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Raman spectroscopy as probe of nanometre-scale
strain variations in graphene
C. Neumann1,2, S. Reichardt1, P. Venezuela3, M. Drögeler1, L. Banszerus1, M. Schmitz1, K. Watanabe4,

T. Taniguchi4, F. Mauri5, B. Beschoten1, S.V. Rotkin1,6 & C. Stampfer1,2

Confocal Raman spectroscopy has emerged as a major, versatile workhorse for the

non-invasive characterization of graphene. Although it is successfully used to determine

the number of layers, the quality of edges, and the effects of strain, doping and disorder,

the nature of the experimentally observed broadening of the most prominent Raman

2D line has remained unclear. Here we show that the observed 2D line width contains

valuable information on strain variations in graphene on length scales far below the laser spot

size, that is, on the nanometre-scale. This finding is highly relevant as it has been shown

recently that such nanometre-scaled strain variations limit the carrier mobility in high-quality

graphene devices. Consequently, the 2D line width is a good and easily accessible quantity

for classifying the crystalline quality, nanometre-scale flatness as well as local electronic

properties of graphene, all important for future scientific and industrial applications.
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G
raphene combines several highly interesting material
properties in a unique way, promising unprecedented
material functionality. This makes graphene increasingly

attractive for fundamental research as well as industrial
applications1, but, at the same time, stresses the need for non-
invasive characterization techniques. In recent years, Raman
spectroscopy has proven to be highly useful as a non-invasive
method not only to identify graphene2,3 but also to extract
information on doping4–7, strain8,9 and lattice temperature10,11.
Even more insights can be gained when utilizing confocal,
scanning Raman spectroscopy to study spatially resolved doping
domains7,12, edge effects3,13 and position-dependent mechanical
lattice deformations, including strain14–16. The spatial resolution
of so-called Raman maps is on the order of the laser spot size
(which for confocal systems is typically on the order of 500 nm)
and the extracted quantities (such as doping or strain) are in
general averaged over the spot size. It is therefore important to
distinguish between length scales significantly larger or smaller
than the laser spot size. In particular, we will distinguish between
strain variations on a micrometre scale, which can be extracted
from spatially resolved Raman maps, and nanometre-scale strain
variations, which are on sub-spot-size length scales and cannot be
directly observed. Especially, nanometre-scale strain variations
have been recently identified as the most important limitation to
carrier mobility in high-quality graphene17, making this quantity
increasingly important18.

In this article, we show that the experimentally observed
Raman 2D line width is a measure of nanometre-scale strain
variations in graphene on insulating substrates, that is, it contains
valuable information on local (that is, nanometre-scale) flatness,
lattice deformations and crystal quality of graphene. Our findings
solve the long-standing question of the nature of the observed
broadening of the Raman 2D line and also link this quantity to
the electronic transport properties of graphene, making it a
valuable quantity for classifying the quality of graphene. To prove
that the experimentally observed 2D line width depends on sub-

spot-size strain variations and lattice deformations, we employ
the following strategy.

We start by showing that by combining Raman spectroscopy
with magnetic fields, electronic broadening contributions for
the Raman G line width can be strongly suppressed. Since
in perpendicular magnetic fields the electronic states in
graphene condense into Landau levels (LLs), the interaction
between electronic excitations and lattice vibrations becomes
B-field dependent. In agreement with existing theory19–22 and
experiments23,24, we demonstrate that by applying a
perpendicular B-field of B8 T, the G line becomes almost
independent of electronic properties such as charge carrier
doping, screening, or electronic broadening.

We observe that, under these conditions, the G line width
nevertheless exhibits strong variations across graphene flakes. In
particular, we show that the G line width is significantly increased
in regions where the graphene flake features bubbles and folds,
that is, in correspondence with increased structural deformations.

Finally, we show that at 8 T, there is a (nearly) linear
dependence between the G line width and the 2D line width,
implying that there is a common source of line broadening.
According to the previous points, the broadening must be related
to structural lattice deformations. This finding is further
supported by a detailed analysis of the relation between the area
of the 2D peak and its line width. By analysing the relation
between the G and 2D line width, we find that nanometre-scale
strain variations constitute a dominant contribution to the
observed line broadenings. Importantly, the 2D line has been
shown to only very weakly depend on the B-field25, implying that
no magnetic field is required to extract information on
nanometre-scale strain variations from the 2D line width,
which makes this quantity interesting for practical applications.

