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AUTHOR'S SUMMARY

Research using zebrafish larvae as an experimental model can provide information that can 
be easily missed in existing vertebrate models. Accordingly, in this study, a zebrafish larvae 
model was established for in vivo studies of diabetes mellitus with heart failure with reduced 
ejection fraction (DM-HFrEF). DM-HFrEF were induced by treating them with a combination 
of D-glucose, streptozotocin and terfenadine, a potassium channel blocker. Additionally, 
methods for evaluating DM-HFrEF in zebrafish larvae were presented. The results of this 
study can be used for in vivo studies of DM-HFrEF and as a platform to assess the effects of 
new medications for DM and HF.

ABSTRACT

Background and Objectives: Diabetes mellitus (DM)-associated heart failure (HF) causes 
high morbidity and mortality. In this study, we established a zebrafish larvae model for in vivo 
research on diabetic HF.
Methods: DM-like phenotypes were induced by treating zebrafish larvae with a combination 
of D-glucose (GLU) and streptozotocin (STZ). HF was induced by treatment with terfenadine 
(TER), a potassium channel blocker. Additionally, myocardial contractility, motility, and 
viability were evaluated.
Results: The zebrafish larvae treated with a combination of GLU and STZ showed 
significantly higher whole-body glucose concentrations, lower insulin levels, and higher 
phosphoenolpyruvate carboxykinase levels, which are markers of abnormal glucose 
homeostasis, than the group treated with only GLU, with no effect on viability. When treated 
with TER, DM zebrafish showed significantly less myocardial fractional shortening and more 
irregular contractions than the non-DM zebrafish. Furthermore, in DM-HF with reduced 
ejection fraction (rEF) zebrafish, a significant increase in the levels of natriuretic peptide B, a 
HF biomarker, markedly reduced motility, and reduced survival rates were observed.
Conclusions: We established a DM-HFrEF zebrafish model by sequentially treating zebrafish 
larvae with GLU, STZ, and TER. Our findings indicate the potential utility of the developed 
zebrafish larvae model not only in screening studies of new drug candidates for DM-HFrEF 
but also in mechanistic studies to understand the pathophysiology of DM-HFrEF.
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INTRODUCTION

Patients with diabetes mellitus (DM) have a 2- to 5-fold increased prevalence of heart failure 
(HF),1) and over 40% of acute HF patients have DM.2) Diabetic HF is associated with a higher 
risk of overall mortality. Although well-controlled DM is associated with a lower risk of long-
term mortality than uncontrolled DM, not all hypoglycemic agents are beneficial for HF. 
In contrast, insulin treatment is associated with an increased mortality compared to those 
treated with oral antihyperglycemic agents.3) In response to concerns about the increased risk 
of adverse cardiovascular outcomes associated with certain glucose-lowering therapies, the 
US Food and Drug Administration and the Committee for Medicinal Products for Human 
Use of the European Medicines Agency mandated to ensure the cardiovascular safety of new 
glucose-lowering therapies for treatment of type 2 DM.4) This resulted in a plethora of new 
cardiovascular outcome trials, presenting major budget issues to develop new drugs. Thus, 
there is an urgent need for new, simple, rapid, and cost-effective methods to evaluate the 
effects of hypoglycemic agents on the cardiovascular system, particularly during the early 
developmental stages.

Recently, zebrafish have been proposed as an excellent vertebrate animal model owing to 
their high fertility, cost-effectiveness, and physiological similarity to humans.5)6) Particularly, 
the β-cells of the pancreas and the heart, which are essential organs for DM-HF research, are 
structurally and genetically similar to those of humans.7)8) Additionally, owing to the rapid 
development of zebrafish, these organs fully develop within 2–3 days post fertilization (dpf ); 
hence, research can be conducted in a short period. Moreover, compared to other vertebrate 
models, which die immediately when the oxygen supply is stopped, zebrafish can survive for 
several days via passive oxygen diffusion, even when blood circulation is blocked. Therefore, 
zebrafish larvae are widely used in cardiovascular defect studies.9) In zebrafish larvae, which 
have transparent bodies, cells and organs can be directly observed under a microscope. As 
heart is a continuously beating organ, it is necessary to observe its contraction to accurately 
evaluate its function. The beating hearts of live zebrafish larvae can be directly observed via 
fluorescence microscopy using a transgenic (Tg) zebrafish line expressing the fluorescent 
protein in the myocardium.10) Therefore, research using zebrafish larvae can provide 
information that can be easily missed while using the existing vertebrate models.

