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Summary

Epitopes identified in large-scale screens of overlapping peptides often

share significant levels of sequence identity, complicating the analysis of

epitope-related data. Clustering algorithms are often used to facilitate

these analyses, but available methods are generally insufficient in their

capacity to define biologically meaningful epitope clusters in the context

of the immune response. To fulfil this need we developed an algorithm

that generates epitope clusters based on representative or consensus

sequences. This tool allows the user to cluster peptide sequences on the

basis of a specified level of identity by selecting among three different

method options. These include the ‘clique method’, in which all members

of the cluster must share the same minimal level of identity with each

other, and the ‘connected graph method’, in which all members of a clus-

ter must share a defined level of identity with at least one other member

of the cluster. In cases where it is not possible to define a clear consensus

sequence with the connected graph method, a third option provides a

novel ‘cluster-breaking algorithm’ for consensus sequence driven sub-clus-

tering. Herein we demonstrate the tool’s clustering performance and

applicability using (i) a selection of dengue virus epitopes for the ‘clique

method’, (ii) sets of allergen-derived peptides from related species for the

‘connected graph method’ and (iii) large data sets of eluted ligand, major

histocompatibility complex binding and T-cell recognition data captured

within the Immune Epitope Database (IEDB) with the newly developed

‘cluster-breaking algorithm’. This novel clustering tool is accessible at

http://tools.iedb.org/cluster2/.

Keywords: Allergy; Antigens/Peptides/Epitopes; Bioinformatics>; MHC/

HLA; Viral.

Introduction

Immune epitope data pertaining to specific antigenic

regions often must be assessed from data generated using

several different, although largely overlapping and/or

highly similar, sequences. This is typically because the

exact sequences used to probe a specific region can differ

between different laboratories, studies and methodologies,

reflecting, for example, the use of different isolates, or

alternative frame shifts.

Similarly, epitope identification strategies often involve

the use of overlapping peptide sets, but can also include

the testing of candidate peptides identified from major

histocompatiblity (MHC) binding predictions,1,2 as well

as the elution of naturally processed MHC ligands, which

often occur as nested sequences.3 Epitope-related

sequences might also originate from homologous variants,

such as different viral strains, homologous sequences

found in related species, repeat sequences or single-

nucleotide polymorphisms.4 Different sequence variants

might bind to closely related human leucocyte antigens

(e.g. human leucocyte antigen supertypes)5–7 and, in

addition, certain sequences might reflect ‘hot spots’ of

immunodominant regions that are preferentially pro-

cessed and bound.8

To capture this diversity, the Immune Epitope Data-

base (IEDB) was specifically designed to curate each

molecular structure (unique epitope) and associated

metadata as a distinct entity.9 However, to perform aggre-

gate analyses on these individual data, there is a clear

need for improved clustering strategies that facilitate bio-

logically meaningful response analyses.
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The IEDB has developed a tool, called IMMUNOME BROW-

SER,10,11 that enables visualization of the immune reactiv-

ity of related epitope sequences by displaying reported

epitope reactivity along the linear sequence of a specified

antigen or reference proteome. The tool is powerful for

visualization purposes, but is not well suited to resolve

redundancy of sequences in separate and specific clusters,

and is also not ideal to analyse sequences that may cluster

together, but that are in fact derived from unrelated anti-

gens. Indeed, the identification of regions of homology

between unrelated sequences has been associated with a

number of important biological phenomena, like molecu-

lar mimicry, allergen cross-reactivity, and microbiome

modulation of adaptive immune responses.12–16 Cluster-

ing epitope reactivity may also be of interest to generate

epitope ‘megapools’ of minimal composition by elimina-

tion of potentially redundant sequences based on a speci-

fic degree of protein similarities.17–20

Clustering biological data, such as DNA or protein

(amino acid) sequences, is a well-studied problem. How-

ever, making ‘biologically meaningful’ clusters based on

epitope response data presents unique challenges.21,22

Here, a clustering approach would be biologically mean-

ingful if it could provide connectivity of the entities in

the clusters, provide a cluster representative sequence,

and was based on sequence characteristics of each data

set (unsupervised strategy). Several attempts have been

made in the past to address this issue from different

angles. For example, Hammock23 was developed to iden-

tify consensus motifs in large data sets, and PepServe24 to

cluster peptides based on their physiochemical properties.

Another application, UCLUST,25 performs rapid cluster-

ing and implements several previously identified cluster-

ing algorithms, and Andreatta et al.26,27 developed a tool

based on Gibbs sampling. Overall, most of these tools

cluster based on the physiochemical properties of peptide

sequences or by defining and focusing on shared motifs.

However, none of these tools provide a complete connec-

tivity of the peptides within a cluster and do not generate a

clear consensus sequence representing each cluster. The need

for elucidation of complete connectivity is key when evaluat-

ing cross-reactive responses or epitope homology between

different species. Vice versa, generating a clear consensus

sequence is important when trying to represent a group of

sequences sharing a defined level of identity with a single

unique sequence that maintains the same capacity to induce

an immune response as the constituent epitopes, such as has

been done with the megapool approach.20

From a computational standpoint, two main clustering

approaches exist: cliques28 and clustering by connected

graph.29–31 In the clique approach, sequences are clustered

into cliques, defined as a group of sequences related to all

other members at (or above) the exact desired level of

identity. Although this approach allows definition of clear

consensus sequences, the main drawback is that the same

sequence may be found in multiple cliques, leading to

inflation of the number of clusters and ambiguity within

clusters. That is, the clique approach provides greater

inclusiveness, per se, but it also hinders cluster size reduc-

tion, which is desired for immune epitope clustering.

In the connected graph approach, all peptide sequences

that are identical to a certain pre-specified percentage

level, for example 70%, are clustered together. In this

case, any member of the cluster will be at least 70% iden-

tical to at least one member of the cluster. Although this

approach clusters peptides only once, thereby avoiding

redundancy, a drawback is that other members of the

cluster might, and often are, related by levels of identity

much lower than 70%, which is not suitable when you

need to have a clear identity cut-off. In addition, this

method cannot always resolve clearly consensus

sequences.