Results
Sample characterization. The investigated graphene (Gr) sheet is
partly encapsulated in hexagonal boron nitride (hBN) and partly
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Figure 1 | Graphene sample characterization. (a) Schematic representation of cross-section of the investigated sample highlighting the different regions I

(hBN-Gr-hBN) and II (SiO2-Gr-hBN). (b) Optical image of a Gr-hBN heterostructure resting partly on hBN and SiO2. Scale bar, 10 mm. (c,d) Raman

spectrum taken on the SiO2-Gr-hBN (c) and hBN-Gr-hBN (d) areas. The positions where the spectra were taken are marked by a blue and a red star,

respectively (b). (e) Raman map of the intensity of the hBN peak. The dashed lines mark the regions I and II. (f) GG versus oG recorded on various spots on

regions I (blue) and II (red) of the sample. (g) G2D versus o2D recorded on various spots on regions I (blue) and II (red) of the sample. (h) Histograms of

G2D recorded on various spots on regions I (blue) and II (red) of the sample. (i) o2D versus oG recorded on various spots on regions I (blue) and II (red) of

the sample.
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sandwiched between SiO2 and hBN as illustrated in Fig. 1a. An
optical image of our sample is shown in Fig. 1b. In contrast to
graphene encapsulated in hBN, graphene flakes supported by SiO2

usually feature lower carrier mobilities of around 103–104 cm2/(Vs),
indicating a detrimental influence of SiO2 on the electronic prop-
erties of graphene. In this regard, our structure gives us the
invaluable capability of probing a single graphene sheet exposed to
two different substrates (regions I and II in Fig. 1a,b). The sample is
fabricated with a dry and resist-free transfer process following
Wang et al.26 and Engels et al.27, where we pick up an exfoliated
graphene flake with an hBN flake and deposit it onto the hBN-SiO2

transition area of the substrate. A typical Raman spectrum of
graphene supported by SiO2 and covered by hBN, taken at the
position of the red star in Fig. 1b, is shown in Fig. 1c. The
characteristic hBN line as well as the graphene G and 2D lines can
be clearly identified. At first glance, the spectra recorded in the
hBN-Gr-hBN area look similar (see Fig. 1d, taken at the position
marked by the blue star in Fig. 1b). However, it is evident that the
full-width at half-maximum (FWHM) of the 2D line, G2D, is
significantly smaller.

The confocal nature of our Raman setup enables us to do
spatially resolved measurements. An example of a Raman map is
shown in Fig. 1e, where the spatially resolved intensity of the hBN
line is depicted. The hBN and SiO2 areas can be clearly
distinguished in the map (see highlighted regions I and II).
While analysing the Raman spectra of every point on the map, it
is evident that the G lines recorded in the hBN-encapsulated area
are broader than in the SiO2 supported area (compare red and
blue data points in Fig. 1f). This is a clear indication of reduced
charge carrier doping induced by the hBN substrate compared
with SiO2. In fact, at low charge carrier doping, the phonon mode
can decay into electron–hole pairs, which results in a broadening
of the G peak5,28. For the 2D line, in contrast, the G2D recorded in
the hBN-encapsulated area is mostly between 17 cm� 1 and
20 cm� 1, while it is above 22 cm� 1 in the SiO2 area (see blue and
red curves in the histogram of Fig. 1h, respectively). Note that
both G2D and GG do not depend on the respective frequencies
o2D and oG (Fig. 1f,g). In Fig. 1i the position of the G and 2D
lines for every spectrum obtained on the investigated graphene
sheet are displayed. For both substrates, the data points scatter
along a line with a slope of 2.2. This slope coincides with the ratio
of strain-induced shifts (that is, of the related Grüneisen
parameters) of the Raman G and 2D modes29. This indicates
that there are significant strain variations on both substrates
across the entire graphene layer. Assuming the strain to be of
biaxial nature, the spread of the data points translates into a
maximum, micrometre-scale strain variation of B0.14% (ref. 29).
The offset of the SiO2 and hBN data points can be understood in
terms of the higher charge carrier doping induced by the SiO2

substrate, which shifts the data points towards higher values of
oG (ref. 5), and differences in the dielectric screening of hBN and
SiO2 that effectively shift the 2D line position30. Since the data
stems from a single graphene flake that has undergone identical
fabrication steps for both substrate regions, the difference in
charge carrier doping is unambiguously because of the two
different substrate materials.