We have previously reported a zebrafish model of dilated cardiomyopathy induced by brief 
treatment with terfenadine (TER) and demonstrated its feasibility in screening of new 
drugs.11)12) Here, we developed and validated a zebrafish model for diabetic HF. We optimized 
a simple method to induce a DM-like phenotype in zebrafish by treating them with a 
combination of D-glucose (GLU) and streptozotocin (STZ). Furthermore, we established a 
novel method and different parameters to evaluate cardiac function after the induction of HF 
with TER in a DM zebrafish model.

METHODS

Ethical statement
All animal experiments and husbandry procedures were approved by the Institutional Animal 
Care and Use Committee of the Seoul National University (SNU-200310-1).

35

Diabetic Heart Failure Zebrafish

https://doi.org/10.4070/kcj.2022.0210https://e-kcj.org



Zebrafish maintenance
Adult zebrafish (Danio rerio) were maintained at 26–28°C on a 14/10 hours light-dark cycle in 
an automatic circulating tank system (Genomic Design, Daejeon, Korea). Zebrafish embryos 
were raised in egg water prepared by dissolving 60 μg/mL ocean salts (Sigma-Aldrich, St. 
Louis, MO, USA) in autoclaved deionized distilled water (DDW) at pH 7.0. Zebrafish embryos 
were euthanized via the low-temperature shock method when the survival rate at 24 hours 
post fertilization was less than 80%.13) All experiments were performed from 3 dpf of hatched 
zebrafish embryos to 9 dpf. During treatment with GLU (Sigma-Aldrich), the environmental 
GLU solution was replaced daily to avoid contamination. We used Tg (myl7:EGFP) zebrafish 
expressing an enhanced green fluorescent protein (EGFP) in cardiac myosin light chain 7 
(myl7)10) and Tg (ins:EGFP) zebrafish expressing EGFP in pancreatic β-cells.14) The Zebrafish 
Center for Disease Modeling (ZCDM), Korea, provided all Tg zebrafish.

Glucose colorimetric assay
As zebrafish larvae are small, the samples not sufficient to measure blood glucose levels 
using conventional methods. Therefore, we used an alternative method of measuring 
glucose in whole-body fluids.7)15) Briefly, 10 larvae per sample were transferred to a 1.5 mL 
tube and euthanized using the low-temperature shock method. Zebrafish larvae were gently 
rinsed twice with phosphate-buffered saline (PBS) and homogenized in 100 μL DDW using 
TissueLyser II (Qiagen, Hilden, Germany). The homogenate was then centrifuged at 13,000 
rpm and 4°C for 15 minutes to obtain an eluate containing free glucose. Then, 50 μL of the 
eluted solution was placed in a 96-well plate and allowed to react with 50 μL of the Amplex™ 
Red reagent/horseradish peroxidase/glucose oxidase mixed solution, provided in the 
Amplex™ Red Glucose/Glucose Oxidase Assay Kit (Thermo Fisher Scientific, Waltham, MA, 
USA), for 30 minutes at room temperature. The absorbance was measured using a microplate 
reader (VERSAmax; Molecular Devices, San Jose, CA, USA) at an excitation wavelength of 
530–560 nm.