To address these issues and apply them in different

immunological contexts, we developed a clustering tool

that is flexible enough to take into consideration different

strategies, and generate consensus sequences from clusters

by identifying the most commonly occurring residues at

each position in a given length of amino acids based on a

multiple sequence alignment. This novel tool allows the

user to select different clustering algorithms and strategies

depending on the biological question. We illustrate the

performance of this method through the resolution of

clusters of various epitope data sets available within the

IEDB, and with different immunological purposes.

Methods

Dengue virus data set

The dengue virus (DENV) epitope data set was derived

from a comprehensive analysis of human leucocyte anti-

gen-matched CD4+ T-cell responses in a Sri Lankan

cohort, allowing for the selection of 363 epitopes restricted

by 15 DRB1 alleles with phenotypic frequency > 4% in

the Sri Lankan population, as previously reported.18 The

set of epitopes covers serotype-specific epitopes from

DENV serotypes 1, 2, 3, 4 (all 10 proteins), as well as epi-

topes conserved between those serotypes. For each epitope

a corresponding spot-forming colony (SFC) value is pro-

vided based on in vitro expansion of DENV-specific T cells

and interferon c enzyme-linked immunospot assay to rank

the best epitopes with highest SFC.32

Rat and mouse allergen data sets

Allergen epitope data sets were assembled from previous

data characterizing rat and mouse antigens. The rat epi-

topes are derived from the rat allergen Rat n I, a major

urinary protein, and constitute a set of 19 peptides found

to be T-cell-reactive in rat-allergic patients.33 In addition,
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our group recently identified 23 peptides from the major

mouse allergen, Mus m I.34

IEDB data sets used for algorithm and tool development

Additional epitope data sets were compiled from the

IEDB (http://iedb.org), which curates a vast set of pub-

lished T-cell response data, as well as MHC class I and II

binding and ligand elution (MHCLE) data.

To retrieve relevant sets of epitopes, a query was per-

formed from the IEDB home page targeting ‘T cell Assays’

(using check boxes in the ‘Assay’ search panel), and includ-

ing both positive and negative peptides. As no other selec-

tion criteria were included in this initial query, these data

represent both human and non-human data. The query

was performed on February 2017, at which point the IEDB

contained a total of 115 228 peptides tested (positive and

negative) in T-cell response assays. The full set of T-cell

response data was downloaded to EXCEL using the Assays

tabs (Export T cell Assays Results).

To retrieve MHC binding and MHCLE data, a similar

query was performed targeting (separately) each of these

data sets (using the ‘Find’ feature within the Assay search

pane). These queries revealed a total of 64 312 peptides for

MHC binding data and 139 614 for MHCLE. From the

exported EXCEL tables, we selected only linear peptides and

further categorized each peptide data set as associated with

either class I or class II MHC molecules. Because of the

unique immunobiology of class I and class II, these data

sets were analysed separately in clustering algorithms. The

composition and breakdown of the resulting data set is

summarized in the Supplementary material (Table S1).

Generation of sequence identity matrices

In-house Python scripts were used to calculate the sequence

identity between each peptide pair in each data set. When

calculating the identity between any peptide pair, one pep-

tide is aligned to a second peptide in all the possible frames

and the number of residues matching is counted for each

frame (including the offsets). The alignment with the lar-

gest number of matches was used for identity calculations.

To scale the level of sequence identity in the range 0–1
(meaning from 0% to 100%), we divided the maximum

number of matches in the alignment by the length of the

smaller peptide (see eqn i).

Building a graph network connecting clusters and cliques

The sequence identity matrix calculated as above was then

used to create an undirected graph network. Here, an

undirected graph network works as a spacial/graphical

representation of the data, where nodes within the net-

work represent the clustered peptides and the edges repre-

sent the sequence identity defined above for a given

threshold. The undirected graph network was generated

with the NETWORKX version 1.11 library of Python lan-

guage.35 Using this, all the fully interconnected nodes

(called cliques) and the connected components (called a

connected graph) were derived. Here, a clique is defined

as a set of peptides, wherein all the peptides share

sequence identity higher than the threshold with all other

members of the clique. By contrast, each connected graph

represents a group of peptides, where each peptide shares

sequence identity higher than the threshold to at least one

of the other peptides in that connected graph. As a result,

one peptide can be present in more than one clique,

whereas each cluster contains only unique peptides, and

no peptide was present in two connected graphs.

Generation of alignments and consensus sequences from
peptide data sets

Sequence alignments were generated using CLUSTAL OMEGA

version 1.2.4 for high-quality alignments based on several

benchmark studies.36 From the alignment output, the

consensus sequence is derived using the BIOPYTHON pack-

age.37 Here, we used a threshold of 51% occurrences to

assign a residue at a specific position. An X was assigned

for ambiguous residues. These alignments were used to

derive consensus sequences from each set of peptides in a

cluster.

Cluster breaking algorithm applied on connected graph
method and web implementation

A cluster breakdown algorithm was developed scanning

each connected graph for the longest possible consensus

sequence using an undirected graph network constructed

from a set of peptides (as described above). The process

starts by extracting the most connected peptide (centre

node, N0) in a graph, including all the directly connected

peptides (neighbours, N1) of that peptide. Then the next

set of peptides (N2) is extracted, and connected to centre

node (N0) through N1. Each peptide in N2 is then aligned

with a consensus sequence, and peptides that share

sequence identity less than the threshold of the consensus

sequence are removed. The next alignment is created with

the remaining peptides from N2 and all the peptides from

N1 (including centre node). A new consensus is then

derived from this alignment. The process is iterated until

the clear longest consensus sequence that can represent

Sequence identity ¼ Maximum number of residue matching in an alignment

Length of smaller peptide

ª 2018 The Authors. Immunology Published by John Wiley & Sons Ltd., Immunology, 155, 331–345 333

Development of a novel clustering tool

http://iedb.org


the maximum number of peptides in a connected graph is

obtained. These peptides are then removed from the net-

work and the process is repeated in a recursive fashion for

each sub-graph. The complete cluster-break pipeline was

implemented in the DJANGO framework and can be

accessed by users as an online tool. JAVASCRIPTS were used

to support the visualization in the server.