Suppressing electronic broadening with a magnetic field. For
a more refined comparison of the Raman spectra on both
substrates, we seek to suppress the effects on the G line arising
from these differences in charge carrier doping. We therefore
minimize the influence of the electronic system on the Raman G
line by applying a perpendicular magnetic field. In the presence of
a perpendicular magnetic field, the electronic states in graphene
condense into LLs. The coupling of these LLs to the G mode is

well understood19,20 and experimentally confirmed22–24,31–36.
When a LL transition energetically matches the G mode phonon,
the position of the G line is shifted and its line width increases.
An example for the evolution of the Raman G peak with magnetic
field, taken on the hBN sandwich area, is shown in Fig. 2a. The
individual spectra are offset for clarity. For a detailed analysis,
single Lorentzians are fitted to every spectrum. The resulting
frequency, oG, and FWHM, GG, are displayed in Fig. 2b,c,
respectively. The arrow at B¼ 3.7 T (Fig. 2c) shows a value of the
magnetic field where a LL transition is energetically matched with
the phonon, leading to a broadening of the G line. However, at
magnetic fields around 8 T, no LL transition is energetically close
to the G mode, as illustrated in Fig. 2d, where the energies of the
relevant LL transitions as a function of magnetic field are
compared with the energy of the G mode phonon. Consequently,
at this high magnetic field the influence of the electronic system
on the position and width of the G line is minimized. Note that
this effect is independent of the charge carrier density and the
exact values of the broadening of the LL transitions assuming that
the latter are within a reasonable range as found by other
studies24,35. Thus, the residual broadening of the G line is most
likely determined by phonon–phonon scattering and averaging
effects over different strain values that vary on a nanometre scale.

Strain variations within the laser spot. To demonstrate that this
applies to the entire sample, we first show that the broadening of
the electronic states is low enough on the entire hBN-Gr-hBN
area. In Fig. 3a,b, we show maps of GG at B¼ 0 and 3.8 T,
respectively. On the hBN part, the width of the G line shows the
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Figure 2 | Magneto-Raman spectroscopy. (a) Raman spectra recorded as

a function of magnetic field, ranging from 0 T (bottom spectrum) to 8.9 T

(top spectrum). The spectra are vertically offset for clarity. (b,c) Frequency,

oG, and FWHM, GG, of the G peak as a function of magnetic field as

obtained from Lorentzian fits to the data shown in a. The arrow (c)

highlights a value of the magnetic field at which the phonon is energetically

matched to a LL transition. (d) Evolution of the energies of LL transitions

with magnetic field. The full lines represent inter-band transitions in which

the LL index changes by one. The dashed lines represent inter-band

transitions in which the LL index does not change. The red line represents

the G mode phonon frequency at zero B field. The circled region in (c,d)

highlights the region in which no LL transitions energetically match the

G mode phonon.
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resonant behaviour depicted in Fig. 2c (see also histogram in
Fig. 3d). This effect happens throughout the entire hBN area,
independent of the local doping and strain values and indepen-
dent of possible local folds and bubbles. The suppression of
magneto-phonon resonances on the SiO2 substrate can be
attributed to the higher charge carrier density. At higher charge
carrier density the needed LL transitions are blocked by the Pauli
principle. In the next step, we tune the magnetic field to 8 T,
where the electronic influences on the Raman G line are at a
minimum. A map of GG over the entire flake at a magnetic field of
8 T is shown in Fig. 3c. Distinct features across the whole sample
are visible as regions with increased line width. A comparison
with a scanning force microscope image of the sample (Fig. 3e)
reveals that many of these regions can be associated with folds
and bubbles most likely induced during the fabrication process,
some of which even cross the border between the underlying hBN
and SiO2 substrate regions.

As electronic broadening effects are suppressed at 8 T, the
increased line width of the G line in the vicinity of these lattice
deformations arises from enhanced phonon–phonon scattering
and/or an averaging effect over varying nanometre-scale strain
conditions.