Quantitative real-time polymerase chain reaction
For quantitative real-time polymerase chain reaction (qRT-PCR) analysis, total cellular RNA 
was extracted from ten zebrafish larvae per sample using QIAzol Lysis Reagent (Qiagen). 
The extracted RNA was reverse-transcribed using the amfiRivert cDNA Synthesis Premix 
(GenDEPOT, Katy, TX, USA) according to the manufacturer’s instructions. qRT-PCR 
was performed using cDNA as the template, a SYBR Green PCR kit (GenDEPOT), and 
the StepOnePlus Real-Time PCR System (Applied Biosystems, Waltham, MA, USA). The 
expression of all genes was normalized to that of the housekeeping gene 18S ribosomal 
RNA (18s rRNA) using the 2−ddCt method. The primers used were as follows: ins (forward: 5′-
AGT GTA AGC ACT AAC CCA GGC ACA-3′, reverse: 5′-TGC AAA GTC AGC CAC CTC AGT 
TTC-3′), pck1 (forward: 5′-GAG AAT TCT CAC ACA CAC ACA CGT GAG CAG TA-3′, reverse: 
5′-GTA AAA GCT TTC CGC CAT AAC ATC TCC AGC AGA A-3′), nppb (forward: 5′-CAT GGG 
TGT TTT AAA GTT TCT CC-3′, reverse: 5′-CTT CAA TAT TTG CCG CCT TTA C-3′), Ucn3 
(forward: 5′-GAG TGC AGG GCA GAA CAA TGT-3′, reverse: 5′-GAA ACT GGT TGC GCA 
AAG GA-3′), Slc30a8 (forward: 5′-ATC GTC TTG ATG GAA GGC AC-3′, reverse: 5′-TTT CTC 
GAA GCA CCT CCT GT-3′), and 18s rRNA primers (forward: 5′-TCG CTA GTT GGC ATC GTT 
TAT G-3′, reverse: 5′-CGG AGG TTC GAA GAC GAT CA-3′).

Insulin enzyme-linked immunosorbent assay
As with the glucose colorimetric assay above, zebrafish larvae are small and contain very little 
body fluid, so there are not enough samples to measure circulating or blood insulin levels. 
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Therefore, we measured insulin by homogenizing the whole body of 30 zebrafish larvae per 
sample. Insulin contents were measured with a Fish Insulin (INS) ELISA kit (MyBioSource, 
San Diego, CA, USA) according to the manufacturer’s protocol. The absorbance was 
measured using a microplate reader (Infinite 200 pro; Tecan, Männedorf, Switzerland) at an 
excitation wavelength of 450 nm.

Measurement of ventricular contractility
Cardiac contractility was estimated as the ventricular fractional shortening (vFS). The 
Tg (myl7:EGFP) zebrafish larvae were anesthetized with 0.02% tricaine (MS222; Sigma-
Aldrich) and then embedded in 3% methylcellulose (Sigma-Aldrich). The beating heart was 
observed using an automated inverted fluorescence microscope (Leica DMI6000B; Leica 
Microsystems, Wetzlar, Germany). The hearts of individual zebrafish larvae were imaged 
continuously for 30 seconds. The vFS was calculated using the ventricular dimension at the 
end-systole (VDs) and end-diastole (VDd). Calculation formula is as follows:

vFS=(VDd−VDs)/VDd×100

Measurement of contraction irregularity
Cardiac contraction irregularity was estimated as the standard deviation (SD) of the 
beat-to-beat interval. Zebrafish larvae anesthetized with 0.02% tricaine were embedded 
in 3% methylcellulose and positioned such that the dorsal aorta was visible. Blood flow 
was recorded for 30 seconds using a high-speed camera and the ZebraBlood of the 
MicroZebraLab system (ViewPoint, Civrieux, France). Subsequently, real-time blood flow 
pulses were analyzed using ZebraBlood. The blood flow data were used to identify peaks 
using the findpeaks function of MATLAB (MathWorks, Natick, MA, USA), and the time 
between the peaks was calculated to determine the beat-to-beat interval. MATLAB was used 
to set an appropriate threshold to identify the correct peaks.

Motility test and survival analysis
Zebrafish larvae motility was analyzed using DanioVision and EthoVision XT (Noldus, 
Wageningen, Netherlands). Zebrafish larvae were individually placed in square 96-well plates 
containing 200 μL egg water, and movements were tracked and recorded for 5 minutes using 
DanioVision. While monitoring zebrafish larvae motility, they were stimulated with a tapping 
device once every 30 seconds. Zebrafish motility analysis using EthoVision XT included the 
assessment of movement distance, velocity, acceleration, and duration.