Results

Use of a network graph approach to generate cliques
and connected graph

Our overall goal was to develop an online tool that would

allow the user to apply different clustering strategies to a

list of epitope or peptide sequences. Specifically, we used

two main methodologies to cluster sequences, one by cli-

ques28 and the other by connected graph.29–31

For this we developed a simple algorithm to cluster

sequences using a network graph approach.35 A network

was created using a matrix, where each row represents a

peptide pair and their sequence identity. This method

creates graphical networks of sequences in which all

members of the cluster are homologous to all other mem-

bers of the connected graph at a specified identity level

(see Supplementary material, Fig. S1). Here circles, or

nodes, represent the peptides and the solid line is the

identity above threshold between any peptide pair. From

these graphical networks, peptide sequences that are con-

nected in the network (called the connected graph) can

be extracted. The peptides labelled as A, B, C and D are

connected graphs shown in Supplementary material

(Fig. S1). As an alternative, all the peptides that are fully

interconnected (referred to as cliques) can be extracted.

The cliques are represented by peptides A, B and C (cli-

que 1) or peptides B, C and D (clique 2) in the example

above, as peptides A and D are not connected (see Sup-

plementary material, Fig. S1). Peptides that do not share

any homology with remaining peptides (e.g. E in our

example), are referred to as singletons. Each peptide will

be present in only one connected graph, but can be

present in multiple cliques. Singletons are represented

the same way in the connected graph and clique

approaches.

Application of the clique method to refine a
previously identified DENV-derived epitope megapool

Next, we evaluated the performance of our clustering

methods using different approaches suited to the different

immunological questions behind them. As a first example

we used a set of 363 DENV-derived epitopes for which a

‘megapool’ of peptides was previously generated based on

experimental data from human leucocyte antigen-

matched CD4+ T-cell responses in a Sri Lanka DENV-

endemic population.18 In this case, we sought to reduce

the number of peptides included in the megapool to facil-

itate experimental approaches without sacrificing biologi-

cal activity. For this purpose, to obtain clear consensus

sequences encompassing peptides achieving the same

identity level cut-off despite the possibility of having clus-

ter redundancy, the clique method was applied.

The results are summarized in Table 1, and also shown

in the Supplementary material (Tables S2 and S3).

Among the original 363 DENV epitopes, 305 were unique

in the data set and at 70% sequence identity they were

grouped into 198 cliques (see Supplementary material,

Table S2). Of those 198 cliques, 118 cliques contained

two or more epitopes and, in total, covered 225 epitopes.

The remaining 80 epitopes did not share any similarities

with the rest of the epitope set and hence were

assigned as singletons (clusters containing a single

sequence).

Examining the best epitopes (i.e. those with highest

magnitude of response, in terms of SFCs) contained in

each of the 118 cliques, we observed that this corre-

sponded to 83 unique epitopes (some epitopes were

selected as the best epitope in more than one clique).

Hence, in the end, the clique clustering generated a set of

80 singletons and 83 unique ‘best of the clique’ epitopes,

or a total of 163 epitopes that could be used to represent

the 363 DENV ‘megapool’ previously identified, equiva-

lent to a 55% reduction in the number of epitopes

needed (see Supplementary material, Table S3).

Application of the clustering method in mouse versus
rat allergen data

As another demonstration of the peptide-clustering appli-

cation we analysed data derived from a study of mouse

allergens. To date, one major mouse allergen, Mus m I,

has been identified, to which our laboratory has mapped

23 different T-cell epitopes.34 A previous study had iden-

tified 19 T-cell epitopes33 from the major rat allergen,

Rat n I, which exhibits significant homology to Mus m I

Table 1. Summary of the dengue virus data clustering using clique

approach

Feature Counts

Total peptides 363

Unique peptides 305

Total cliques 198

Peptides covered in cliques with two or more peptides 225

Cliques with two or more peptides 118

Unique peptides selected in cliques with two or more

peptides

83

Singleton cliques 80

Total peptides selected 163
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(65% identity, 78% similarity), making these data sets

good candidates for cluster analysis.

Here the purpose of the clustering task was to judge

whether each epitope derived from the mouse allergen

would co-cluster with sequences derived from the rat

allergen. For this, the clique approach was not appropri-

ate, because the evaluation of the association requires that

each sequence be represented in only one cluster or it will

inflate the amount of sequences shared between the two

species. Accordingly, the connected graph strategy was

used (Table 2).

The analysis revealed that the 23 overlapping Mus m I

epitopes correspond to 20 unique epitopes, as three epi-

topes clustered with other epitopes within the same set

(70% identity threshold). Of the 23 Mus m I epitopes,

eight clustered with Rat n I peptides. Six of the eight

Mus m I epitopes that clustered with Rat n I peptides

were among the top nine in terms of T-cell response

magnitude (conversely, only two peptides were in the

bottom 14; P = 0�023 by exact Fisher test). This analysis

supported the notion that epitope allergens conserved in

multiple species may elicit a more dominant immune

response, probably due to increased/repeated exposure by

the various homologous allergens.

Analysis of MHCLE data reported in the IEDB

We then tested the two clustering approaches on a larger

data set consisting of naturally processed peptides eluted

from MHC, using MHCLE data reported in the IEDB.

MHCLE peptides are of variable size, and often the

sequences eluted are largely nested and/or overlap-

ping.38,39 For this reason, this type of data was ideal for

further validation of our clustering tool and to test the

applicability on larger-scale data.

The IEDB has MHCLE data for over 100 000 different

peptide sequences. Sets of class I and class II naturally

processed peptides were generated by querying the IEDB

(as described in the Materials and methods section) and

the extracted sequences were clustered using the network

graph approach.35 As an alternative, all the peptides that

were fully interconnected (cliques) were also extracted.

Because of their unique immunobiology, class I and II

ligands were analysed separately. We expected that the

effect of sequence clustering would be more pronounced

for class II, because of the well-known ‘ragged end’ nat-

ure of natural class II ligands,40 allowing ligands of vari-

able length. Indeed, we found that of a total of 105 642

class I and 33 757 class II peptides, 57 455 and 28 523

(respectively) were clustered (Table 3), and 48 187 and

5234 were singletons (not clustering with any other

sequence) for class I and class II, respectively. Hence,

almost half (46%) of the class I peptides were identified

as singletons compared with only 16% for class II; 84%

of the class II sequences were found in clusters (Table 3).