Interestingly, the same features can also be identified in a G2D

map recorded at B¼ 0 T, shown in Fig. 3f. This strongly suggests
that the lattice deformations identified at 8 T in GG also cause a
broadening of the 2D mode. The same trend is highlighted in
Fig. 4a, where we show the relation of GG and G2D for all recorded
Raman spectra at 8 T. The additional teal data points stem from a
Gr-SiO2 sample and the orange star originates from a different
hBN-Gr-hBN sandwich structure with all data having been
obtained at 8 T. Notably, the points from all substrate regions lie
on one common line. From this linear relation between G2D and
GG (Fig. 4a), we conclude that there must be a common source of
line broadening, which is connected to structural deformations.
This is mainly due to the fact that at 8 T the G-line broadening is

only very weakly affected by electronic contributions (see above).
The range of the presented scatter plot can be extended by
including data recorded on low-quality graphene samples with
significant doping, as shown in Fig. 4b. Here, no magnetic field
but high doping (corresponding to Fermi energies much higher
than half of the phonon energy ‘oph/2E100 meV) is used to
suppress Landau damping of the G mode, leaving GG unaffected
from electronic contributions. The coloured data points stem
from Raman maps (B¼ 0 T) of chemical vapour deposition
(CVD)-grown graphene flakes that were transferred onto SiO2 by
a wet chemistry-based transfer. These graphene sheets contain
doping values of nel43� 1012 cm� 2, which corresponds to
Fermi energies EF4200 meV (Supplementary Figs 1 and 2). The
data points show the same trend as the values obtained at 8 T
(grey data points in Fig. 4b) and even extend the total range of the
dependence to higher values of G2D.

Discussion
Although the linear relation between GG and G2D in Fig. 4a,b
shows that structural deformations also broaden the 2D line,
it is less straightforward to identify the actual mechanism of
broadening. In principle, it is possible that the high values of G2D

around folds and bubbles are due to a combination of increased
phonon–phonon scattering, averaging effects over different strain
values within the laser spot and reduced electronic life times.
However, interestingly the slopes in Fig. 4a,b are around 2.2 (see
black lines). This is a remarkable resemblance to the strain-
induced frequency shifts of both modes (compare Fig. 1i). This
provides very strong indication that averaging over different
strain values, which vary on a nanometre scale (see Fig. 4c), play
an important role in the broadening of the experimentally
observed 2D line. This averaging effect broadens the G and 2D
line by the same ratio as their peak positions shift for fixed
average strain values explaining the slope of 2.2 between GG and
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G2D (Supplementary Fig. 3), which we demonstrate with a simple
toy model as shown in Fig. 5. Each individual Raman process that
takes place within the laser spot is subject to a different amount of
strain since the latter varies across the laser spot. Each of the
corresponding Raman peaks is thus shifted by a different amount
(see blue and dashed cyan curves in Fig. 5a). The intrinsic
broadening of each individual Raman process is assumed to be
GG¼ 5 cm� 1 and G2D¼ 17 cm� 1. Due to the size of the laser
spot, the sum of several of these individual Raman processes is
recorded, with the resulting peak being given by the sum of the
individual peaks (see blue curve in Fig. 5b). Following the data
analysis of our measurements, the resulting curve is fitted by a
single Lorentzian (red curve in Fig. 5b). To simulate the effect of
this statistical broadening mechanism on the width of the
resulting Raman peak, we simulate statistical strain distributions
for several laser spots that are subject to different amounts of
strain variation De in Fig. 5c. For each of the red points, 20 strain
values were randomly generated. Each set of strain values follows
a Gaussian distribution centred at �e¼ � 0.1% with a width
varying from De¼ 0 to 0.15%. The dashed black line has a slope
of 2.2 and matches the distribution of the red points, illustrating
that averaging over nanometre-scale variations leads to a linear
dependence of GG and G2D.

We are aware that the low charge carrier densities in the
hBN-encapsulated area might result in a narrowing of the 2D
mode by three to four wave numbers37. However, the large
differences of G2D on the order of 20–30 cm� 1 on both substrates
cannot be explained by the differences in charge carrier
doping7,37,38.

Interestingly, the lowest G2D observed in our experiments are
very close to the value that we compute from first-principles as
by Venezuela et al.38 assuming an undoped, defect-free and
stress-free sample of graphene (horizontal dashed and dotted
lines in Fig. 4a,b). In such an approach, the width of the 2D peak
is determined by the anharmonic decay rate of the two phonons
involved (5.3 cm� 1 according to Paulatto et al.39), and, indirectly,
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by the broadening of the electron and hole, denoted as g in
Venezuela et al.38 (see also Basko40). According to Reference
Venezuela et al.38, the electron–phonon contribution to g is
81.9 meV for electronic states in resonance with the 2.33 eV laser-
light. With such a value of g we obtain a G2D of 12.1 cm� 1