Kaplan-Meier survival analysis was used for survival analysis. Each zebrafish was transferred 
to a 96-well plate containing 200 μL egg water. Survival was observed using a microscope 
every 12 hours until 9 dpf.

Statistical analysis
All data are presented as mean ± SD. Statistical analyses were performed using GraphPad Prism 
(GraphPad Software, San Diego, CA, USA). Mann–Whitney U-test or Student’s t-test was used for 
comparing 2 groups or a one-way analysis of variance (ANOVA) followed by the Tukey post-hoc 
test for compare more than 2 groups. The Kaplan–Meier method with the Log-rank test was used 
for survival analysis. A p-value of less than 0.05 indicated a significant statistical difference.
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RESULTS

Effects of concentrations of D-glucose and/or streptozotocin on the survival 
rates of zebrafish larvae
To use the DM zebrafish model for experiments, the baseline survival rate must be stabilized; 
however, GLU is toxic and can affect survival. Therefore, we evaluated the viability of 
zebrafish larvae treated with different concentrations of GLU. Because of GLU treatment 
from 3 to 9 dpf (Figure 1A), immersion in 60–100 mM GLU for over 48 hours had lethal effects 
on zebrafish larvae, resulting in a sharp decrease in their survival rates (Figure 1B). However, 
no significant reduction in viability was observed after immersion in GLU concentrations 
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Control (n = 48)

GLU 20 mM (n = 48)

GLU 40 mM (n = 48)

GLU 60 mM (n = 48)

GLU 100 mM (n = 96)

GLU 80 mM (n = 48)

A

B

C

Control (n = 48)

GLU 40 mM (n = 48)

GLU 40 mM + STZ 50 µg/mL (n = 48)

GLU 40 mM + STZ 100 µg/mL (n = 48)

GLU 40 mM + STZ 300 µg/mL (n = 48)

GLU 40 mM + STZ 200 µg/mL (n = 48)

Figure 1. Effects of various concentrations of GLU and/or STZ on the survival rates and motility of zebrafish 
larvae. (A) Schematic of the study design. (B) Kaplan-Meier survival analysis of zebrafish larvae after treatment 
with various concentrations of GLU (n = 48 per group) and (C) a combination of 40 mM GLU and various 
concentrations of STZ. (n = 48 per group). 
GLU = D-glucose; STZ = streptozotocin. 
****p<0.0001 vs. (B) control group or (C) GLU 40 mM group.



<40 mM (Figure 1B). Viability was assessed in the presence of 40 mM GLU and various 
concentrations of STZ (Figure 1A). A high STZ concentration significantly reduced the 
survival rate, whereas 50 μg/mL STZ treatment did not affect the survival rate (Figure 1C).

Induction of hyperglycemia and impairment of glucose homeostasis in 
zebrafish model with the combination of D-glucose and streptozotocin
DM is characterized by hyperglycemia and impaired glucose homeostasis owing to 
abnormal insulin expression or function. Therefore, we confirmed the expression of 
insulin and phosphoenolpyruvate carboxykinase (PEPCK), an essential enzyme involved in 
gluconeogenesis, in zebrafish treated with GLU/STZ. The same concentration D-mannitol 
(MAN) was used as an osmotic control for GLU. The expression of ins, a preproinsulin gene, 
was significantly higher in the GLU-only group than in the control and MAN groups. In 
contrast, the expression of ins in the GLU/STZ-treated zebrafish was completely suppressed 
(Figure 2A, Supplementary Table 1). This has also been observed in whole-body insulin 
contents (Figure 2B). Additionally, the expression of pck1, a PEPCK gene, showed a statistically 
significant increase in the GLU/STZ group compared to that in other groups, but there was no 
change in its expression in the GLU or MAN groups (Figure 2C, Supplementary Table 1).