Using the connected graph (where different clusters can

be connected through single peptide, see Supplementary

material, Fig. S1) clustering method, we found 11 932

and 4683 clusters, respectively, for classes I and II. The

average cluster sizes were 4�82 and 6�09 peptides, respec-

tively, indicating that this method can effectively cluster

the data. In contrast, we observed 36 732 and 25 941 cli-

ques, and the average clique sizes were 2�78 and 57�36 for

the two data sets in the clique method. Hence, there are

many more cliques than clusters in class II and the aver-

age size of cliques (57�36 peptides, on average) is much

greater than the average size of clusters (6�09 peptides, on

average). This is due to the fact that many peptides are

found in multiple cliques, and indicates that the clique

approach was ineffective for data set reduction. As a

result, it was not considered further for this particular

application.

We then applied the clustering method on the same lar-

ger data sets evaluating the distribution of connected

graph clusters generated with the class II MHCLE data as

a function of the number of peptides contained in each

cluster. The distribution is shown in Fig. 1 (red line) for

the top 10 clusters (solid red line) and also summarized in

Table 4 (‘Raw Data’ column). Table 4 shows that a single

cluster contained more than 1000 peptides and a total of

10 clusters contained between 100 and 999 peptides. Simi-

larly, we observed 21 clusters with 50–99 peptides, 55 clus-

ters with 30–49 peptides, and 439 clusters with 10–29
peptides. Finally, the majority of the clusters (4157 out of

4683: (89%) encompassed fewer than 10 peptides.

However, manual inspection of the ‘large membership’

clusters (i.e. clusters with > 1000 peptides) revealed that

they contained rather heterogeneous sequences with very

little actual sequence similarity, often linked by the pres-

ence of very short sequence stretches of three or four resi-

dues. For several of the large clusters a clear consensus

sequence could not be defined (data not shown). We rea-

soned that the largest and smallest sequences contained in

the data pollute the clustering assignments, and so sought

to alleviate this problem by instituting appropriate pep-

tide length/size filters, and developing an additional fea-

ture on the clustering method.

Resolution is improved by excluding tail-end sequence
sizes

To implement an appropriate filter system for peptide

length, we reasoned that most biologically relevant data

(MHC ligands, MHC binding or T-cell recognition) are

associated with epitopes of between 8 and 25 residues.41–

44 To test this assumption, we generated data sets corre-

sponding to class I and class II peptides in the MHLE,

MHC binding and T-cell response data.

Across the different data sets, there were few peptides

with length less than 8 residues (< 8mer) (Table 5). The
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range for < 8mer was from as low as 0�09% (T-cell assay