(dotted lines in Fig. 4a,b,e). If, following Herziger et al.41, we
double the value of g to account for the electron–electron
scattering, we obtain a G2D of 17.9 cm� 1 (dashed lines in
Fig. 4a,b,e), in close agreement with the lowest measured values.
In principle, the observed increase of G2D with respect to its
minimum value could be attributed to an increase of
the electronic broadening g, due to doping (increasing the
electron–electron scattering) or to the presence of defects
(increasing the electron-defect scattering)38,40,42. By
investigating the relation between G2D and the integrated area
of the 2D peak (area2D) we can exclude such a hypothesis.
In Fig. 4d,e we show scatter plots of G2D versus the
region-normalized area2D for both B¼ 8 T and B¼ 0 T,
highlighting the very weak B-field dependence of G2D. More
importantly, we observe that the area of the 2D peak does
not depend on G2D, contrary to what is expected in presence
of a variation of the electronic broadening g (refs 38,40,42). In
particular the measured data does not follow the calculated
dependence of G2D on area2D, reported in Fig. 4e, obtained in the
calculation by varying electronic broadening g. This dismisses
differences in the electronic broadening as a main mechanism for
the observed variations of G2D.

Finally, our finding that the 2D line depends on nanometre-
scale strain inhomogeneities is also in good agreement with high-
resolution scanning tunnelling microscopy measurements, which
reveal that graphene on SiO2 forms short-ranged corrugations,
while graphene on hBN features significantly flatter areas43.

In summary, we showed that by using a magnetic field of 8 T to
strongly suppress the influence of the electronic contributions on
the Raman G line width, the latter can be used as a measure
for the amount of nanometre-scale strain variations. Most
importantly, we observed a nearly linear dependence between
the G and 2D line widths at 8 T independent of the substrate
material, indicating that the dominating source of the spread
of the broadening of both peaks is the same. From the slope
DG2D/DGG of around 2.2, we deduce that averaging effects over
nanometre-scale strain variations make a major contribution to
this trend. Since the 2D line width shows only a very weak
dependence on the B field, this quantity can even be used without
a magnetic field to gain information on the local strain
homogeneity and thus on the structural quality of graphene.
These insights can be potentially very valuable for monitoring
graphene fabrication and growth processes in research and
industrial applications, where a fast and non-invasive control of
graphene lattice deformations is of great interest.

Methods
Raman spectroscopy measurements. The room temperature Raman spectra
were acquired using a commercial Witec system with a laser excitation of 532 nm
(2.33 eV) delivered through a single-mode optical fibre, where the spot size is
limited by diffraction. Using a long working distance focusing lens with a
numerical aperture of 0.80, we obtained a spot size of B400–500 nm. For the low-
temperature Raman measurements, we employ a commercially available confocal
Raman setup that allows us to perform spatially resolved experiments at a tem-
perature of 4.2 K and magnetic fields of up to 9 T. We use an excitation laser
wavelength of 532 nm with a spot diameter on the sample of B500 nm. For
detection, we use a single-mode optical fibre and a charge-coupled spectrometer
with a grating of 1,200 lines mm� 1. All measurements are performed with linear
laser polarization and a � 100 objective.

First-principles calculations. For the computation of the double-resonant Raman
cross-section we employ an approach based on Fermi’s golden rule generalized to
the fourth perturbative order as described in detail in Reference Venezuela et al.38.

In this approach, electron–light, and electron–phonon scattering matrix elements
are explicitly calculated and the phonon and electronic dispersions reproduce
calculations based on density-functional theory corrected with GW. Converged
results are obtained using 480� 480 and 240� 240 grids in the Brillouin zone for
the electron and phonon wave-vectors, respectively. The finite phonon life time is
taken into account by broadening the Raman intensity with 5.3 cm� 1 wide
Lorentzians39. We varied the electron broadening (g in eq. (5) from Venezuela
et al.38) from 16.4 to 344 meV and then we determined G2D as a function of area2D.
For a laser energy of 2.33 eV, the electron–phonon contribution for the electronic
broadening is 81.9 meV, which leads to G2D¼ 12.1 cm� 1. However, when we
choose g to be twice this value, to account for additional electron–electron
interaction41, we obtain G2D equal to 17.9 cm� 1. These values can be understood
as a theoretical expectation of the 2D line width for a perfect graphene lattice
disregarding any broadening from averaging effects over different strain values
within the laser spot.
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