We then measured whole-body glucose concentration as an alternative blood glucose 
measurement parameter in zebrafish larvae. The GLU/STZ treatment resulted in a significant 
increase in whole-body glucose concentration compared with that in the control (Figure 2D). 
The GLU-only group also increased whole-body glucose concentrations, but not as high as GLU/
STZ (Figure 2D). Additionally, after the high-glucose challenge, whole-body glucose levels in the 
GLU/STZ group stabilized more slowly than those in the control group and showed a tendency 
to fluctuate (Figure 2E and F). Despite the GLU/STZ-induced hyperglycemia and glucose 
homeostasis abnormalities, there was no significant change in the gene expression of ucn3 
and slc30a8, markers of mature pancreatic β-cells (Figure 2G and H, Supplementary Table 1). 
Also, no change was observed in the morphology of body and pancreatic β-cells of zebrafish 
larvae (Figure 2I).

Establishment of heart failure with reduced contractility via consecutive 
treatment with terfenadine post diabetes mellitus induction
HF with reduced ejection fraction is mainly characterized by reduced cardiac contractility and 
increased irregular contractions. We previously reported that TER induces HF in zebrafish 
larvae.11)12) Therefore, we evaluated cardiac contractility and irregular contraction after TER 
treatment in DM and non-DM zebrafish. First, the hearts of Tg (myl7:EGFP) zebrafish were 
observed under a fluorescence microscope, and then the ventricle contraction was evaluated 
(Figure 3A). The vFS was not reduced in the DM zebrafish model; however, TER treatment in 
non-DM zebrafish slightly reduced the vFS compared with that in the control. Importantly, 
TER-treated DM zebrafish showed a remarkable reduction in the vFS compared with non-
DM zebrafish treated with the same TER concentration (Figure 3A and B). Next, contraction 
irregularity was evaluated via blood flow analysis. Irregular contractions were observed 
in both the groups treated with TER but not in the non-DM and DM groups (Figure 3C). 
Particularly, severe irregular contractions were observed in the TER-treated DM zebrafish 
(Figure 3C). The SD of the beat-to-beat interval, indicating irregular cardiac contractions, 
was significantly higher in the TER-treated DM zebrafish than in the TER-treated non-DM 
zebrafish (Figure 3D). Additionally, the expression of nppb, the gene encoding natriuretic 
peptide B, an HF biomarker, was also significantly increased in TER-treated DM zebrafish 
compared to that in other groups (Figure 3E, Supplementary Table 1).
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Evaluation of global motility and viability in the diabetes mellitus-heart 
failure zebrafish model
After 24 hours of treatment of non-DM and DM zebrafish with TER, each zebrafish was 
tracked to evaluate motility (Figure 4A). TER treatment reduced the distance moved and 
movement duration in both the non-DM and DM groups (Figure 4A-C). Particularly, the TER-
treated DM zebrafish demonstrated markedly reduced driving distance compared to the other 
groups, and the distance moved of TER-treated DM zebrafish was lower than that covered 
by the TER-treated non-DM zebrafish, but not significant (Figure 4B). Also, no statistical 
difference was observed between TER-treated non-DM and TER-treated DM zebrafish in 
terms of the movement duration. (Figure 4C). The survival rate showed a tendency similar 
to that of motility. Furthermore, a reduction in the survival rate was observed in the TER-
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A B C D

E

I

F G H

Figure 2. Induction of diabetes mellitus-like phenotypes in zebrafish larvae via combined treatment with GLU and STZ. (A) Relative mRNA expression of ins (n = 
8 per group) and (B) Whole-body insulin level (n = 6 per group). (C) Relative mRNA expression of pck1 (n = 8 per group). (D) Whole-body glucose concentration 
(n = 6–8 per group). (E) Changes in whole-body glucose concentration after high-GLU challenge and (F) the corresponding AUC (n = 5 per group). (G) Relative 
gene expression of Ucn3 and (H) Slc30a8 (n = 8–11 per group). (I) Representative fluorescence microscopic image of pancreatic β-cells of the Tg (ins:EGFP) 
zebrafish larvae. Each group had 6–11 samples, with (A, B, and D-H) 10 or (C) 30 larvae per sample. Data are presented as mean ± standard deviation and each 
dot represents the value of each sample. 
AUC = area under the curve; GLU = D-glucose; MAN = D-mannitol; STZ = streptozotocin; Tg = transgenic; EGFP = enhanced green fluorescent protein. 
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 vs. indicated group.