for MHC class I) to 0�63% (MHCLE class I). The major-

ity of the peptides for MHC class I (~98%) were repre-

sented by peptides 8–15 amino acids in length for the

MHCLE and MHC binding data sets, and 8–20 amino

acids for peptides within the T-cell assays data set. To

achieve 98% coverage for class II, the length range is

higher; we consider peptides 8–25 amino acids in length

for MHCLE and 9–21 amino acids for the MHC binding

data sets. When we examined the size distribution of all

these various ligand categories, we found that filtering the

peptide data sets on the 8–25 amino acid size range cap-

tured 98% or more of all ligands, except for T-cell assays

for MHC class II, where it covers up to 97�24% of the

Table 2. The clustering tool output with mouse and rat allergic data

Cluster

number

Peptide

number Alignment Position Description Peptide

1 Consensus TFQLMXLYGRXXDLSSDIKEKFAKLCEA – – –

1 1 TFQLMVLYGRTKDLSSDIKE-------- 1 Rat Pep17 TFQLMVLYGRTKDLSSDIKE

1 2 -----GLYGREPDLSSDIKERFA----- 6 Mus Pep3 GLYGREPDLSSDIKERFA

1 3 -------YGREPDLSLDIKEK------- 8 Mus Pep7 YGREPDLSLDIKEK

1 4 --------GRTKDLSSDIKEKFAKLCEA 9 Rat Pep9 GRTKDLSSDIKEKFAKLCEA

2 Consensus YDRYVMXHLINXKXGETFQLMXLYGRTK – – –

2 1 YDRYVMFHLINFKNGETFQL-------- 1 Rat Pep19 YDRYVMFHLINFKNGETFQL

2 2 ------AHLINEKDGETFQLM------- 7 Mus Pep9 AHLINEKDGETFQLM

2 3 --------LINFKNGETFQLMVLYGRTK 9 Rat Pep12 LINFKNGETFQLMVLYGRTK

2 4 ----------NEKDGETFQLMGLY---- 11 Mus Pep6 NEKDGETFQLMGLY

3 Consensus EENGSMRVFXXHIXVLENSL – – –

3 1 EENGSMRVFMQHIDVLENSL 1 Rat Pep4 EENGSMRVFMQHIDVLENSL

3 2 ---GSMRVFVEHIHVLEN-- 4 Mus Pep16 GSMRVFVEHIHVLEN

4 Consensus FXXHIXVLENSLXFKFRIKE – – –

4 1 FMQHIDVLENSLGFKFRIKE 1 Rat Pep6 FMQHIDVLENSLGFKFRIKE

4 2 FVEHIHVLENSLAFK----- 1 Mus Pep2 FVEHIHVLENSLAFK

5 Consensus RXNIIDLTKTXRCLXARG – – –

5 1 RDNIIDLTKTDRCLQARG 1 Rat Pep14 RDNIIDLTKTDRCLQARG

5 2 -ENIIDLTKTNRCLKA-- 2 Mus Pep17 ENIIDLTKTNRCLKA

6 Consensus GXWFSIXXASXKREKIEENG – – –

6 1 GDWFSIVVASNKREKIEENG 1 Rat Pep8 GDWFSIVVASNKREKIEENG

6 2 -EWFSILLASDKREKI---- 2 Mus Pep4 EWFSILLASDKREKI

7 Consensus EEASSTGRNFNVXKINGEWHTIIL – – –

7 1 EEASSTGRNFNVQKINGEWHTIIL 1 Mus Pep10 EEASSTGRNFNVQKINGEWHTIIL

7 2 ----------NVEKINGEWHTIIL 11 Mus Pep13 NVEKINGEWHTIIL

8 Consensus FVEYDGXNTFTILKTDYDXY – – –

8 1 FVEYDGGNTFTILKTDYDRY 1 Rat Pep7 FVEYDGGNTFTILKTDYDRY

8 2 ----DGFNTFTILKTDYDN- 5 Mus Pep5 DGFNTFTILKTDYDN

9 Singleton TFTILKTDYDRYVMFHLINF – Rat Pep18 TFTILKTDYDRYVMFHLINF

10 Singleton GIYYLNYDGFNTFTI – Mus Pep14 GIYYLNYDGFNTFTI

11 Singleton KTPEDGEYFVEYDGGNTFTI – Rat Pep10 KTPEDGEYFVEYDGGNTFTI

12 Singleton LENSLVLKFHTVRDE – Mus Pep8 LENSLVLKFHTVRDE

13 Singleton LQSGFYSLSSLVTVP – Mus Pep21 LQSGFYSLSSLVTVP

14 Singleton ENSLGFKFRIKENGECRELY – Rat Pep5 ENSLGFKFRIKENGECRELY

15 Singleton EKALVSSVRQRMKCS – Mus Pep11 EKALVSSVRQRMKCS

16 Singleton LEQIHVLENSLVL – Mus Pep1 LEQIHVLENSLVL

17 Singleton DDVVASEALNSVWSGF – Mus Pep15 DDVVASEALNSVWSGF

18 Singleton SRPFIFQEVIDLGGE – Mus Pep12 SRPFIFQEVIDLGGE

19 Singleton DKETLSLEELKALLL – Mus Pep20 DKETLSLEELKALLL

20 Singleton IGGPDDGVITPWQSSF – Mus Pep19 IGGPDDGVITPWQSSF

21 Singleton DIKEKFAKLCEAHGITRDNI – Rat Pep2 DIKEKFAKLCEAHGITRDNI

22 Singleton RELYLVAYKTPEDGEYFVEY – Rat Pep15 RELYLVAYKTPEDGEYFVEY

23 Singleton ILGKLVKDYHLQFHR – Mus Pep18 ILGKLVKDYHLQFHR

24 Singleton TIFISLFLLSVCYSA – Mus Pep23 TIFISLFLLSVCYSA

25 Singleton EELRRLAPITSDPTE – Mus Pep22 EELRRLAPITSDPTE

26 Singleton NLDVAKLNGDWFSIVVASNK – Rat Pep13 NLDVAKLNGDWFSIVVASNK

27 Singleton LCEAHGITRDNIIDLTKTDR – Rat Pep11 LCEAHGITRDNIIDLTKTDR

28 Singleton RIKENGECRELYLVAYKTPE – Rat Pep16 RIKENGECRELYLVAYKTPE

29 Singleton ASNKREKIEENGSMRVFMQH – Rat Pep1 ASNKREKIEENGSMRVFMQH

30 Singleton EEASSTRGNLDVAKLNGDWF – Rat Pep3 EEASSTRGNLDVAKLNGDWF
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peptides. Accordingly, in subsequent analyses, we only

considered peptides in the 8–25 residue range, so effec-

tively removing outlier sequences from the top and bot-

tom end of the length distribution for both class I and II

(Table 5).

Next, we repeated the cluster analysis considering only

peptides in the 8–25 residue range. As expected, several

of the large clusters were broken down into smaller ones,

and the number of clusters increased from 4683 to 4726.

Maximum cluster size dropped from 1006 to 649, with

only 11 clusters containing more than 100 peptides

(Table 4; ‘Length filtered column’). This normalizing

effect was also observed in the plot representing the num-

ber of peptides in each cluster (Fig. 1, blue line). Also, as

expected, the average number of peptides in each of the

different clusters was decreased. In most cases a clear

consensus sequence could be defined, but for several of

the large clusters a clear consensus sequence remained

elusive (data not shown).

In conclusion, while the data filtering increased the

clustering resolution, the presence of several large and

ambiguous clusters suggested that further approaches

were required to maximize clustering resolution in the

case of large data sets like the ones considered herein.

Development of an algorithm that allows cluster-break
for clear separation

Manual inspection of the remaining large clusters

revealed that in several cases, these clusters contained

numerous loosely connected sub-clusters (Fig. 2a). To

Table 3. Statistics of peptides from MHCLE data set and their clus-

tering at 70% sequence identity threshold

Features MHCLE class I MHCLE class II

No. of peptides 105 642 33 757

No. of peptides clustered 57 455 28 523

No. of singletons 48 187 5234

Singletons (% peptides) 46 16

No. of clusters 11 932 4683

Average size of cluster 4.82 6.09

No. of cliques 36 732 25 941

Average size of cliques 2.781 57.361

MHCLE, major histocompatibility complex ligand elution.
1Number of peptides/cliques (one peptide can be present in several

cliques).

‘#’ denotes the count of a particular feature.
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Figure 1. Plot representing the number of

peptides in top 10 clusters from major histo-

compatibility complex class II ligand elution

data.

Table 4. Distribution of cluster size for MHCLE data set for class II

with different approaches

Cluster

size

Number of clusters

Raw

data

Length filtered data1

(8–25 residues)

Length filtered

data1 + Cluster break

algorithm

≥ 1000 1 0 0

100–

999

10 11 10

50–99 21 17 26

30–49 55 50 49

10–29 439 452 492

< 10 4157 4196 4335

Total 4683 4726 4912

MHCLE, major histocompatibility complex ligand elution.
1Length filtered data: to obtain a final list of peptide data sets where

short (< 8 amino acids) and long (> 25 residues) peptides have been

removed.
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visualize this feature, we followed the approach of con-

structing an undirected graph network from peptide

sequence identity matrices using a publicly available net-

work package.35 According to this approach, a circle rep-

resents each peptide sequence, and any peptides (circles)

that share an indicated level of identity (in this case 70%)

are connected by a solid line (see Supplementary material,

Fig. S1).

Application of the cluster-break algorithm to various
large peptide data sets

When the cluster-break algorithm was applied to the

MHC class II ligand elution data set, the number of clus-

ters increased to 4912, and the largest clusters now con-

tained only 219 sequences (Table 4; ‘Length filtered’ and

‘cluster break algorithm’ columns). The largest sub-cluster

was a ‘legitimate’ cluster with the consensus sequence

‘AASQRMEPRAPWIEQEGPEYWDXETRXVKAHSQTH’.

A further smoothing in the distribution of peptides in

different clusters is also observed (Fig. 1, green line).

Based on these results we surmise that the combination

of the peptide size filter and the ‘cluster-breaking’ algo-

rithm represents a viable clustering strategy for large data

sets of this type.

