,
e.g., 0.01 (Ali et al., 2015). Although these approaches are
interesting, they present some drawbacks. For instance, it is
assumed that all markers involved in significant epistatic
interactions are also expected to present some marginal
additive effect, which is not always the case. In the RF
algorithm, all SNPs are included simultaneously in the
analysis, allowing one to identify markers involved in potential
interaction networks rather than in isolated pairwise interactions.
This can be illustrated by the multiple epistatic interactions found
between a marker in BTA 11 at an intronic region of the gene
AFF3 and markers located within the genes CD247, DCAF6,
TBX19, and MPZL1, all located in the BTA 3.

A common argument in animal breeding theory towards the
relative unimportance of the epistatic gene action in complex
traits is that the main source of the genetic variance observed in
field data is mostly additive (Crow, 2010; Hill, 2010). It is known
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that additive variance can arise in highly non-linear systems (Hill
et al., 2008) and the opposite can also be true, i.e., models
parametrized consistently with non-additive gene action could
capture most of the genetic variance, even when the genetic
architecture is purely additive (Mackay 2013; Huang andMackay,
2016; Sackton and Hartl, 2016). These results illustrate why
generally one cannot infer the prevalent gene action of
complex traits based on observational variance components
results (Huang and Mackay, 2016).

In this study, there was evidence that epistatic interactions at
the level of individual genotypes can be associated with EBVs for
AFC in Nellore cattle, which theoretically rely only on additive
signals. Interacting loci can generate a substantial genetic additive
variance for a wide range of allele frequencies, especially when the
MAF of at least one locus is low (Mackay 2013; Huang and
Mackay, 2016), this is especially the case in populations under
directional genetic selection. Consequently, the epistatic
interaction effects are “converted” in standard linear models
assuming infinitesimal additive contribution. Hence, ignoring
epistatic gene action in the model generally has little
consequences if the interest is to estimate heritability, predict
breeding values, or infer short-term response to artificial selection
(Crow 2010). However, physiological epistasis (i.e., at the level of
individual loci) is independent of the interacting loci allele
frequencies and its knowledge may present importance to
dissecting the genetic architecture of complex traits and
understanding the biological function of candidate genes
(Mackay 2013).

In the linear mixed models (M1 and M2) used to investigate
the genetic effects of markers identified in the RF genome-wide
scan, the random polygenic component accounted for
approximately 54% of the total observed variance in the
breeding values. This result matches the pedigree-based EBV
expected accuracy for the reference population so that the main
and interaction effects were captured as extra hidden variation in
the residual component. This is important to avoid potential
confounding with the additive covariance structure present in
the data.

Nonetheless, caution is required to infer the significant
interactions observed in this study as causal gene-gene
epistatic effects, since imperfect LD between a marker pair and
the causal QTL can create the illusion of the presence of non-
linearity in purely additive systems, the so-called phantom
epistasis (de los Campos et al., 2019). However, the phantom
epistasis phenomenon occurs predominantly between physically
close loci (de los Campos et al., 2019) whereas all relevant
interactions reported in this study involve markers in different
chromosomes.

One possible explanation for why the detected interacting
marker pairs were mostly located in different autosomes lies in
how the RF algorithm operates and its limitations toward the
presence of highly correlated variables in the dataset. The RF
importance scores are computed by measuring the prediction
error increase when a particular variable is randomly permuted in
the OBB data. During the tree-building process, a highly
correlated marker is very unlikely to be the best variable to
split on the child nodes whereas epistatic SNP pairs appear

more frequently as a parent-child node within the same tree
(Yao et al., 2013), this reduces the ability of local interactions
signals being captured within the tree ensemble. Furthermore, the
presence of high LD for loci located very close may reduce the
power for detecting markers with weak to moderate additive or
local epistatic effects, since linked loci can serve as surrogates for
each other. Strictly speaking, the RF importance score for any
causal locus will be diluted through highly correlated markers if
they remain unshuffled in the same tree, although this bias is
more prominent for importance measures based on the Gini-
index (Nicodemus and Malley, 2009). Conversely, the effect
generated by the interaction between unlinked loci is more
easily broken if one of the interacting markers is shuffled
within the tree, therefore, increasing the importance score for
the markers involved in intergenic interactions.

It is noteworthy that interactions between unlinked genes are
biologically supported if the involved loci encode components of
a metabolic pathway or network, signaling pathway, or
transcription factor network (Phillips, 2008). Moreover,
although unlinked, the interacting marker pairs present some
low association as evidenced by the GPD estimates computed
with the r2 metric (Table 1). It is known that epistatic interaction
can establish and maintain non-random associations between
markers at independent loci if selection favors certain allelic
combinations (Mueller and James, 1983). These anomalous
associations could be viewed as further evidence for the
existence of real interaction effects between the reported
markers. Once again, caution must be exercised since other
evolutionary forces such as genetic drift and non-random
mating also tend to increase long-range linkage (gametic-
phase) disequilibrium (Goddard and Hayes, 2009; Qanbari 2020).

Still, many genes flagged by interacting markers are
biologically plausible to be involved in epistatic hotspots. For
instance, the AFF3 gene is a transcription factor that interacts
with different zinc finger proteins for the epigenetic regulation of
imprinted genes by binding to both differentially DNA-
methylated and enhancer regions of mouse embryonic stem
cells in an allelic-specific manner (Luo et al., 2016; Wang
et al., 2017). The DCAF6, one of the candidate epistatic pairs
for AFF3 is also a cofactor that enhances the transcriptional
activity of androgen receptors (Tzung-Chieh et al., 2005; Chen
et al., 2017) while both TBX19 and AFF3 are related to
adrenocortical-related dysfunction in humans (Couture et al.,
2012; Lefèvre et al., 2015).

The RF approach has been successfully applied for genome-
wide scanning in livestock data. For instance, Mokry et al. (2013)
applied the RF algorithm to identify a subset of SNPs that
explained approximately 50% of the deregressed breeding
values for backfat thickness in Canchin beef cattle. Similarly,
Yao et al. (2013) examined the most frequently occurring
descendent pairs within the RF tree ensemble to identify SNPs
with potential epistatic effects for residual feed intake in dairy
cattle. More recently, it has been shown that RF is an efficient
methodology for sampling an optimal subset of SNPs for genomic
prediction of growth traits in beef cattle (Li et al., 2018). Here, we
provided further evidence for the usefulness of RF for dissecting
biological mechanisms involved in the regulation of complex
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traits in beef cattle. Thus, RF is an interesting complementary tool
to the traditional parametric methods of GWAS.

5 CONCLUSION

To the best of our knowledge, this was the first attempt of applying
a non-parametric approach for scanning potential loci affecting
reproductive traits in Nellore cattle using high-density genomic
data. The RF-based genome-wide scan and functional analysis
highlighted genomic regions spanning candidate genes with key
roles in fertility, including embryo pre-implantation and
development, embryonic viability, male germinal cells
maturation, and pheromone recognition. Complementary
analyses revealed that many top-ranked markers in the RF-
based GWAS did not present a strong marginal linear effect but
are potentially involved in epistatic hotspots between genomic
regions in different autosomes. The reported results are expected to
enhance the understanding of genetic mechanisms involved in the
regulation of AFC in this breed.
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