treated non-DM zebrafish. However, the survival rates of TER-treated DM zebrafish decreased 
more remarkable than those of other groups (Figure 4D). In the DM-HF zebrafish model, 
no morphological changes were observed despite significant reduction in motility and the 
survival rates (Supplementary Figure 1).
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n = 22

A B

C

D

E

n = 22 n = 26 n = 21

n = 21 n = 26 n = 28 n = 21

n = 8 n = 8 n = 8 n = 8

Figure 3. HF phenotype induced by TER in the DM zebrafish model. (A) Representative fluorescent microscopic images of the Tg (myl7:EGFP) zebrafish heart with 
a GFP at 7 dpf. (B) vFS (n = 21–26 per group). (C) Representative blood pulse graphs. (D) SD of the beat-to-beat interval (n = 21–28 per group). (E) Relative mRNA 
expression of nppb (n = 8 per group). Each group had 8 samples, with 10 larvae per sample. Data are presented as mean ± SD and each dot represents the value 
of each sample. 
DM = diabetes mellitus; dpf = days post-fertilization; EGFP = enhanced green fluorescent protein; HF = heart failure; myl7 = myosin light chain 7; SD = standard 
deviation; TER = terfenadine; Tg = transgenic; VD = ventricular diastole; VEH = vehicle; VS = ventricular systole. 
*p<0.05, **p<0.01, ****p<0.0001 vs. indicated group.



DISCUSSION

This study presents a method for establishing and evaluating a new animal model for in 
vivo experiments of DM-HF. The GLU/STZ treatment induced hyperglycemia and abnormal 
glucose homeostasis in zebrafish larvae, which showed a DM-like phenotype. In addition, 
TER treatment induced more severe HF in DM zebrafish larvae than that in non-DM 
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A

B

D

C

n = 24 n = 24 n = 24 n = 24 n = 24 n = 24 n = 24 n = 24

Non-DM (n = 72)

Non-DM + TER (n = 72)

DM (n = 72)

DM + TER (n = 72)

Figure 4. Reduced motility and viability of the diabetic HF zebrafish model. (A) Representative images of 
motility tracking for 5 minutes in zebrafish larvae. (B) Average moved distance and (C) movement duration per 
minute (n = 24 per group). Data are presented as mean ± SD and each dot represents the value of each sample. 
(D) Kaplan-Meier survival analysis (n = 72 per group). 
DM = diabetes mellitus; TER = terfenadine; VEH = vehicle. 
*p<0.05, ***p<0.001, ****p<0.0001 vs. indicated group.



zebrafish, as revealed by a remarkable reduction in cardiac contractility and an increase in 
irregular contraction.

In the previous DM zebrafish larvae models, hyperglycemia was induced by immersion 
in only GLU.16)17) However, according to the results of our study, immersion in high GLU 
concentrations resulted in a sharp decrease in the survival rates of zebrafish larvae. This 
finding indicates that a high-concentration GLU immersion-induced hyperglycemia 
model is challenging to use in a study requiring a period of 3 days or more and may lead 
to serious bias in the results. We examined the survival rates of zebrafish at various GLU 
concentrations and determined an optimum concentration that did not affect viability. STZ 
destroys pancreatic β-cells through DNA alkylation.18) Our experimental results show that 
insulin expression is decreased in GLU/STZ-treated zebrafish larvae without affecting the 
morphology and maturation of pancreatic β cells. It seems that continuous stress caused by 
GLU and mild damage caused by STZ caused partial dysfunction without destroying β-cells. 
Here, we determined conditions that partially inhibited pancreatic β-cell function without 
affecting survival. The GLU/STZ induced-DM-like characteristics did not result in a sharp 
decrease in the survival rate until at least 9 dpf. In addition, GLU/STZ treatment considerably 
increased the levels of PEPCK, an essential enzyme in gluconeogenesis, compared with GLU 
alone. The increase in PEPCK expression suggests that gluconeogenesis was increased due 
to the lack of glucose required for tissue metabolism despite the high blood glucose levels. 
Additionally, the GLU challenge experiment revealed that GLU/STZ treatment reduced 
glucose homeostasis. These results validated the establishment of a new DM zebrafish model 
with hyperglycemia and abnormal glucose homeostasis.