An example of this representation based on a cluster

composed of 99 different peptides is shown in Fig. 2(a).

Next, a cluster-break algorithm was derived to further

dissect clusters into sub-clusters, and achieve definition of

the longest consensus sequence (Fig. 2b), as described in

the Materials and methods.

To further validate the cluster-break strategy, we per-

formed a similar analysis on the class I MHCLE data set,

and MHC binding and T-cell epitopes for both class I

and class II data sets. We observed no cluster with more

than 1000 members (Table 6). The maximum size for any

cluster was 257, found in one case in the MHC class I

binding data set (Fig. 3, dashed blue line). The maximum

cluster size for class I peptides in the MHCLE and TCR

data sets was in the range of 50–99, whereas the range

was 100–999 for the remaining data sets. Similar to the

MHCLE class II data set, there were few clusters in the

size ranges 30–49 or 10–29; the majority of clusters have

less than 10 peptides. Figure 3 plots the top 10 clusters

Table 5. Distribution of peptide length in both the classes of

MHCLE, MHC binding and T-cell assay data sets

Length

MHCLE

I (%)

MHCLE

II (%)

MHC

binding

I (%)

MHC

binding

II (%)

CD8

T cell

(%)

CD4

T cell

(%)

< 8 0�63 0�20 0�16 0�60 0�09 0�24
8 7�04 1�10 6�33 0�25 8�24 0�49
9 50�92 1�37 61�51 2�59 44�30 1�13
10 18�38 2�00 24�85 3�54 20�70 2�33
11 11�74 3�35 4�24 2�56 4�73 1�22
12 4�74 5�85 0�44 2�91 0�64 6�57
13 2�72 10�60 0�19 5�50 0�33 2�76
14 1�36 15�08 0�16 3�01 1�28 2�86
15 0�87 16�49 1�01 56�55 14�61 40�69
16 0�38 14�54 0�18 4�07 0�45 6�11
17 0�30 10�07 0�06 3�43 0�34 3�89
18 0�22 6�33 0�06 3�13 1�09 4�52
19 0�17 3�91 0�02 1�56 0�11 2�12
20 0�12 2�68 0�72 7�62 2�54 18�42
21 0�09 1�84 0�05 1�20 0�05 1�64
22 0�07 1�15 0�01 0�30 0�02 0�56
23 0�05 0�94 0�00 0�14 0�08 0�44
24 0�04 0�65 0�01 0�21 0�05 0�46
25 0�02 0�45 0�00 0�30 0�06 1�05
> 25 0�14 1�40 0�00 0�53 0�25 2�52
≥ 8

and

≤ 25

99�22 98�41 99�83 98�87 99�65 97�24

MHC, major histocompatibility complex; MHC I, MHC class I;

MHC II, MHC class II; MHCLE, MHC ligand elution; CD8, T-cell

data recognized by MHC I; CD4, T-cell data recognized by MHC II.

(a) (b)

Figure 2. Example cluster visualization before

(a) and after (b) cluster-breaking algorithms.
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from each data set after applying the cluster-break algo-

rithms.

Further analysis of the overlap between MHC binding,
MHCLE and T-cell data

We then focused on a different immunological question

that can be addressed analysing large data-sets. In this

case we compared MHC binding data with MHCLE and

T-cell response to identify epitopes that were redundant

in the three data sets and could therefore be the best can-

didates able to be presented and recognized by T cells.

For this purpose, we clustered all the T-cell epitopes,

MHC binding and MHCLE data in pairs to analyse the

identity sharing between MHC binders or MHC eluted

data with T-cell response. As above, class I and class II

data were analysed separately. Once we obtained the

results of the clustering we further categorized each clus-

ter as positive for T-cell assays if it contained at least one

sequence associated with positive T-cell assay results, and

as negative if it contained only sequences negative in T-

cell assays. A cluster was classified as T-cell assay undeter-

mined if none of its sequences was associated with either

positive or negative T-cell recognition. A similar classifi-

cation was performed to classify clusters according to

MHC binding assay status. Unlike MHC binding and T-

cell epitope data, which represent both positive and nega-

tive assays, for MHCLE data there are only positive data

(MHCLEp) (see Supplementary material, Table S4),

therefore it cannot be inferred whether the sequence is

negative or not tested.

In the case of class I, out of a total of 2719 T-cell

assay + clusters, only 515 were undetermined (19%); of

the remaining clusters, 2026 were MHC + (74�5%)

(Fig. 4a). Similarly, in the case of class II, 1260

(38�6%) of the T-cell assay + clusters were also MHC +
(Fig. 4b). Conversely, when we examined MHC + clus-

ters we found that 28�6% and 47�6% were also T-cell

assay +, for class I and class II, respectively. Taken

together, this analysis supports the notion that MHC

binding is necessary, but not sufficient, for T-cell

immunogenicity.

When we examined MHCLE data, we found that the

vast majority of MHCLEp clusters are undetermined

when it comes to T-cell assays (85�1% and 89�9% for

class I and class II, respectively) (Fig. 4c,d) or MHC

binding (83�5% and 91�5% for class I and class II, respec-

tively) (Fig. 4e,f). In the few cases where the cluster could

be categorized, the results were consistent with expecta-

tions, in that most (82�4% for class I to 87�6% for class

Table 6. Distribution of cluster size for different data sets

Cluster

size

Number of clusters (length filtered data + cluster break

algorithm)

MHCLE

II

MHCLE

I

MHC

binding

I

MHC

binding

II

CD8

T

cell

CD4

T

cell

≥ 1000 0 0 0 0 0 0

100–

999

10 0 6 9 0 6

50–99 26 8 24 14 12 23

30–49 49 9 60 32 58 77

10–29 492 277 507 202 431 431

< 10 4335 15 842 5525 1933 4081 3421

Total 4912 16 136 6122 2190 4582 3958

MHC, major histocompatibility complex; MHC I, MHC class I;

MHC II, MHC class II; MHCLE, MHC ligand elution; CD8, T-cell

data recognized by MHC I; CD4, T-cell data recognized by MHC II.
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MHCLE_IIFigure 3. Plot representing the top 10

clusters in different data sets after

applying cluster-break algorithm.
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II) of the MHCLEp clusters were also positive for

MHC binding assays. We expected that being positive

for MHCLE would have been a better predictor of

T-cell assay positivity than simple MHC binding. Sur-

prisingly, this was not the case and we found that 42%

and 77�8% of MHCLEp clusters were also T-cell

assay +, for class I and class II, respectively. This is in

agreement with the notion that MHC binding and

ligand processing are necessary, but not sufficient, for

T-cell immunogenicity.45

Implementation of the three methods in a unique
clustering tool online

An online version of the tool described herein was devel-

oped, with the aim of making it accessible through the IEDB

website. We designed the tool to be as user-friendly as possi-

ble by requiring minimum parameter input from the users,

but at the same time preserving rigorous functionality.