In this study, DM zebrafish were treated with TER to induce HF. We previously reported 
a zebrafish larvae HF model induced using TER.11)12) In that study, TER inhibited normal 
myocardium contraction by blocking the potassium channel, induced cardiomyocyte 
apoptosis, and consequently reduced cardiac function in zebrafish larvae.11)12) The present 
study showed that despite treatment with the same TER concentration, more severe cardiac 
dysfunction was induced in DM zebrafish than in non-DM zebrafish. In DM zebrafish treated 
with TER, cardiac contractility significantly decreased, irregular contraction remarkably 
increased; additionally, a sharp increase in the expression of nppb, an HF biomarker, and 
significant reduction in motility and survival were observed. These results support the 
results of clinical studies in which patients with DM showed significantly increased HF 
prevalence and mortality.1)2) Zebrafish larvae models of HF induced by various methods have 
been reported. Aristolochic acid (AA), a toxin that induces inflammation-mediated HF, is 
commonly used in zebrafish HF studies;19) additionally, laser-induced HF zebrafish models 
suitable for cardiac injury and recovery studies are attracting increasing attention.20) In this 
study, we induced HF using only TER in DM zebrafish. However, depending on the purpose 
of the study, various methods of HF induction, such as AA or laser injury, can be used.

As research on the prevention and treatment of DM-HF is strongly required, various animal 
models are being used.21-23) However, existing animal models for studying DM-HF have 
several limitations. As it takes a lot of time to induce DM and HF, induction of DM-HF is 
more time-consuming. DM induction is mainly induced by a high-fat diet or the β-cell 
ablation method.24-26) However, a high-fat diet requires several weeks to months to induce 
DM, and symptoms may differ among individuals depending on the feeding state. The β-cell 
ablation method can induce only the characteristics of type 1 DM. Additionally, conventional 
induction of HF uses an invasive, technically demanding procedure, and it is difficult to 
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control the symptoms and mortality suitable for the experiment.27) The DM-HF zebrafish 
model established in this study has a short induction time; can minimize differences among 
individuals because it does not require a diet; induces hyperglycemia without destroying 
pancreatic β-cells; and is non-invasive. Therefore, this easy-to-use approach would 
complement the animal models used in DM-HF studies.

The main limitation of zebrafish DM-HF models is that they are not mammals and have 
different cardiac circulatory systems than rodents or humans. Therefore, the study results 
using our DM-HF zebrafish larvae model must be confirmed in rodents and humans. Moreover, 
chemically induced zebrafish larvae disease models are less stable than genetically modified 
models. To establish consistent chemically induced models and obtain experimental results, 
it is necessary to thoroughly control environmental factors, such as circadian rhythm, 
temperature, population density, and water contamination. Lastly, our DM-HF zebrafish 
models pertain to HF with reduced ejection fraction and do not apply to HF with preserved 
ejection fraction, which constitutes approximately 40% of the overall HF cases.

In conclusion, this study established a novel animal model for DM-HF by sequentially 
immersing zebrafish larvae in GLU/STZ and TER. Additionally, methods for evaluating DM-
HF in zebrafish larvae were presented. The results of this study can be used for in vivo studies 
of DM-HF and utilized as a platform to assess the effects of new medications for DM and HF.

SUPPLEMENTARY MATERIALS

Supplementary Table 1
Ct value for RT-PCR

Click here to view

Supplementary Figure 1
Morphological changes in TER-treated control or GLU/STZ-treated zebrafish larvae.

Click here to view
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