In terms of an input interface, users will provide a set

of sequences by pasting directly into a text box or

Clustering overlap of MHC
Class I and CD8 T-cell assays

MHC –

CD8 T-cell assays

515
MHC (not tested)

178

MHC I assays

2502
T-cell assay –

2026
T-cell assay + MHC +

2550
T-cell (not tested)

MHC –
175

1822
MHC (not tested)

T-cell assay + MHC +
1260

576
T-cell assay –

813
T-cell (not tested)

Clustering overlap of MHC
Class II and CD4 T-cell assays

CD4 T-cell assays MHC II assays

Clustering overlap of MHC Class I Ligand
elution and CD8 T-cell assays data

Clustering overlap of MHC Class II Ligand
elution and CD4 T-cell assays data

T-cell 
assays+

T-cell assay
(not tested) 

T-cell assays –

1124

T-cell 
assays+

399
15313

1554

4561

T-cell assay
(not tested) 

T-cell assays –

114

Clustering overlap of MHC Class I
Ligand elution and binding data

Clustering overlap of MHC Class II
Ligand elution and binding data

MHC
Binding +

2440

15029

MHC
binding

(not tested)

522

MHC binding –

MHC
Binding +

2440

15029

MHC
binding

(not tested)

522

MHC binding –

(a) (b)

(c) (d)

(e) (f)

Figure 4. Analysis of overlapping clusters in major histocompatibility complex (MHC) binding, T-cell and MHC ligand elution data. (a) H-chart

for overlapping clusters between MHC class I binding and CD8 T-cell assays. (b) H-chart for overlapping clusters between MHC class II binding

and CD4 T-cell assays. (c) Pie-chart of overlapping clusters in MHC class I ligand elution data and CD8 T-cell assays. (d) Pie-chart of overlap-

ping clusters in MHC class II ligand elution data and CD4 T-cell assays. (e) Pie-chart of overlapping clusters in MHC class I ligand elution and

binding assays data. (f) Pie-chart of overlapping clusters in MHC class II ligand elution and binding assays data.
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through upload in a given file format (Fig. 5a). The

sequences can be in either plain text format, where each

line has a separate sequence, or in FASTA format. In

addition, the user can attach metadata to the sequences,

such as an IEDB peptide identifier or other user-gener-

ated metadata (such as the antigen or organism source of

the sequence, sequence position etc.) in the FASTA for-

matted file. Next, the user chooses the minimum thresh-

old for sequence identity, and whether to apply the size-

exclusion filter (default, no length filters) (Fig. 5b). And

then, in a third step, the user would choose one of three

available options for the clustering approach (Fig. 5c).

These three options correspond to the connected graphs,

cluster-break and cliques approach. In default settings,

cluster-break algorithms will be run.

Once the user has filled in these options, a submit but-

ton will automatically redirect the user to the results

page. The results page displays a summary of results,

including the total number of peptides, unique number

of peptides, selected identity threshold and total number

of clusters found in a given data set (Fig. 5d). The option

of exporting the result to EXCEL will be provided.

The complete results are provided both in tabular and

graphic form. The tabular results show the consensus or

peptide number, peptide alignment, position of a peptide

in the alignment, description and the peptide sequence

against each cluster number. The cluster number is

represented by a decimal number, where the number

before the decimal point is the cluster number before

applying the cluster-breaking algorithm and the number

following the decimal point identifies each sub-cluster

identified by the algorithm.

In the graphic representation (Fig. 5e), each cluster is

visualized in the form of networks, where each node is a

peptide and the edge is the connection between any two

nodes, if they have identity greater than the selected

threshold. Single nodes correspond to peptides where no

other sequence shares more than the given threshold of

identity.

In the current version of clustering tool (CLUSTER2), we

are offering the three different types of approaches

described here, which are useful in different contexts of

peptide application as summarized in Table 7. The clique

approach generates clusters of fully interconnected pep-

tides according to the specified identity threshold. The

approach will give, for each cluster, a clear representative

sequence, but cluster redundancy would be expected. This

approach is useful in generating, for example, megapools

where all the peptides belonging to a single cluster have

the same sequence identity threshold, and it would be

efficacious to select one peptide (based on user discretion,

in our case higher magnitude of response in terms of

SFCs) from each cluster. Unique peptides can be selected

at the end to address redundancy issues.

Figure 5. Screenshots from online tool. (a) Specify Sequence (Step 1), (b) Select clustering parameters (Step 2), (c) Choose clustering algorithm

(Step 3), (d) Tabular output (Result page), (e) Graphical Output (Result page).
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The cluster approach groups all directly or indirectly

connected peptides, based on specified identity threshold.

In this case, peptides belonging to the same cluster might

have a sequence identity below the threshold, but no pep-

tide redundancy is observed. This approach would be

useful, for example, to create non-redundant clusters of

peptides that can be used to analyse cross-reactivity with

a minimal peptide set. For larger data sets, representative

sequence/s might not be clear.

The cluster-break approach is an extension of the

above-mentioned cluster approach, where clusters are

broken down to sub-clusters to obtain a clear repre-

sentative sequence from each sub-cluster and to

address issues of large membership. Hence, this

approach is very useful in applications where it would

be helpful to reduce the number of peptides derived

from larger data sets.

Comparison with the existing algorithms

Clustering is a well-studied problem in biological data,

and has been applied to address different biological ques-

tions like creating gene networks, evolutionary relation-

ships and to find sequence homologues. Due to the

different purposes for which various algorithms have been

developed, it is somewhat challenging to compare an

algorithm with others based on a benchmarking data set.

Instead, here, we compared the features of different

algorithms for peptide clustering (Table 8). In addition to

the approaches described herein, we considered, for fea-

ture comparison, GibbsCluster,26,27 PepServe,24 Ham-

mock23 and UCLUST.25 Table 8 provides a summary of

the various features assessed in these.

Some critically important features are taken into con-

sideration for comparison, which include user input

sequences, free online tool, graphical visualization, con-

nectivity of peptides within cluster, cluster representative

sequence, dealing with large data sets, basis of calculating

identities among peptides and unsupervised nature of

clustering (Table 8). As evident from the comparison, the

new version of the clustering tool (CLUSTER2) offers many

missing features over existing tools. Overhang identity

calculations, visualizing connectivity and providing clear

representative sequences are some unique features imple-

mented in the tool. Additionally, our novel cluster-break-

ing algorithm provides unique way of clustering in large

data sets.

Discussion

Peptide clustering has several potential applications in an

immunological context. Although there are various algo-

rithms available for data clustering,46–48 the identification

of regions with specific homology, as well as representa-

tion of those with clear consensus sequences, has been

challenging for the development of appropriate clustering

algorithms.

In the past, several methods have been published inves-

tigating different aspects of peptide clustering, such as

UCLUST,25 PepServe,24 Gibbs clustering26,27 and the

Hammock algorithm.23 However, none of these tools pro-

vides the complete connectivity of the peptides within a

cluster and a biologically meaningful consensus sequence

representing each cluster, features that are of great utility,

particularly in the context of immunological studies. In

addition, as many available clustering tools use a specific

approach, it is challenging for immunologists to select the

appropriate algorithms able to address the biological

question of interest.

Here, we extend graph theory applications to peptide

clustering, where connectivity is defined by shared

sequence identity cut-off. Accordingly, peptides that are

fully homologous to each other are grouped in cliques,

whereas peptides that are homologous to a point are

grouped together in connected components. Both of these

approaches have their own pros and cons. In the clique

approach, each group can give a clear representative

sequence, but a peptide can be present in several groups,

hindering data set reduction. In the peptide-connected

approach, no peptide would be present in two groups,

but the group may not provide a clear representative

sequence. In addition, we report an alternative approach,

where no peptide would be present in more than one

Table 7. Features and applications of different clustering approaches

implemented in CLUSTER2

Features Clique

Connected

clusters Cluster-break

Clear

consensus

sequence

Mostly clear, as

peptides are

fully

interconnected

May have

many ‘X’ at

different

ambiguous

positions

Clusters are

broken down

to get

maximum

possible clear

consensus

Large

membership

issue

No Yes Resolved

Redundancy in

clusters

Yes No No

Same sequence

identity

threshold

between

peptides in

clusters

Yes No No

Application Generating

mega pools

Cross-

reactivity of

small data

sets

Cross-reactivity

of large data

sets
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group, and also each group can provide a clear represen-

tative sequence. In this approach, we develop a novel

cluster-break technique allowing derivation of a clear

consensus sequence.

The three different approaches are designed to address

different biological questions. The clique approach selects

a clear consensus sequence out of each clique and has all

the peptides grouped on a specific identity level cut-off.

This was applied on DENV data, and can be extended in

all the cases where redundancy is not important, while a

precise identity level is required in each cluster. The rea-

son for applying the clique approach in general is that

the peptides in each clique are fully interconnected and

selecting the peptide with highest response can represent

the remaining peptides in that clique. Hence, the clique

approach is suitable for highly redundant data with

sequence overlap and or high sequence homology. A sim-

ilar clique-based approach has previously been applied to

analyse the glycan structures49 and biological data min-

ing.50

Alternatively, the cluster approach based on connected

components, contains sequences with a lower level of

identity with respect to the one used as cut-off, but where

no peptide redundancy is observed in each cluster. The

cluster approach produced significant and meaningful

clusters for T-cell epitopes derived from rat and mouse

allergens.34 In this instance, the resulting clusters shared

high interconnectivity and were smaller in size, so a clear

representative/consensus sequence was observed and simi-

larities among the two species were not inflated by the

presence of redundancies.

Finally, in the context of larger data sets, we observed

that neither the clique approach nor the connected com-

ponents provide legitimate clusters. For this reason, we

generated an algorithm to break down clusters in a sys-

tematic manner to extract a clear representative/

consensus sequence from each sub-cluster. This cluster-

break approach has shown to be the most suitable in

the context of variable and larger data sets, such as in

the case of known epitopes derived from the IEDB.9

This approach is appropriate for applications where the

user, for example, would want to derive minimal, non-

redundant, and clear representation from large data sets

or identify common sequences between different data

sets, as in the case of epitopes able to both bind to

MHC and induce a T-cell response. It is worth noting

that comparable efficacy for both CD4+ and CD8+ T

cells clustering analysis is observed in the context of an

IEDB large data set example for the cluster-break

method, suggesting that the tool shows equal efficacy in

both types of data set.

Herein we describe the creation of a freely available

online tool for peptide clustering. The tool provides a

user-friendly format to support clustering of disparate

epitope data sets. The unique tool incorporates multi-

ple approaches to analyse different types of data set

and to address different immunological questions. We

applied the tool to in-house experimentally derived

CD4+ restricted epitopes, however the tool is equally

applicable to CD8+ T-cell epitopes, as shown for the

IEDB-derived data set. In addition to the epitopes,

the tool can also be applied to cluster and explore

interesting patterns in any linear peptide data set

(such as cell-penetrating peptides,51,52 tumour hom-

ing peptides,53 haemolytic peptides,54 therapeutic

peptides55).
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Table 8. Feature-based comparison of different clustering algorithms

Feature GibbsCluster PepServe Hammock UCLUST Cluster1.0 Cluster2.0

Input sequences Amino acid

sequence

Amino acids subjected

to retrieval

Amino acid

sequence

Amino acid sequence Amino acid

sequence

Amino acid

sequence

Freely available online

tool

Yes Yes Yes (Galaxy) No Yes Yes

Graphical visualization Yes Yes No No No Yes

Provides connectivity in a

cluster

No No No No No Yes

Cluster representative

sequence

Motif No Main

sequence

No No Consensus

sequence

Large membership issue NA NA NA Yes Yes Resolved

Overhang sequences

identity calculation

NA NA NA Yes, but consider only

aligned region

No Yes

Clustering basis Supervised Unsupervised Unsupervised Unsupervised Unsupervised Unsupervised

NA: feature cannot be compared.
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